Network Verification in the Light of Program Verification

Nuno P. Lopes
INESC-ID / IST U. Lisboa

Nikolaj Bjgrner
Microsoft Research

Patrice Godefroid
Microsoft Research

George Varghese
Microsoft Research

Abstract

The fastest tools for network reachability queries use ad-
hoc algorithms to compute all packets from a source S
that can reach a destination D. This paper examines
whether network reachability can be solved efficiently
using existing verification tools. While most verifica-
tion tools only compute reachability (“Can S reach D?”),
we efficiently generalize them to compute all reachable
packets. Using new and old benchmarks, we compare
model checkers, SAT solvers and various Datalog imple-
mentations. The only existing verification method that
worked competitively on all benchmarks in seconds was
Datalog with a new composite Filter-Project operator and
a Difference of Cubes representation. While Datalog is
slightly slower than the Hassel C tool, it is far more flexi-
ble. We also present new results that more precisely char-
acterize the computational complexity of network verifi-
cation. This paper also provides a gentle introduction to
program verification for the networking community.

1 Introduction

Modern networks are complex and contain multiple de-
vices such as routers, bridges, firewalls, and load bal-
ancers each of which forward packets differently based
on different packet fields. Device diversity together with
erroneous manual entry often leads to bugs that cause
large downtimes in which valid packets are dropped, or
invalid packets are let through [16, 18]. For example, an
erroneous firewall rule might only drop certain packets.
Much recent work has focused on static checkers that
find violations of assertions (forwarding bugs) by in-
specting router tables and configuration files, assuming
the routing protocol is correct. Data plane static verifica-
tion began with Xie et al. [24] who computed a formula
for reachability between a source and a destination while
handling IP forwarding and ACLs. Later, Anteater [18]
used SAT solving techniques to evaluate a reachabil-

ity formula and applied their analysis to the UIUC net-
work to find black holes, loops, and router bugs. Inde-
pendently, Al-Shaer [1] represented network routing ta-
bles as BDDs and computed reachability predicates us-
ing model checking.

Later, the Header Space Analysis (HSA) tech-
nique [16] moved beyond finding reachability predicates
(e.g., “Can A reach B”) to reachability sets (“What are all
the packets from A that can reach B”) and for arbitrary
protocols. Reachability sets are important for two rea-
sons: incremental computation and intelligibility. Ver-
iflow [17] and NetPlumber [15] showed techniques to
incrementally compute reachability and reachability sets
for Anteater [18] and HSA [16], respectively. Incremen-
tal computation is useful because when a manager adds
a new rule (e.g., an ACL), the tool can check in real-
time for bugs; both Veriflow and NetPlumber leverage
the fact that a single rule change does not significantly
change the underlying “network state machine”. By re-
membering the reachability sets before the change, only
small modifications need to be made to incorporate the
rule change. Computing reachability sets seem useful
for any incremental approach.

Second, reachability sets provide greater intelligibility
for managers. If an ACL erroneously drops all packets
sent to the prefix 128.55.0.0/16, the reachability predi-
cate can fail with a counterexample such as 128.55.8.7.
Much more insight can be gleaned if the tool outputs the
set of packets being dropped (i.e., packets with destina-
tions that match 128.55. % .x which suggests the ACL
bug more directly). HSA represents packet headers by
ternary strings drawn from 1,0, where the wildcard
character is used to abstract header bits that are irrele-
vant to forwarding. HSA computes reachability sets by
propagating these ternary strings through each router or
device modeled as a state machine that transforms and
forwards ternary strings.

Zhang et al. [27] provide an excellent survey of exist-
ing work from the lens of program verification, and make

the following observations. Network verification is es-
sentially state machine verification because each router is
a state machine. Reachability in a finite network of finite
state machines is, in general, PSPACE-complete. HSA is
akin to ternary symbolic simulation in hardware verifica-
tion, which has been abandoned because of large growth
in the state space. The techniques used in Anteater [18]
and HSA [16] work well in practice because there are
structural properties of networks that make the problem
closer to being NP-complete. Structural properties con-
jectured in [27] include small depth (small diameter, TTL
limitations), and the fact that the network transition func-
tion operates on comparatively few header bits.

While these observations [27] are intuitively appeal-
ing, there is currently no quantitative insight on the re-
lation between network verification and standard veri-
fication. For example, there is no precise definition of
the structural network parameters that impact complex-
ity or a study (either analytic or experimental) of how
the hardness of reachability varies with such parameters.
Further, [27] and its successor [26] focus on reachabil-
ity predicates and not reachability sets; as we have seen,
reachability sets are crucial for incremental analysis and
rapid debugging. For reachability sets, the field of pro-
gram verification has a less rich suite of well-established
tools. Reachability sets are akin to the AIISAT prob-
lem (all satisfying assignments) while reachability pred-
icates are akin to SAT solving (one satisfying assign-
ment). Modern SAT solvers are optimized for speed for
SAT, not AIISAT.

The best techniques for static reachability verifica-
tion [15, 17] are currently fast enough (microseconds)
and scalable (to large networks such as the Google net-
work). Why then should the networking community care
about techniques from program verification? First, there
is the scientific benefit; what precise aspects of networks
make the problem different from verifying a hardware
circuit or a program? Second, there is the need for
a more comprehensive set of tools for networking be-
yond static checking including testing (e.g., [25]), new
languages and synthesis [9], and control plane verifica-
tion [8]. This vision for “network CAD tools” was ar-
ticulated by McKeown [20]. Current hardware/software
CAD tools leverage common verification tools such as
theorem provers. Similarly, it seems prudent to leverage
general purpose building blocks if network verification
is to move forward from a set of ad hoc tools to an engi-
neering discipline. Finally, establishing common termi-
nology and common benchmarks, allows the verification
and network communities to work together to build bet-
ter tools for networks.

