
ExplainHoudini: Making Houdini inference

transparent

Shuvendu K. Lahiri1 and Julien Vanegue2

1 Microsoft Research
shuvendu@microsoft.com
2 Microsoft Corporation
jvanegue@microsoft.com

Abstract. Houdini is a simple yet scalable technique for annotation in-
ference for modular contract checking. The input to Houdini is a set of
candidate annotations, and the output is a consistent subset of these
candidates. Since this technique is most useful as an annotation assis-
tant for user-guided refinement of annotations, understanding the reason
for the removal of annotations is crucial for a user to refine the set of
annotations, and classify false errors easily. This is especially true for
applying Houdini to large legacy modules with thousands of procedures
and deep call chains. In this work we present a method ExplainHoudini
that explains the reason why a given candidate was removed, purely in
terms of the existing candidates. We have implemented this algorithm
and provide preliminary experience of applying it on large modules.

1 Introduction

Static analysis aims to check a property on a program with high coverage with-
out executing the code. However, automatic static analysis of most non-trivial
properties on real programs is undecidable. This fact either manifests in spurious
warnings (false alarms) or non-termination of static analysis tools. For example,
tools based on abstract interpretation [5] may generate false alarms when the
intermediate invariants cannot be captured in the underlying abstract domains
(which are mostly fixed); on the other hand, extensible tools based on predicate
abstraction [10] or interpolants [15] may diverge while performing automated
refinement of abstractions.

User-specified intermediate contracts or annotations (preconditions, postcon-
ditions etc.) are helpful in minimizing the false alarms for static analysis. In
recent years, a number of contract-checking tools for real programs have been
developed including ESC/Java [9] (for Java), Spec# [3] (for C#), HAVOC [4], and
VCC [6](for C). These tools can be used to check a range of properties, starting
from the absence of runtime defects (such as absence of null dereferences), to
simple object type-state properties (such as a lock is acquired before a release)
to more complex functional correctness properties. The research problems for
these tools vary depending on the type of properties being checked. For exam-
ple, the main challenges in tools proving functional correctness (mainly in the

hands of verification experts) are in devising efficiently-checkable logics for ex-
pressing data invariants, and exploiting data encapsulation for reasoning about
composition of multiple modules [3, 6]. On the other hand, the main hurdle for
(extended static) checking simple user-defined properties lies in the annotation
overhead required for a (non-expert) user to check a property with high coverage
and low false alarm [9, 1]. This work concerns the latter.

In the extended static checking [9, 1] scenario for large code bases, the user
drives the verification process. The user first adds the property to be checked
using procedure contracts and instrumented assertions. The next steps alternate
between adding a few core annotations and directing an annotation inference
assistant to generate a set of simple intermediate annotations. A desirable prop-
erty of the inference assistant is to be configurable by an average user, be scalable
to large codebases, and provide transparency in providing feedback about the in-
ference.

Houdini [8] is a simple yet scalable annotation inference technique that meets
most of these requirements. The input to Houdini is a set of candidate annota-
tions (or “guesses”), and the output is a consistent subset of these candidates.
It is a greatest fixed point algorithm that removes candidates that cannot be
proved by modular checking. It is configurable by allowing the user to specify
a set of guesses using a set of simple patterns. For example, a user may add a
candidate precondition for any procedure that all pointer arguments are non-
null [8], or that the lock parameters are released [1], or even guess exceptions
to module invariants [13]. The underlying analysis uses a theorem prover and
does not require defining new abstract semantics. It is scalable as the inference
converges linearly in the number of candidates; and often much earlier if only a
small number of candidates are removed3. It also uses procedure modular check-
ing that does not involve inspecting long interprocedural counterexamples. It is
transparent to a great extent as the user can inspect the set of annotations that
were inferred.

However, when applying Houdini on large modules, we have spent most of
the effort in understanding the reason a candidate annotation is removed [13, 1].
There are several reasons a candidate could be removed: (i) it does not hold, (ii)
the existing annotations are not strong enough, or (iii) prover incompleteness.
Understanding the reason is crucial for classifying false alarms from true bugs,
and refining the set of annotations. In fact, the authors of the original article of
Houdini rightly mention [8]:

Surprisingly, our experience indicates that presenting the refuted anno-
tations and the causes thereof is the most important aspect of the user
interface.