While the field of verification is vast, a few exemplars
immediately seem relevant. A network is a large state
machine [27]; state machine reachability has been suc-

cessfully handled by model checking [1]. In particular,
symbolic model checking [3] keeps track of sets of states
using compact data structures (BDDs [2]); while most
model checkers do not provide reachability sets it seems
feasible to expose their internal data structures and re-
purpose them for reachability sets. How do BDDs com-
pare with ternary representations [16,17]? ! Second,
Datalog allows queries to be rewritten at a high level
of abstraction, can handle recursion and rewriting in a
natural way, and computes reachability sets out of the
box. Third, while SAT/SMT solvers are fairly low-level,
modern SAT solvers are scalable and flexible and have
been used in past work [18,26,27]. If existing verifica-
tion techniques can provide comparable functionality to
say Veriflow [17] and NetPlumber [15], it seems easier
to find a foundation to build further aspects of network
CAD such as synthesis.

The combination of properties we wish for (reachabil-
ity sets, incremental recomputation, and eventually auto-
mated synthesis) are on the frontiers of verification re-
search today and considered hard problems — but ones
that may have good solutions in specific domains. This is
why verification researchers are interested in networking.
But this dialogue requires a characterization of domain
aspects that can be leveraged and agreement on standard-
ized data sets and queries. Thus, our contributions are:

Complexity: We show that network verification prob-
lem is NP-complete if either there are no complex loops,
no rewriting, or no cycles in the topology. Detecting
complex loops is always NP-complete.

Computing Reachability Sets: While Datalog na-
tively computes reachability sets, to scale to large net-
works we had to introduce a combined Filter-Project op-
erator and a Difference of Cubes representation. We also
show a way to adapt any SAT/SMT solver to compute
reachability sets by leveraging bounded rewriting.

Benchmarks: We use a standard (Stanford) bench-
mark and introduce a new benchmark with parameters
for rewriting, topology depth etc. that can be varied. We
also introduce a standard set of queries in Datalog. All
our benchmarks and code are public (see [21]).

Experiments: We compare various combinations of
Datalog, model checking, and SMT solving in the Z3
theorem prover [6]. While Z3 provides only one imple-
mentation, other implementations should have compara-
ble performance; the Z3 tool chain provides a uniform
setting for comparing techniques.

Although our experimental results point to some clear
insights, we do not claim to provide the final word on the
topic. In fact, we hope that our paper and publicly avail-
able code and benchmarks will stimulate further work.
We view bridging this gap between the network and ver-

I'Note that [1] uses BDDs to encode router forwarding tables and
not reachability sets.

R D

in dst src rewrite out
R] 10x 01 R2
R; 1x% *x%x R3
Ry 10x **x% B
Rz x%x% 1xx D
Ry 1xx *xx dst[l]:=0 R

Figure 1: Ry has a QoS routing rule that routes packets from a video
source on the short route and other packets to destination 1 x* along a
longer path that traverses R3. R3 has an ACL that drops packets from
1% *. R3 also rewrites the middle bit in dst to 0. This ensures that

re-routed packets reach B regardless of the value of dst[1].

ification communities as as another valuable contribution
of this paper.

The paper is organized as follows. Section 2 formal-
izes network reachability. Section 3 provides complexity
results. Section 4 surveys the basic tools we use. Sec-
tion 5 shows how we scale our Datalog implementation.
Section 6 describes a simple algorithmic adaptation of
any SAT/SMT solver to compute reachability sets. Sec-
tion 7 describes our benchmarks and Section 8 does per-
formance comparisons.

2 Formal Model

While there are a variety of formalisms to model net-
works, we choose to use Datalog because our most effi-
cient realization uses a Datalog implementation. We start
with a simple example.

2.1 Reachability Set Example

Figure 1 shows a network with three routers R, R, and
R3, three end-point nodes A, B and D, and an associ-
ated reachability set question: what packets can reach B
from A? The routing tables are shown below the picture.
Packets are composed of two fields dst and src, each a
bit-vector of 3 bits.

When there are multiple rules in a router, the first
matching rule applies. For example, if a packet reaches
R, and the first two bits in the destination address match
10 and the first two bits in the source IP address match
01, then the packet gets forwarded to router R,. All other
packets are handled by the next rules. For R;, the next
rule forwards packets whose first destination bit is 1 to
router R3. All other packets are silently dropped.

The last rule of Figure 1 includes a packet rewrite
operation, as may happen in real networks. We use
dst[1] := 0 to indicate that position dsz[1] is set to 0. (We
assume position 0 corresponds to the right-most bit and
so on.) Most router rules do not rewrite destination IP
addresses but other fields such as MAC addresses. This
small example is only for illustrative purposes.

The goal is to compute the set of packets that can reach
from A to B. For this example, the answer is easy to
compute by hand and is the set of 6-bit vectors

10501 % U (10K, x %%\ kxx1 %%)

where each packet is a 6-bit vector defined by a 3-bit
value for dst followed by a 3-bit value for src, x denotes
either O or 1, and \ denotes set difference.

2.2 Datalog Network Model

A network is a set of routers Ry, Ry, etc. and a set of
end-points A, B, etc. that can send and receive packets.
In what follows, routers and end-points will sometimes
be referred to as network nodes. We model the header of
a packet as a set of variables representing packet fields,
each of which is a bit-vector. Our example used only
one destination and one source fields. Both forwarding
and rewriting operations are supported. We can model
bounded encapsulation by having additional fields that
are not used when the packet is decapsulated. The body
of packets is not modeled. For reachability, we will only
model a single (symbolic) packet starting at the source.
For reachability we are interested in the “state” of a
packet as its current location. The current location of
a packet is modeled by a Boolean location predicate. For
example, the predicate R (dst,src) is true when a packet
with destination dst and source src is at router R;.

Operations in the network (i.e., forwarding and rewrit-
ing) are modeled as Datalog rules. Forwarding changes
the location of a packet, and rewriting changes packet
fields. A Datalog rule consists of two main parts sepa-
rated by the :- symbol. The part to the left of this symbol
is the head, while the part to the right is the body of
the rule. A rule is read (and can be intuitively under-
stood) as “head holds if it is known that body holds”.
The initial state/location of a packet is a fact, i.e., a rule
without a body. For example, A(dst,src) states that the
packet starts at location A with destination address dst
and source address src.

To model router rules as in Figure 1, it is convenient
to use some shorthand for predicates that represent the
matching condition, called a guard. Updates can be rep-
resented as relations over current state values dst, src and
next state values dst’,src’ of the packet headers. Both
guards and updates can thus be written as relations over
dst,src and their next state values dst’,src’. Most of the

updates do not change anything, and are identity func-
tions. The update from the last rule sets dst’ to the con-
catenation of dst[2] 0 dst[0].

Thus, the relevant guards and updates from Fig. 1 are:

G = dst=10xAsrc=01x
Giz = —Gpp ANdst=1%x%
Gop = dst=10%
Gi3p = src=1%x
Gy = Gip Ndst=1%x%
Id = src’ =src A dst =dst
Set0 src’ = sre A dst’ = dst[2] 0 dst[0)

Notice that Gy3 includes the negation of Gy, to model
the fact that the rule forwarding packets from R; to R3
has lower priority than the one forwarding packets from
Ry to R,. Armed with this shorthand, the network of
Fig. 1 can now be modeled as:

B(dst,src)
Ry (dst,src) :— G AId ARy (dst',src)
Ry (dst,src) :— Gz AId ARs(dst ,src’)
Ry(dst,src) :— Gop ANld \B(dst',src)
R3(dst,src) :— Gip AIdAD(dst src')
R3(dst,src) :— Gy ASetO ARy (dst',src)
A(dst,src) :— Rj(dst,src)

? A(dst,src)

Since we want to know all the packets leaving A that
could reach B, we pose the Datalog query ?A(dst, src) at
the end of all the router rules. The symbol ? specifies
that this is a query, not a rule or a fact.

Network router FIBs and ACLs can be modeled by
Datalog rules in a similar way. Networks are determinis-
tic, but load balancing and failover can be encoded using
nondeterminism. For instance, a router that can forward
a packet to either R or R, (load balancing) will have a
separate rule for each possible next hop. This is sufficient
because we are only interested in reachability questions.

2.3 Network Queries

We define three basic network verification problems.
Reachability analysis: given two network nodes n
and n’, does there exist some packet P that can reach n’
from n?
Cycle detection: does there exist some packet P that
starts at node n and reaches the same node n as P despite
possible rewriting in between?

Forwarding loop detection: does there exist some
packet P that can reach some node n from n (while pos-
sibly being re-written as new packet P')?

Forwarding loop detection in an approximation to the
more general problem of cycle detection. It checks
whether a packet can ever visit a same node more than
once, which is usually undesirable in practice for perfor-
mance reasons.

In addition to these three core verification problems,
the following variants are clearly interesting in a net-
working context [15, 18]: all packets that reach a des-
tination; non-reachability / black holes; all packets flow
through a middle-box; disjoint paths for different pro-
tocols; consistency of backup routers; maximum path
length; isolation between VPNs; packets guaranteed to
flow between A and B. Each of these properties can
be expressed as a Datalog query. We show some ex-
amples in [21]. Unlike [16—18] if one wishes to mod-
ify the reachability question (for example, can A reach B
through C or D), one can do so by adding a few lines to
a Datalog query without changing the backend code. By
comparison, the FlowExp reachability language in Net-
Plumber [15] is less powerful and well-established than
Datalog.

2.4 Connections to EFSMs and SAT

Checking the properties above can be reduced to check-
ing various reachability queries in the graph defined by
the network’s topology and its routing rules. It is there-
fore useful to conceptually view the data plane of a net-
work as an Extended Finite-State Machine (EFSM). An
EFSM is a Finite-State Machine (FSM) extended with
a finite set 7" of Boolean variables. While a conven-
tional FSM can only specify transitions between states,
an EFSM can also specify a guard and a command with
each transition. A guard is a Boolean condition on 7,
while a command is an assignment to one or several vari-
ables in #. In an EFSM, a transition can be taken only
when its guard it satisfied; when the transition is taken,
the command of the transition is executed, possibly mod-
ifying the values of variables in 7.

Given a Datalog network model M as defined in Sec-
tion 2.2, it is easy to translate it (in linear time and log-
arithmic space) into an equivalent EFSM M’: network
nodes of M correspond to states of M’, each bit of a
packet P is represented by a Boolean variable in ¥/, and
(Datalog) routing rules are encoded by transitions with
corresponding guards and commands on the correspond-
ing Boolean variables. The set of all constraints labeling
all the transitions outgoing from a state s, represents the
set of packet routing rules used in node n. A packet P
arriving at node 7 is routed next to successor node n’ iff
there is a transition ¢ from s, to s,/ such that the guard of

t evaluates to true with the variable assignment defined
by P for all the variables in #". When a packet P enters a
node n and is routed to another successor node 7/, it can
be partially rewritten into a new packet P’. Even though
P’ is different from P, we will still refer to it as the same
packet in what follows.

A Datalog network model, as well as any EFSM, can
also be encoded as a propositional logic formula, and
reachability queries can then be solved with a SAT (or
SMT) solver, as we will discuss later. In the presence
of loops in a network, a standard technique is simply
to “unroll” the transition relation at most TTL times, as
done in [18] and [27], where TTL (“Time-To-Live”) is a
given upper-bound on the number of hops a packet can
go through in a network. The details are crucial, how-
ever, and our encoding is different from [27] and [18]
and is described in Section 6.1.

3 The Complexity of Network Verification

In this section, we provide a more precise characteriza-
tion than in earlier work. We show that if a network veri-
fication problem exhibits any one of 3 characteristics (ab-
sence of complex loops, no rewriting, no cycles in topol-
ogy) then the problem is NP-complete. We also show
that detecting forwarding loops in arbitrary networks is
always NP-complete (not PSPACE-complete). These re-
sults are obtained by reduction to related problems on
EFSMs (e.g., see [10]).