To address this partially, the tool displayed the call-site where a candidate pre-
condition was removed, and possibly an intraprocedural path that lead to the

3 In contrast to a least fixed point based forward predicate abstraction approach that
can solve the same problem [10].

Proc4

Proc9

pT

Proc3

pT

Proc2

pStr pArg pMode

EntryProc1

pStr pMode pArg

EntryProc5

pT

Proc8

pT

Proc7

pCb

EntryProc6

pData

$Proc4$:pT

$Proc9$:pT

Proc4

$Proc3$:pT

Proc3

BOT

Proc8

Fig. 1. (a) Dependency of candidates removed for Proc9. (b) Output of ExplainHou-

dini for the candidates removed for Proc9.

removal. Although this is useful, it provides very little interprocedural informa-
tion to understand the cause of the removal.

Let us illustrate the problem with the graph in Figure 1 (a). The graph on
the left represents a subset of candidates removed when applying the Houdini

implementation in HAVOC for annotation inference on a large Windows module
measuring more than 250KLOC, containing more than 3000 procedures. The
candidates correspond to preconditions that pointer parameters are trusted; that
is, the pointer was either allocated inside the kernel, or had undergone a san-
itization by calling one of the designated procedures [1]. The graph represents
a small slice of the overall graph of candidates removed — the slice contains
candidates removed from the procedure Proc9 and its callers.4 Each node in
the graph corresponds to a procedure, and an edge (p, c, q) represents that the
candidate c of procedure q was removed while checking the body of p. Instead
of showing the entire annotation on the edges (which can be verbose), we just
show the parameter contained in the candidate.

Although the graph shows the local cause such as the call-site where a precon-
dition was removed, it provides little interprocedural information. For instance,
it is not clear if the candidate for pT parameter of the method Proc9 was re-
moved because there is a pointer flowing from one of the roots (say one of the
parameters pMode of EntryProc1) in this graph without sanitization (true bug),

4 The names of the procedures and the parameters have been obfuscated due to secu-
rity reasons.

or whether there is a missing precondition or postcondition along the path that
would have ensured that the candidate was provable (false alarm). Initial at-
tempt at tracing the call chains from a removed candidate back to the roots of
the graph manually was extremely time consuming. Matters get worse when can-
didate postconditions are involved; one not only has to look at all the transitive
callers of a given procedure, but all the callees of these transitive callers as well,
resulting in huge graphs. For a module of this size, one can end up spending a
few minutes to sometimes several hours trying to understand the root cause of
an annotation removal to certify true bugs.

In this work, we provide a step towards making Houdini more transparent by
providing a more meaningful interprocedural reason of the annotation removal
in addition to the above graph. Our goal is much less modest compared to the
work on automatic refinement (e.g. [11]) to suggest new annotations, or even
suggest which procedures to refine. For a run of Houdini, we provide a notion
of cause for the removal of a candidate in terms of another removed candidate
whenever possible (or ⊥ otherwise). These causes can be composed to provide
an interprocedural path from ⊥ to a candidate that was removed; the path
captures a sequence of candidate removal ultimately leading to the removal of
a candidate. It is an interprocedural explanation of the removal purely in terms
of the candidates removed. We provide an algorithm ExplainHoudini, which
computes the cause for each removed annotation by adding a simple “replay”
mechanism to any Houdini implementation. The algorithm is extremely simple
(does not require any more functionality from the theorem prover than what
Houdini requires), modular (does not require analyzing large interprocedural
traces that may be infeasible for large modules), and does not require changing
the search heuristics in Houdini.

Figure 1 (b) displays the output of ExplainHoudini on the removed candi-
date for Proc9. Here, each node represents a candidate (prefixed with procedure
name) and the edge denotes the procedure whose checking removed the anno-
tation. The node BOT marks the ⊥ node. An edge from c′ to c denotes that
the cause of c is c′. The interprocedural dependency graph suggests that the
candidate precondition on the pT parameter of Proc9 cannot be removed until
the candidate on pT parameter of Proc3 was removed. However, the removal
of this candidate on pT parameter from Proc3 cannot be explained in terms of
the existing candidates. The information narrows down the choice of places to
inspect to understand the false alarm. The information strongly suggests that
the pointer from the root does not flow into Proc9, and the false alarm can most
likely be found out by looking at the procedures in the path of the explanation.
We encourage the reader to revisit the graph after gaining familiarity with the
notion of causality captured by these graphs in Section 3.

In the rest of the paper, we provide some background on Houdini (Sec-
tion 2), formalize cause and describe ExplainHoudini (Section 3), and provide
preliminary experience on applying it on a couple of large modules (Section 4).

2 Background

In this section, we formalize the concepts in this paper, and present the Houdini

algorithm [8].

2.1 Source and assertion languages

We assume that the source language supports standard features of most imper-
ative programming languages such as variable assignment (x := e) statements,
conditional statements (if (e) s else t), sequential composition (s; t), and pro-
cedure calls. Accesses to the heap (dereferencing pointers (∗x) or object fields
(x.f)) is modeled as reads and writes to global map variables that model the en-
tire heap or individual fields in the heap [9, 4, 3]. To enable a uniform formalism,
we assume that loops are modeled as tail-recursive procedures.

In addition to assertions present in the program (using assert φ statements),
each procedure can be decorated with preconditions and postconditions. A pre-
condition on a procedure p is specified as requires φ to denote that the con-
dition φ is true whenever the procedure p is invoked. A postcondition on a
procedure p is specified as ensures φ to denote that the condition φ is true
whenever the procedure p returns. The language of φ constitutes the assertion
language for the program. These assertions are well-scoped Boolean expressions
over program variables (parameters, globals, return variables), including accesses
to fields in objects (e.g. requires x.f < 5). The latter is desugared as read over
the global map modeling the heap. The assertion language also permits the
use of ghost variables and fields to write these specifications. The preconditions
and postconditions together constitute the contract for a procedure5. A program
P = {p1, . . . , pk} constitutes a set of procedures, where some are marked as entry
procedures (no callers), and some are marked as external procedures (without a
body).

2.2 Modular contract checking and contract inference

A modular contract checker verifies that each procedure in a program P can
verify its contracts with respect to the contracts of its callees. To perform a
modular verification of a procedure p, a procedure call h(e) is replaced by the
following sequence of statements: (i) assert the preconditions of h, (ii) scramble
all the globals (including the heap map) that could be modified by h and (iii)
assume the postconditions of h. For the resultant call-free procedure, a logical
formula called the verification condition (VC) is generated that encodes the
correctness of the procedure p with respect to its contracts. If the formula is
valid, then p satisfies its contracts. A failure indicates that some postcondition
of p or a precondition of one of the callees of p could not be proved.

5 For simplicity, we have ignored the issue of modifies clauses in the formalism. For the
purpose of this paper, they can be regarded as additional postconditions involving
the global heap map that express the facts that remain unchanged.

Let A denote a set of annotations where Ap ⊆ A denotes the annotations
for a procedure p ∈ P , i.e., A =

⋃
p∈P Ap. For a procedure p ∈ P and two sets

of annotations A and A′ , we define CheckVC(p,A,A′) to be a method that
checks the procedure p against the contracts in A, assuming the contracts in
A′ . In other words, the contracts in A′ are “free”, i.e. they are not checked. For
example, a postcondition a ∈ A′ for a procedure p ∈ P can be assumed at a call-
site of p but is not checked when the body of p is analyzed. The generalization
to allow unchecked assumptions will be useful when we describe the Houdini

algorithm later in this section.

Definition 1 (Contract checking). For a set of procedures P = {p1, . . . , pk}
and a set of annotations A =

⋃
p∈P Ap, is CheckVC(p,A, {}) = VERIFIED

for every p ∈ P?

Definition 2 (Contract inference). For a set of procedures P = {p1, . . . , pk}
and a set of annotations A =

⋃
p∈P Ap, does there exist (infer) a set of anno-

tations A′ =
⋃

p∈P A′
p, such that CheckVC(p,A ∪ A′ , {}) = VERIFIED for

every p ∈ P?

A restricted form of the contract inference is the monomial predicate abstrac-
tion problem [10]:

Definition 3 (Monomial predicate abstraction). For a set of procedures
P = {p1, . . . , pk}, a set of annotations A =

⋃
p∈P Ap, and a set of candidate

annotations C =
⋃

p∈P Cp, does there exist (infer) a set of annotations A′ =⋃
p∈P A′

p, such that (i) A′
p ⊆ Cp for each p ∈ P and (ii) CheckVC(p,A ∪

A′ , {}) = VERIFIED for every p ∈ P?

Care has to be taken to not allow candidate preconditions on entry proce-
dures and candidate postconditions on external procedures that do not have
a body. One can trivially satisfy the requirement for contract inference with a
candidate precondition of requires false for each entry procedure of a program.
Similarly, a candidate postcondition ensures false for a external procedure can
lead to unsoundness. In both these cases, these annotations are always going to
be assumed and never checked.