3.1 Complexity of Reachability

In its full generality, network reachability analysis is a
hard problem.

Theorem 1 The worst-case complexity of network
reachability analysis and cycle detection are both
PSPACE-complete in the size of the description of the
network.

However, we now define specific classes of networks
for which reachability analysis is easier. We start by
strengthening a result proved in [18]: reachability analy-
sis in networks without packet rewriting and where each
rule may test at most 1-bit is only NP-complete. But
perhaps testing n-bits at each rule could make the com-
plexity worse. Thanks to known results on EFSMs, it is
easy to show that this is not the case.

Theorem 2 For networks where packets are never
rewritten, network reachability analysis is NP-complete.

The next result also follows immediately from earlier re-
sults on EFSMs.

Theorem 3 For networks whose topology does not in-
clude any loop, network reachability analysis is NP-
complete.

The previous theorem is not very interesting since most
real networks are bi-directional (i.e., A can send packets
to B and vice-versa) and therefore do have loops in their
topology.

However, as pointed out in [27], real IP networks often
use TTLs to protect against loops in practice, and reach-
ability then becomes NP-complete.

Theorem 4 Reachability analysis in a network without
any forwarding loop is NP-complete, including networks
with loops in their topology and packet rewriting.

In other words, network reachability analysis and cycle
detection are PSPACE-complete problems in general, but
the worst-case complexity is reduced to NP-complete if
the network topology is loop-free, if there are no for-
warding loops, or if packets cannot be rewritten.

While these seem to cover most “real” networks, it is
worth noting that MAC networks do not have TTL pro-
tections, and combinations of VLANSs can sometimes be
configured into loops where packets can, in theory, cycle
though each VLAN is a spanning tree [16].

3.2 Complexity of Loop Detection

By contrast to reachability, we now show that the for-
warding loop detection problem is “only” NP-complete
even in the general case. This is slightly surprising as one
might think loop detection is as hard as (or even harder
than) reachability.

Theorem 5 Forwarding loop detection is NP-complete
for any network, including networks with loops in their
topology and packet rewriting.

By comparison, [27] points out that for networks with-
out packet rewriting, forwarding loop detection is equiv-
alent to cycle detection, and a forwarding loop indicates
the presence of an infinite cycle. In contrast, for net-
works with packet rewriting, a forwarding loop does not
necessarily imply a returning packet will return forever
(see [16] for a description of three kinds of loops), but
this case is still undesirable since there is usually no rea-
son for a packet to return to any past location. The ex-
istence of a “forwarding loop” in a network/EFSM is a
necessary condition for the existence of a cycle in its
state space, but not the other way round; this explains
why the former may be easier to detect than the latter.
Observe that allowing packet duplication or broadcast-
ing, i.e., nondeterministic networks, does not change the
worst-case complexity of any of the problems above.

4 Experimental toolkit

We transition to experimentally studying the difficulty of
reachability using standard verification tools. In addition
to the publicly available Hassel C code [11], we used
two classic model checking algorithms (BMC and PDR)
and a Datalog framework, all of which are implemented
in the Z3 [6] engine, also publicly available [21]. Other
researchers can replicate and extend our results. We ex-
periment with:

BMC: BMC denotes a classic bounded model check-
ing algorithm [5]. Given our view of networks as ex-
tended finite state machines, applying model checking to
network reachability is very natural.

PDR: PDR stands for Property Directed Reachabil-
ity [7,12] and is considered state-of-the-art in hardware
model checking [7].

SAT/SMT Solver: SMT (Satisfiability Modulo Theo-
ries) extend SAT to a richer modeling language; in par-
ticular, the theory of bit-vectors nicely models headers.
We use Z3’s SAT/SMT solver which is considered state
of the art, and extended it to compute reachability sets as
described later.

73 Datalog Framework: Z3 provides a Datalog
framework called uZ [13] with several backends. We
added three new backends to [13] to efficiently compute
reachability sets.

5 Datalog Algorithms

In this section, we present the main changes we imple-
mented in uZ [13] to make it scale to the domain of net-
work verification.

5.1 Data Structures

None of the existing backends in Z performed well be-
cause sets of packets are tables; without compression
these tables take too much storage. Hence, we imple-
mented three new backends.

The first backend uses BDDs (Binary Decision Dia-
grams [2]) to represent Datalog tables. BDDs are a clas-
sic data structure to compactly represent a boolean func-
tion. A classic paper augments Datalog with BDDs [23]
for reachability analysis in sequential programs, so our
use of BDDs for Datalog is not surprising.

The other two backends are based on ternary bit-
vectors, inspired by Header Space Analysis (HSA) [16],
but placed in a much more general setting by merely
adding a new data structure to Datalog. The simplest
backend is a list of ternary strings we call a union of
cubes. However, in both HSA [16] and Veriflow [17],
a key optimization is to represent sets of packets as a dif-
ference of ternary strings. For example, 1\ 10% suc-

cinctly represents all packets that start with 1 other than
packets that start with 10. Thus the third data structure
we added was what we call difference of cubes. More
precisely, for ternary bit-vectors v; and v;, a difference of
cubes represents a set

()

The difference of cubes representation is particularly
efficient at representing router rules where there are de-
pendencies. For example the second rule in Figure 1
takes effect only if the first rule does not match. More
precisely, in verification terms, difference of cubes is par-
ticularly efficient at representing formulas of the form
@ A-@QL A A—@,, with formulas ¢ and ¢; being of
the form A; ¢; and ¢; having no boolean operators. This
formula form is precisely what we obtain in the transfer
functions of routing rules, with ¢ being the route match-
ing formula, and the —¢; being the negation of the match-
ing formula of the dependencies of the rule.