2.3 Houdini algorithm

Houdini [8] is an algorithm for solving the monomial predicate abstraction
problem described earlier. Given a program P annotated with a set of contracts
A and a set of candidate contracts C, the algorithm employs a greatest fixed-point
algorithm over the set of candidates: it starts with the entire set of candidates in
C and successively removes a candidate c ∈ C if it is unable to prove c using the
CheckVC() procedure. It converges when no candidates can be removed. Let
A′ ⊆ C be the set of annotations that were not removed during the fixed-point
algorithm — the algorithm guarantees that CheckVC(p,A′ ,A) = VERIFIED

for every p ∈ P . Further, if CheckVC(p,A′ ∪ A, {}) = VERIFIED for every

Algorithm 1 Houdini

Require: A program P = {p1, p2, . . . , pk}
Require: A set of contracts A =

⋃
p∈P
Ap

Require: A set of candidate contracts C =
⋃

p∈P Cp

Ensure: A set of inferred contracts A′ =
⋃

p∈P
A′

p, such that A′
p ⊆ Cp for each p ∈ P

1: WL ← P // Add all procedures to the worklist
2: for p ∈ P do

3: Rp ← {}
4: end for

5: while ¬IsEmpty(WL) do

6: p← Dequeue(WL)
7: if CheckVC(p,C,A) 6= VERIFIED then

8: Let c be the candidate contract that was not proved
9: q ← Proc(c)

10: Cause(c)← ExplainHoudini(p, c,A, C,R)
11: Cq ← Cq \ {c}
12: Rq ←Rq ∪ {c}
13: if c is a precondition then

14: WL ← WL ∪ {q}
15: else

16: WL ← WL ∪ {q} ∪ Callers(q) //q is the same as p in this case
17: end if

18: end if

19: end while

20: return
⋃

p∈P
Cp

p ∈ P , then the algorithm returns “yes” to the monomial predicate abstraction
decision problem.

Algorithm 1 describes the algorithm in detail. The highlighted line can
be ignored now. The algorithm maintains a worklist WL of procedures that are
pending to be analyzed. This is initialized with all the procedures in P (line 5).
The variable Rp tracks the set of candidates removed from Cp at any instant, and
is initialized to {} (line 3). At every iteration, the algorithm extracts a procedure
p from the worklist (line 6) and checks the procedure p with respect to A ∪ C.
Notice that the algorithm uses CheckVC(p, C,A) (in line 7) to ensure that none
of the assertions in A are checked (although they may be assumed) during the
contract inference stage.

If the check fails for a candidate assertion c ∈ C, then it extracts the procedure
q containing this assertion (using the procedure Proc() in line 9), removes it
from Cq and adds it to Rq. Finally, it updates WL with q and all the callers of q

(only when c is a postcondition of q). It returns the set of candidate assertions
that have not been removed as the inferred set of annotations. The algorithm
also guarantees that the maximum set of candidates are retained irrespective of
the removal order [8, 12].

An alternate implementation may use CheckVC(p,A ∪ C, {}) in line 7 and
terminate when an annotation a ∈ A cannot be proved. The above algorithm

typedef struct _B{
int g;
int h;

}B, *PB;

PB gb; // global

ensures probed(p)
void Probe(PVOID p);

cand requires probed(q)

cand ensures probed(q)

void Inner6(PB q)

{
assert probed(q);
q->h = 25;

}

requires probed(gb)

void Inner5 ()

{
PB b = gb;
Inner6 (b);

}

cand requires probed(q)

cand ensures probed(q)

void Inner4(PB q)
{

assert probed(q);
q->h = 10;

}

cand requires probed(q)
cand ensures probed(q)
void Inner3(PB q)

{
assert probed(q);
q->g = 5; // TRUE BUG

}

cand requires probed(q)
cand ensures probed(q)
ensures q =⇒ probed(q)

void Inner2(PB q)
{

if (q)

Probe(q);
}

cand requires probed(q)
cand ensures probed(q)
void Inner1(PB q)

{
Inner2 (q);

Inner3 (q);
if (q)

Inner4(q);
}

cand ensures probed(p)
void Entry(PB p)

{
Inner1 (p);
Probe(gb);

Inner5 ();
}

Fig. 2. Running example. The additional annotations are underlined. The highlighted
annotations are the inferred candidates after adding the additional annotations.

tries to find a subset of the candidates in C that are provable assuming the
annotations in A. This is often desirable in practice when A contains multiple
annotations; the inferred annotations can serve as additional annotations that
can remove some of the false alarms, even though all the annotations in A may
not be provable (and may indeed be bugs).