Code: All datalog backends added to Z3 were im-
plemented in C++. The BDD backend takes 1,300 LoC
(src/muz_qge/dL_bdd _relation.*), and the union of
cubes and difference of cubes backends take almost
2,000 LoC (src/muz_qe/dl_hassel_x).

5.2 Combining Select and Project

One can pose reachability queries as in Figure 1 to uZ
and find the set of packets that flow from A to B. Under
the covers, uZ executes Datalog queries by converting
them into relational algebra, described elsewhere [4].

Intuitively, a set of packet headers entering a router
(say R; in Figure 1) should be thought of logically as a
Datalog table (implemented say as a BDD). The set of
output packets going to say R, are computed by finding
a relation between input packets and corresponding out-
put packets. The relation is computed in two steps: first,
UZ joins the set of input packets / to the set of all pos-
sible output packets A to create a relation (I,A). Next, it
selects the output packets (rows) that meet the matching
and rewrite conditions to create a pruned relation (7, 0).
Finally, it projects away the input packets to be left with
the set of output packets O. While this sounds like a very
indirect and inefficient path to the goal, this is the natural
procedure in Datalog. We will show that we can make it
efficient for networking and other domains where there
are equality constraints between variables.

While the join with all possible output packets A ap-
pears expensive, A is compactly represented as a single
cube. The bigger expense is that the intermediate table
produced by the select is often significantly larger than
the table after the projection. This is particularly due

to our representations which are inefficient at represent-
ing equality constraints between bits in input and output
packets; for example, union of cubes is exponential in the
number of equalities of don’t care columns, and differ-
ence of cubes is doubly linear. To avoid this inefficiency,
we had to combine selection and projection. An example
will make this clear.

In Figure 1, consider an input packet 1 % % % xx at
router R3 that is forwarded to router R,. Recall that the
first 3 bits in this toy example are the destination ad-
dress, the next 3 are the source address. We first join
the table representing input packets with a full table (all
possible output packets), obtaining a table with the row
1 % % % x % % % % % %%, where the first six bits correspond to
the input packet at R3, and the remaining six bits belong
to the output destined to R;.

Then, we apply the guard and the rewrite formulas
and the negation of all of the rule’s dependencies (i.e.,
we perform a generalized select), and we obtain the fol-
lowing expression (in difference of cubes notation; the
expression in union of cubes notation would be even
larger):

Ixkxkx LOxOx %\ (
**kD Kk kA xk Ik x*k Uk x]l kK, kA xOkxxU
Kk Ak x*kkxk I kUkk*k] xkx*kx0%U

Kk kkk Ok xkxk L Ukxkxk]l xkxkx0))

While this looks complicated, the unions in the differ-
ence are simply ruling out cases where the “don’t care”
* bits are not copied correctly. The first term states that
we can’t have the third destination address bit be a 0 in
the input packet and the third destination address bit in
the output packet be a 1; the next term disallows the bits
being 1 and O respectively. And so on for all the bit po-
sitions in dst and src where both are *.

After the select operation, we perform a projection to
remove the columns corresponding to the input packet
(the first 6 bits) and therefore obtain a table with only
the output packets. Again, in difference of cubes repre-
sentation, we obtain simply 10 x0x*. The final result
is significantly smaller than the intermediate result, and
this effect is much more pronounced when we use 128
bit headers!

Therefore, we created a combined select-project oper-
ation that performs the equivalent of a generalized select
followed by a projection. In verification terminology,
this operation corresponds to computing the strongest
post-condition of the transition relation.

We implemented the combined select-project opera-
tion in all the three of our Datalog backends. To make
it efficient, we needed to find a way to compute the pro-
jection implicitly without explicitly materializing the in-
termediate results after the selection. For both the union

of cubes and difference of cubes backends, we did this
using a standard union-find data structure to represent
equivalence classes (copying) between columns. When
establishing the equality of two columns, if both columns
(say bit 3 of the Destination address in both input and
output packets) contain “don’t care” values and one of
them (bit 3 in the input packet) will be projected out, we
aggregate the two columns in the same equivalence class.
While this suffices for networking, we added two more
rules to generalize this construction soundly to other do-
mains. First, if only one of the columns contains a don’t
care value, then we set that column and all the others in
the same equivalence class to the value of the column
without a don’t care value. Second, at most one column
in an equivalence class may be a column that will not be
projected out.

We now show how the combined select-project op-
eration works in our example. The input we receive is
the table after the join operator, i.e., 1 % * * * * * x x % **.
Then we apply the rewriting (see last rule in Figure 1),
which states that all bits should be copied, with the ex-
ception of the second bit, which should be set to 0. For
the first two bits, it is easy to see that the resulting table
18: 1 x %% x* 10 x %% . The third bit, however, is a don’t
care and will be projected out.

Therefore, instead of explicitly representing the equal-
ity in the table, we keep it implicitly by stating that
columns ¢, and cg are in the same equivalence class. We
are assuming each ternary bit is a column, and that we
count columns left-to-right, starting at 0, so the third des-
tination address bit in the input is ¢, and the correspond-
ing bit in the output is cg (because we use 6 bit headers).

If later, there is another equality mentioning any of
these two columns, either we join the corresponding
equivalence classes if the other column is also a don’t
care, or we need to set all columns in the equivalence
class to the equated value (either a constant or a non-
projected out don’t care column). The table after the
rewriting is: 1% x%x% 10+ 0%, plus the equivalence
classes {6‘2,6‘8}, {C4,Clo}, and {05,011}.

The final step is to do the projection, where we discard
the equivalence classes altogether, since they are not rel-
evant anymore, and thus we obtain: 10 x0x*. In this
example, the equivalence classes are not even useful but
in more general cases they are needed for soundness. Fi-
nally, beyond these basic ideas, we implemented a num-
ber of other optimizations that we found crucial, some of
which we describe briefly in Section 8.3.

Code: We also made several improvements to the Dat-
alog solver itself, which were released with Z3 4.3.2.
These improvements include, for example, reducing the
worst case complexity of some algorithms, as well as a
constant propagation-like optimization in the relational
algebra compiler. These optimizations significantly re-

duced Z3’s memory usage in our benchmarks by up to
40% .

6 Modifying SAT/SMT Solvers to Com-
pute Reachability Sets

Unlike Datalog, SAT and SMT solvers only compute one
solution, called a model, for a given formula. In this
section, we present an algorithm to compute reachabil-
ity sets (or, equivalently, all models of a formula) using
a SAT/SMT solver as a black-box. We first describe how
to encode network reachability as a SAT/SMT formula.
We then show how to efficiently generalize the single so-
lution to compute all packets from A that can reach B by
exploiting the limited rewriting done at routers.

6.1 Our SMT Encoding

Given a TTL bound and a specific query, we encode a
network as a logic formula using a query-driven pro-
cedure similar to symbolic simulation/execution of net-
work paths up to length TTL, as also done in [18].
Roughly speaking, we evaluate the query as it passes
through the routers and produce a formula that encodes
all possible paths through the routers. At each step, the
added formulae are proportional to the overall number
of router rules. The size of the encoding has an upper-
bound of the TTL times the number of router rules (but
usually considerably smaller).

In contrast, the size of the encoding of [26] is always
proportional to the number of routing rules. This encod-
ing has the advantage that the same network encoding
can be used to answer any query, but it does not support
cycle detection (only forward loop detection).

Note that unlike the encodings in [17, 18,26], our en-
coding can handle load balancing and replication which
we will use in our cloud benchmarks.

We perform several optimizations on the generated
formulas. For example, for each set of rules with the
same output port, we aggregate the rules by their input
port, which allows sharing dependencies across rules, re-
ducing the size of the overall formula.

Reducing formula lengths does appear to be important
in practice. On the Stanford network benchmark, [26] re-
ports 100 secs for a SAT query (A can reach B) and 5 secs
for an UNSAT query (A cannot reach B). By contrast, our
encoding took 11.5 sec (8.7x faster) and 0.7 sec (7.1x
faster) for SAT and UNSAT queries, respectively. We
could not compare our results with [18] and [17] because
their code is not public and they do not report results on
the Stanford benchmark.

6.2 Our All SAT algorithm for Networking

Our SMT encoding finds a single packet that can reach
a destination from a source in less than a second. But
that is not good enough. The Hassel C code that imple-
ments HSA [16] finds all solutions in less than a second.
We now show how we extend finding a single reachable
packet using any SAT encoding to efficiently finding all
reachable packets.

The classic method to generalize a single SAT solu-
tion to all solutions is to do a “block the model” loop.
Each time a solution is found, we form a conjunction of
the original formula and the negation of the solution, and
iterate, as shown in Algorithm 1.

Algorithm 1: All-SAT

while ¢ is SAT do
sol < Generalize(GetModel(¢));
¢ < @ A—sol;

end

Unfortunately, the classic method may not converge
quickly if there are millions of solutions as it can take
millions of iterations, each of which requires a call to a
SAT/SMT solver. To speed this process, we can try to
generalize solutions in order to cover the set of all pos-
sible solutions as fast as possible. Consider the special
case where the network does not rewrite packets. Intu-
itively, we can guess in that case that the value of many
bits of many solutions will actually be irrelevant and can
be viewed as wildcards. How can we spot these bit posi-
tions?

Using verification terminology, in the special case
where there are no rewrites, we will generalize a model
m (specific assignments of values to header bits) of a
reachability formula ¢ by the following linear search al-
gorithm:

Algorithm 2: Generalize

Input: ¢ and model m
foreach ¢/ € m do
if A(m\ {¢}) = ¢ then
| me m\ {6}
end
end

Intuitively, for each bit ¢ in the solution m we have
found, we try and discard bit ¢ from the solution. The
m < m\ {¢} statement effectively makes ¢ a wildcard
bit position by discarding it from the set of header bits
considered in solution m. At each iteration, we execute
one call to a SAT/SMT solver to prove whether a given
bit can be wildcarded or not.

This is a linear search algorithm to discard bits that are
“don’t care” in the solution m. Algorithm 1 alone will
take at least 2" iterations if there are w wildcarded bits in
the solution. By contrast, Algorithm 2 takes n iterations
to discover the same 2" solutions, where 7 is the length
of the header in bits (in our experiments we use n = 128
to model a packet header).

There are standard techniques known in the verifica-
tion community to do even better than linear search. For
example, SAT solvers do not just return that a formula is
unsatisfiable but can also output a subset of variables that
caused the unsatisfiability, called an unsat core. An un-
sat core can provide hints to minimize the set of variables
to search. Other standard ideas are to use some form of
non-linear or binary search as expressed in techniques
such as QuickXplain [14] or Progression [19]. However,
in our experiments we found these techniques made lit-
tle difference suggesting that speed was dominated not
by the number of iterations but by the cost of solution
representation.

Unfortunately, Algorithm 2 does not work if we wish
to compute the set of destination packets. (Algorithm 2
does work to compute the set of source packets.) This
is because we are now trying to compute all satisfying
assignments of the projection of a relation between in-
put packets and output packets, where the output packets
are a function of the input packets. Some bits may be
rewritten and some stay equal (as in Example 1). Thus
even if bit 15 is a wildcard in the output packet, if there
is a “copying” constraint stating that bit 15 in the output
packet is equal to bit 15 in the input packet, bit 15 in the
output will not be a wildcard on its own in the overall for-
mula (since, e.g., having the input bit true and the output
bit false is not a model of the formula).

What we need to do, then, in the face of copying, is
not only to discover the wildcard bits in the generalized
solution but also to discover the copying constraints be-
tween corresponding input packet bits and output packet
bits. We can exploit the fact that rewriting in network-
ing is not arbitrary (from a set of 128 source bits to a set
of 128 arbitrary destination bits in the relation); instead
large sets of bits stay the same because routers set only a
few fields like MAC addresses.