2.4 Example

Consider the C example in Figure 2 — we will use this example to illustrate
concepts in this paper. The example consists of seven procedures with Entry as
the entry procedure and a set of internal procedures Innerx. We check the probe-
before-use property on this example — every input pointer (pointers reachable
from the globals and inputs to the entry procedures) needs to be sanitized with
a call to a procedure Probe before being used (dereferenced) [1]. This is modeled
by a ghost field inside each pointer that tracks whether it has been probed — the
formula probed(q) denotes that the pointer q is probed. The procedure Probe

has a postcondition to ensure that a pointer is probed in the post-state. The
property is instrumented by adding an assertion before every dereference of a
pointer (in procedures Inner3, Inner4 and Inner6). For this example, only the
procedure Inner3 has a violation of the property.

The annotations in requires , ensures and assert denote the set A. The
annotations in cand requires denote the set of candidate annotations C — let
us ignore them initially. Let us also pretend that the underlined annotations are

not present initially. An attempt at modular contract checking of this example
produces three counterexamples, one for each of the assert statements.

At this point, a user would add the set of guesses using the following instru-
mentation (say in HAVOC [1]) — for any pointer argument p of a procedure, add
cand requires probed(p) (except for entry procedures) and cand ensures probed(p)
(except for external procedures with no bodies). This results in the set of can-
didate annotations present in the program. Running Houdini on this example
unfortunately removes all the candidates, and infers an empty set of annotations
that does not reduce the set of warnings for the example.

Let us assume that the user now adds the annotations that are underlined.
Performing modular checking still yields the same three assertion failures. Run-
ning Houdini(with the candidates) in the presence of the additional annotations
in A yields new inferred annotations (highlighted). With these inferred an-
notations, a modular checking only produces one assertion failure (in Inner3)
corresponding to a true bug.

3 ExplainHoudini

Recall that a candidate annotation c ∈ C is removed by Houdini when it is
unable to prove c while checking the annotations of a procedure modularly.
There can be several reasons for the removal of a candidate annotation: (1) it
does not hold, (2) the set of annotations of the procedure and its callees are
not strong enough to prove c, or (3) the theorem prover may be incomplete in
proving c. Ideally, the notion of cause should provide feedback for distinguishing
between these cases and perhaps suggest additional annotations in the case of
(2) to refine the current annotation set. However, our goal is less ambitious —
we simply want to show the user the interprocedural reason why Houdini failed
to prove an annotation, purely in terms of the candidate annotations. It is left to
the user to use this information to refine the candidate set, identify true errors,
or fix prover incompleteness.

In this section, we first define a notion of local cause for the removal of a
candidate purely in terms of other candidates, and then describe an algorithm
ExplainHoudini that computes the cause for candidates that are removed.
Finally, we illustrate the working of this algorithm on the running example.

3.1 Cause

For a run of the Houdini algorithm (Algorithm 1), consider a candidate c ∈ C
that was removed. Let Rc ⊆ C contain the set of candidates that were re-
moved prior to the removal of c. Further, let pc be the procedure whose check-
ing removed c. For such a c, we define a set CauseSet(c) ⊆ Rc as follows: a
c′ ∈ CauseSet(c) iff the following conditions hold:

1. c′ ∈ Rc, and
2. there exists a R1 ⊆ Rc such that:

(a) CheckVC(pc, {c},A ∪ (C \ R1)) = VERIFIED, and
(b) CheckVC(pc, {c},A ∪ ((C \ R1)) \ {c

′}) 6= VERIFIED.

Intuitively, a c′ belongs to CauseSet(c) if there is a subset R1 of Rc such
that (a) the removal of R1 from C does not affect the provability of c, and (b)
the removal of R1∪{c′} makes c unprovable. Note that the two conditions imply
that c′ 6∈ R1. Moreover, since c′ ∈ Rc, c′ has to be different from c.

In other words, CauseSet(c) contains a set of candidates removed before
the removal of c, such that there exists an order of removing candidates where
c would not be removed unless c′ was removed. The intuition is as follows: if
the presence of all the candidates in C is not strong enough to prove c, then
CauseSet(c) will be empty; otherwise, the set of candidates in C is not strong
enough to prove some c′ ∈ CauseSet(c). Since there is a removal order in
which c cannot be removed until c′ is removed, we label c′ as a likely cause for
the removal of c.

Although CauseSet(c) may contain multiple potential causes for each c,
considering all possible causes may be overwhelming and may be expensive to
compute. In the rest of paper, we will describe a method that concisely describes
a single candidate removal sequence for each candidate contract c. Let R be the
set of candidates that are removed when the Houdini algorithm terminates. For
each c ∈ R, we define Cause(c) ∈ R ∪ {⊥}, such that:

1. Cause(c) ∈ CauseSet(c), when CauseSet(c) 6= {}, and
2. Cause(c) = ⊥, otherwise

For a candidate c that was removed, one can also record the intraprocedural
trace that removed c as part of Cause(c) in addition to the candidate c′ that
forms the cause. These causes can be composed to provide an interprocedural
path from ⊥ to a candidate c that was removed, denoting a candidate removal
sequence that terminates in the removal of the particular candidate c.

3.2 Example revisited

Figure 3 shows a graph (for the running example in Figure 2) where a node
represents a candidate annotation c ∈ R that was removed, and there is an edge
(c′, p, c) to represent Cause(c) = c′, where c′ ∈ {⊥} ∪ R and c was removed
during CheckVC(p, . . .). Each annotation node has a prefix pk: to indicate
the procedure p that the annotation belongs to and the position of the annotation
k in the list of annotations for p (to account for duplicate candidates).

It is useful to understand the candidate removal for the procedures that
have false alarms (Inner4 and Inner6). Observe that the edge (⊥, Inner5,
$Inner6$0) indicates that the reason for the removal of this precondition can-
not be explained in terms of the existing candidates. This is indeed true, as
we need the additional annotation requires probed(gb) for Inner5 (that is not
captured by the set of candidates) to retain this candidate precondition. On
the other hand, the graph indicates that Houdini cannot remove the precon-
dition of Inner4 until the postcondition of Inner3 is present. Similarly, the

$Inner1$1:ensures(probed(q))

$Entry$0:ensures(probed(p))

Entry

$Inner3$1:ensures(probed(q))

Inner1

$Inner4$0:requires(probed(q))

Inner1

$Inner3$0:requires(probed(q))

Inner3

$Inner2$1:ensures(probed(q))

Inner1

$Inner2$0:requires(probed(q))

Inner2

$Inner1$0:requires(probed(q))

Inner1

BOT

Entry

$Inner6$0:requires(probed(q))

Inner5

$Inner4$1:ensures(probed(q))

Inner4

$Inner6$1:ensures(probed(q))

Inner6

Fig. 3. The output of ExplainHoudini on the running example (in the absence of any
of the additional annotations).

postcondition of Inner3 can be removed only after the precondition of Inner3
has been removed, which in turn requires the postcondition of Inner2 to be
removed. This process continues all the way where the precondition of Inner1 is
removed inside Entry. Although the graph shows the interprocedural causality
why Houdini removed the precondition of Inner4, it is not clever enough to
identify the procedure that has to be refined (Inner2) and the additional anno-
tation (ensures q =⇒ probed(q)) that can remove the spurious warning. This
is consistent with the vision of a transparent inference that performs a scalable
analysis to perform simple tasks and leaves the difficult task to the user. While
walking the path of causes backwards, it is easy to spot the place that has to be
refined and the candidate for a user.

3.3 Algorithm

We now describe the ExplainHoudini algorithm (Algorithm 2) that com-
putes the Cause() for each of the removed candidates. This procedure is invoked
during the Houdini algorithm (Algorithm 1) just before a candidate c is removed
from C and added to R — this is indicated by the highlighted line in the algo-
rithm. In addition to c, this procedure is invoked with (i) the procedure p whose
checking removes c, (ii) the set of annotations A, (iii) the present set of candi-

Algorithm 2 ExplainHoudini(p, c, A, C, R)

Require: A procedure p ∈ P

Require: A candidate contract c ∈ Cq, where q ∈ {p} ∪Callees(p)
Require: A set of contracts A =

⋃
r∈P Ar

Require: The current set of candidate contracts C =
⋃

r∈P
Cr

Require: A set of candidate contracts already removed R =
⋃

r∈P
Rr

Ensure: c′ ∈ {⊥} ∪ Rr, where r ∈ {p} ∪Callees(p)
1: Q ← (Rp ∩ {c

′ | c′is a candidate precondition})
2: for all q ∈ Callees(p) do

3: Q ← Q ∪ (Rq ∩ {c
′ | c′is a candidate postcondition})

4: end for

5: c′ ← ⊥
6: while CheckVC(p, {c},A ∪ C ∪ Q) = VERIFIED do

7: c′ ← Dequeue(Q)
8: end while

9: return c′

date annotations C, and (iv) the set R that contain the candidates removed so
far. The algorithm returns the cause of the annotation c.