In our networking domain, we have 3 cases for the
output variable (the packet that arrives at the destination).
Each bit is either equal to the input bit at the source, it is
a constant, or it is a don’t care bit (arising from the non-
determinism present in the network). We take advantage
of this insight to extend Algorithm 2 to compute the set
of all reachable destination packets as follows.

Assuming we have m = m;, Um,,, and for every ¢, €
My, there is a matching ¢, € m;,, the algorithm be-
comes:

What has changed from Algorithm 2 is that now we

Algorithm 3: Generalize—

Input: ¢ and model m = m;, Umyy,
foreach ¢,,, € m,,; do
if A(m\ {¢our}) = ¢ then

‘ m<— m\ {Eaul}
else if A(m\ {lin,lows}) N (bin < bow) = @
then
‘ m<— (m\ {Einagout}) U {gin — gout}
end
end

do a search among pairs of bits and ask the SAT/SMT
solver whether the particular generalization is a solution
assuming this pair of bits is copied (¢;;, < £,,). Doing it
for all pairs of bits would be quadratic and doing it for all
subsets of bits would be exponential. However, doing it
for corresponding bits in the input and output takes linear
time.

In summary, Algorithm 3 does a pairwise linear search
over the set of input/output variables of a relation, and
tests if they are “don’t care” under equality. While this
works well for networking, this algorithm can be ex-
tended to other domains where the “shape” of the so-
lution space is known. In other words, if one has some
idea of the potential relations between subsets of vari-
ables (e.g., the copying relationship between input and
output bits), the loop can be extended to check for these
relationships to allow efficient generalization.

While Algorithm 3 is indeed specialized to the net-
working domain and exploits limited rewriting, it is still
general because it allows generalizing from any specific
SAT/SMT solution in any SAT/SMT encoding to find all
reachability sets. For example, it can be used to gen-
eralize the SAT solutions in [18] and [26]. It can even
be used to generalize the solutions produced by model
checkers such as BMC and PDR, and could even be ap-
plied to the BDD based verification methods of [1].

7 Benchmarks

We use two sets of benchmarks: one real enterprise net-
work and one parametrizable model of a cloud.
Stanford: This is a publicly available [22] snapshot of
the routing tables of the backbone network of Stanford
University, and a set of network reachability and loop
detection queries. The core has 16 routers, organized
in a star topology, where the central node is replicated
across two routers. The total number of rules across all
routers is 12,978. About 62% of these rules have no de-
pendencies with other rules. The maximum number of
dependencies of a rule is 910 rules, with an average of
11.6 dependencies per rule. 9% of the router rules are

multicast rules which specify up to a maximum of 15
different ports, with the common case being 2 to 5 ports.
Almost 11% of the rules have no destination port (“drop”
rules). About 26% of the rules rewrite at least one bit of
packet header, often rewriting 32 bits of source IP ad-
dress, possibly for NAT. Note that we use 128 bit head-
ers. This network includes extensive VLAN support but
has no non-determinism unlike our next benchmark.

Cloud provider: Our second benchmark is a parame-
terizable model of of a cloud provider network with mul-
tiple data centers, as used by say Azure or Bing. We use
a fat tree as the backbone topology within a data center
and single top-of-rack routers as the leaves. Each router
other than the leaves in the fat tree is connected to k other
routers above and k routers below, where £ is the replica-
tion factor. The number of ports for backbone routers and
top-of-rack generators is configurable. Data centers are
interconnected by an all-to-all one-hop mesh network. In
addition to replication factor and router ports, other pa-
rameters include the number of data centers, the number
of machines per data center, the number of IP addresses
per machine (each modeling a VM or virtual machine),
and the number of services s provided by each machine
and by each data center.

Each data center is randomly assigned s services (des-
tination TCP Port numbers) that it provides from a set of
M possible services. As a consequence, more than one
data center may provide the same service. Each service
receives a randomly assigned public IP address, as well
as an randomly assigned internal port number (so that we
can run multiple services on the same machine). Each
service is also randomly assigned a list of other services
to which it can communicate, plus the internet (not all
services are accessible from the internet). In each data
center, a service is provided by a set of machines with
contiguous IPs from a prefix assigned to each data cen-
ter.

Each service has a public IP address. When a packet
reaches a data center, the packet is rewritten to have an
internal IP as destination and the internal TCP port of the
service as is done in many clouds such as Azure. We use
non-deterministic routing to model load-balancing be-
tween data centers (if two data centers provide the same
service), between machines that provide the same ser-
vice, and also across fat-tree paths to the same machine.
When a packet leaves a data center, it is rewritten to have
a public IP as the source IP.

Multiple ACL rules are deployed. For example,
the entry-point from the internet to a data center per-
forms multiple checks for security purposes. These in-
clude dropping packets that have local source IPs (e.g.,
127.0.0.1/8), packets that use the cloud provider’s
public IP range as the source IP, or are malformed (i.e.,
not using TCP/IP protocols). These are checks we have

10

observed within Microsoft data centers. We also deploy
ACL rules in top-of-rack routers to isolate problems in
case a machine is compromised. The packets received
from the host machines are checked to ensure that the
source IP corresponds to the assigned range, and that the
service sending the packet is allowed to contact the des-
tination.

Code: The cloud benchmark generator was imple-
mented in Python and consists in about 550 LoC, and it
uses the Hassel-Py library to generate the topology files.
The Python script to generate Datalog files from network
topologies takes 350 LoC. The program that generates
SMT formulas from network topologies consists in about
600 LoC of Python. Details can be found in [21].

8 Evaluation

We ran the benchmarks with multiple tools, including
two model checkers (a bounded model checker, and the
state-of-the-art PDR [12]), an SMT solver, and a Data-
log solver coupled with different backends (BDDs, union
of cubes, and difference of cubes). All the used tools
are from Z3 4.3.2 [6]. The input to the BMC and PDR
model checkers is the same as for the Datalog solver. The
benchmarks were run on a machine with an Intel Xeon
E5620 (2.4 GHz) CPU, and running Linux 2.6.32. The
tests were given a timeout of 5 minutes and a memory
limit of 8 GBs.