Since c was removed while checking p, c has to be either (i) a postcondition
of p, or (ii) a precondition to one of the callees of p (including p if p calls itself).
The set Q collects the removed candidates that are present as assumptions while
checking p — this includes the candidate preconditions of p (line 1) and the
candidate postconditions of all the callees of p (line 3).

The loop (line 6) is iterated while CheckVC(p, {c},A∪C∪Q) is successful. If
this check is not successful, then we return the value in c′. If the body of the loop
is never executed, then the returned value is ⊥. This case indicates that c was not
provable with the entire set of candidates in C; therefore CauseSet(c) = {},
and consequently Cause(c) = ⊥. Otherwise, each loop iteration removes one
candidate c′ non-deterministically from Q, using the procedure Dequeue(Q)
that extracts a candidate c′ from Q. When the returned value in c′ is not ⊥, it is
easy to see that c′ ∈ CauseSet(c). Since c′ ∈ Q ⊆ R, and c was provable until c′

was not removed, c′ satisfies the definition of the CauseSet(c). The only thing
to observe is that the while loop (line 6) terminates. If Q ever becomes empty,
we are guaranteed that the check CheckVC(p, {c},A ∪ C) will fail, because
this check is the same as performed in the Houdini algorithm before invoking
ExplainHoudini. However, in many cases, the loop will terminate much earlier
than Q becoming empty. Finally, although the soundness of the algorithm does
not depend on the choice of implementation of the Dequeue(Q) procedure, our
implementation maintains a priority queue sorted by latest removal time of the
candidates in Q.

3.4 Optimizations

The above presentation of the algorithm only requires CheckVC(p, C,A) to
check a procedure p with respect to a set of annotations A and return either

VERIFIED or an annotation c that was violated. This makes it easy to integrate
with any off-the-shelf implementation of Houdini. However, the algorithm can
benefit from richer functionalities of CheckVC(p, C,A). We discuss a couple of
such optimizations that are likely to signficantly reduce the number of times the
loop in line 6 has to be executed:

– If CheckVC(p, C,A) (in Houdini algorithm) can return an intraprocedural
control-flow path starting from the entry of p to the annotation that was
violated, the set of Callees(p) in line 2 can be restricted to only the ones
along the intraprocedural path. This utility can be easily integrated into the
verification condition generation algorithm [14], and is available in several
existing tools such as ESC/Java and Boogie [2].

– Let the CheckVC(p, {c},A ∪ C ∪ Q) (in ExplainHoudini) also return a
minimal unsatisfiable core of annotations A′ ⊆ A ∪ C ∪ Q when the check
succeeds. Intuitively, A′ represents the annotations that were responsible for
proving the candidate c. If such functionality is present, then one can choose
c′ in line 7 from the annotations in A′ ∩ Q. This will have the advantage of
choosing those annotations for c′ that are more likely to be the cause of c.

4 Evaluation

We have integrated ExplainHoudini with the implementation of Houdini

in the HAVOC property checker for C. The Houdini implementation uses the
Boogie [2] verification condition generator and the Z3 [7] SMT solver to imple-
ment the CheckVC() procedure. Our current implementation does not contain
the optimizations mentioned in Section 3.4 yet.

We report preliminary experience on using ExplainHoudini on two large
modules in Windows (we have concealed the names of the components for se-
curity reasons). The property being checked is the probe-before-use described
earlier in Section 2.4 and the set of candidates are similar to the ones in the
running example. Instead of inspecting the reason for every candidate removed
by Houdini, a user typically looks at the candidates for the procedures that
reported the alarms.

Figure 4 presents a summary of the results for two examples named A and B.
For each example, we report the number of candidates and the number of an-
notations retained. We compare the overhead of ExplainHoudini by reporting
the number of calls to CheckVC() and the overall runtime with and without
using ExplainHoudini (indicated by “w” and “w/o” respectively). The ab-
solute runtimes are not very representative of an optimized implementation of
Houdini — the current implementation has huge overhead due to parsing files
for input to Boogie and can be improved by at least an order of magnitude. In
terms of the number of calls to CheckVC(), the overhead of ExplainHoudini

is around 51% for A and 33% for B. In terms of the overall runtime, the overhead
of ExplainHoudini is around 36% for A and 29% for B. Given that it can help
reduce manual post-processing effort, this is fairly acceptable. We believe that
the optimizations in Section 3.4 will further reduce this overhead.

Ex LOC # Pr # Cand # Infrd w/o ExplainHoudini w ExplainHoudini
Explain size Explain size

Chk Time Avg Min Max # Chk Time Avg Min Max

A 260K 3108 3026 1415 4972 312m 2.46 1 19 7514 426m 1.45 1 7

B 88K 680 550 269 1097 48m 2.27 1 14 1456 62m 1.22 1 3

Fig. 4. Overhead and quality of ExplainHoudini on two modules. “#” is used to
denote the number of various entities. “LOC” denotes the lines of code. “Pr” denotes
procedures, “Cand” denotes candidates, “Infrd” denotes inferred, “Chk” is a call to
CheckVC(). “Time” denotes the total time for inference in minutes. “Explain size”
denotes the size (number of edges) of the graph per removed candidate.

More interestingly, we measured the size of the causality graphs (“Explain
size”) generated with and without ExplainHoudini per removed candidates.
The graph without ExplainHoudini contains all the annotations on the (tran-
sitive) callers that were removed before a procedures candidate was removed
(similar to the graph in Figure 1 (a)). We report the average, maximum and
minimum sizes (denoted as “Explain Size”) of these graphs for each module.
With ExplainHoudini, the average size of the graphs is reduced by more than
40% for both the examples and the maximum size has considerably reduced. The
average graph size is small for these benchmarks because more than 50% of the
graphs have a size of 1. However, for the example A, there are 119 graphs with
more than 5 nodes without ExplainHoudini, but only 2 graphs with more than
5 nodes with ExplainHoudini. Similarly, for the example B, there are 40 graphs
with more than 3 nodes without ExplainHoudini, but 0 graphs with more than
3 nodes with ExplainHoudini. The results suggest that ExplainHoudini can
often provide simpler explanations for annotation removal.

To understand the reason for the shallow explanation graphs, we sampled
a few of the removed candidates. In most cases, a candidate probed(p) for a
parameter p was removed because the caller passed the value of a field q->f to
p, where q is a parameter of the caller. Since we only track probed(q) at the
caller, Houdini was unable to prove probed(q->f) at the call site. In other cases,
caller passed a global or the return value of another procedure to p for which
there are no candidates at present.

5 Conclusion

For large software modules, understanding the cause of (candidate) contract
violations is often most the time-consuming step in refining annotations and
classifying errors. We have augmented the Houdini algorithm with Explain-

Houdini to provide concise explanation for the removal of a candidate contract.
We are exploring the optimizations in Section 3.4 to reduce the overhead of
ExplainHoudini and providing the user with likely annotations to refine the
existing set of annotations.

Acknowledgements. We thank the anonymous reviewers for useful suggestions
on improving the paper.

References

1. T. Ball, B. Hackett, S. K. Lahiri, S. Qadeer, and J. Vanegue. Towards scalable
modular checking of user-defined properties. In Verified Software: Theories, Tools,
Experiments (VSTTE ’10), LNCS 6217, pages 1–24, 2010.

2. M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects (FMCO ’05), LNCS 4111, pages 364–387, 2005.

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure and Interoperable Smart
Devices (CASSIS ’05), LNCS 3362, pages 49–69, 2005.

4. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In Principles of Programming Languages
(POPL ’09), pages 302–314, 2009.

5. P. Cousot and R. Cousot. Abstract interpretation : A Unified Lattice Model for
the Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Principles of Programming Languages (POPL ’77), pages 238–252, 1977.

6. M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. Vcc: Contract-
based modular verification of concurrent c. In International Conference on Software
Engineering, (ICSE ’09), Companion Volume, pages 429–430, 2009.

7. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’08), LNCS 4963, pages
337–340, 2008.

8. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
In Symposium of Formal Methods in Europe (FME ’01), pages 500–517, 2001.

9. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation (PLDI’02), pages 234–245, 2002.

10. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Computer-
Aided Verification (CAV ’97), LNCS 1254, pages 72–83, June 1997.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In Symposium on Principles of Programming Languages (POPL), pages
232–244. ACM, 2004.

12. S. K. Lahiri and S. Qadeer. Complexity and algorithms for monomial and
clausal predicate abstraction. In International Conference on Automated Deduc-
tion (CADE ’09), LNCS 5663, pages 214–229, 2009.

13. S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T. Wies. Intra-module
inference. In Computer Aided Verification (CAV ’09), LNCS 5643, pages 493–508,
2009.

14. K. R. M. Leino, T. Millstein, and J. B. Saxe. Generating error traces from
verification-condition counterexamples. Sci. Comput. Program., 55(1-3), 2005.

15. K. L. McMillan. Interpolation and sat-based model checking. In Computer Aided
Verification (CAV ’03), LNCS 2725, pages 1–13, 2003.