8.1 Run Time Performance

Table 1 is a small sampling of extensive test results that
can be found in [21]. It shows the time (in seconds) to
run multiple tools on a representative subset of the Cloud
and Stanford benchmarks, which includes reachable and
unreachable queries, as well as one loop detection query.

All cloud benchmarks in the table have 5 data cen-
ters, assign 4 IPs per host, and use a router replica-
tion factor of 2. Most benchmarks have 25 services,
with each data center providing at most 10 services,
and each host proving up to 4 services, with the excep-
tion of “Cloud More Services” benchmark, which has
300, 64, and 48, respectively. Most benchmarks use
core and leaf routers with 32 ports, while the “Medium
Cloud Long” benchmark uses 8 and 4 ports, respectively.
Both “Small Cloud” and “Cloud More Services” bench-
marks have 200 hosts per data center, “Medium Cloud”
and “Medium Cloud Long” benchmarks have 1,000, and
“Large Cloud” benchmarks have 2,000.

Note that the model checker tools only compute sat-
isfiability answers (i.e., “is a node reachable or not?”),
while Datalog computes all reachable packets at the des-
tination. For the SMT technique, we provide results for
both type of queries. All the SMT experiments were run

Test Model Checkers SMT Datalog Hassel C
BMC | PDR | Reach. [Allsols. | BDDs | Cube union | Diff. of cubes

Small Cloud 0.3 0.7 0.1 - 0.2 0.6 0.2 -
Medium Cloud T/O 12.9 0.2 - 2.2 32 2.2 -
Medium Cloud Long M/O M/O 4.8 - 13.3 57.4 13.0 -
Cloud More Services 7.3 70.4 12.5 - 6.2 7.6 5.8 -
Large Cloud T/O M/O 2.8 - 62.2 59.2 58.2 -
Large Cloud Unreach. | T/O M/O 1.1 n/a 59.0 59.4 58.6 -
Stanford 56.7 23.5 11.5 1,121 13.2 T/0 6.3 0.9
Stanford Unreach. T/O 23.2 0.1 n/a T/O T/O 2.4 0.1
Stanford Loop 23.0 22.1 11.2 290.2 11.4 T/O 4.1 0.2

Table 1: Time (in seconds) taken by multiple tools to solve network reachability benchmarks. Model checkers only
compute satisfiability answers, while Datalog produces reachability sets. T/O and M/O mean, respectively, that the

tool exceeded the maximum allowed time or memory.

with the minimum TTL (i.e., an unrolling) for each test;
for example, the TTL for Stanford was 3 for reachabil-
ity and 4 for loop detection. Higher TTLs significantly
increase the running time. We do not provide the run-
ning time for reachability sets with SMT for the cloud
benchmarks, since our prototype AIISAT algorithm does
not support non-determinism. We were unable to run the
Hassel C tool [11] on the cloud benchmarks, since Has-
selC has a few hardwired assumptions, such as router
port numbers following a specific naming policy.

The first takeaway is that Z3’s implementation of Dat-
alog is faster at computing reachability sets (all solu-
tions) than its model checkers or SAT solvers are at
computing a single solution. This is not surprising as
the model checkers make multiple copies of each router
transfer function and stitch them together which is quite
wasteful. The performance of model checkers also seems
to degrade exponentially with path length (see row 3 ver-
sus row 2 where the model checkers timeout). Similarly,
unrolling seems to exact a price for SMT solvers. Even
our efficient AIISAT generalization algorithm is around
200x slower than Datalog (row 7). Datalog with differ-
ence of cubes is the most competitive implementation we
have tested. Datalog with a BDD backend shows good
performance as well except in row (Stanford Unreach.)
where it timed out. The Hassel C tool takes under a sec-
ond for Stanford, faster than Datalog, but at the expense
of reduced flexibility.

8.2 Compactness of Representations

A natural hypothesis is that speed depends on the com-
pactness of intermediate representations of sets of packet
headers as each implementation progresses. Table 2
shows the sizes (in bytes and number of disjunctions) re-
quired by BDDs and Difference of Cubes to represent

11

Test BDDs Diff. of Cubes
Bytes | #Disjs. | Bytes
Small Cloud 7,664 4 2,008
Medium Cloud 2,004 8 6,872
Medium Cloud Long 2,004 2 680
Cloud More Services 2,644 240 26,904
Large Cloud 2,004 8 6,872
Large Cloud Unreach. 1,104 8 6,872
Stanford 150,744 332 158,368
Stanford Unreach. (T/O) 253 36,224
Stanford Loop 150,744 332 158,368

Table 2: Size (in bytes and number of disjunctions) taken
by the BDD and difference of cubes Datalog backends to
represent the largest intermediate results.

the largest intermediate set of packets. For the Stan-
ford benchmarks, the sizes are comparable. However, the
Cloud More Services benchmark (Row 4) shows that the
Difference of Cubes representation can be 20 times larger
than BDDs and yet (see Table 1) has faster run time. One
explanation is that the operations on Difference of Cubes
are faster than the corresponding BDD operations, possi-
bly because the “glue” we added to paste BDDs into Z3
had some inefficiency.

8.3 Effect of Optimizations

Table 3 shows the impact of disabling optimizations that
we implemented in the difference of cubes Datalog back-
end. We measured the speedup provided by each individ-
ual optimization using a timeout of 10 minutes.

The optimizations we tested were as follows. In Sec-
tion 5.2, we described a combined select-project rela-

Test Select-Project | Guard split | Dep. Simp. | de-CNF | Back. subsumption | Fwd. subsumption
Large Cloud 0.9 0.9 1.1 1.0 0.9 0.9
Large Cloud Unreach. 1.0 1.0 1.2 1.0 1.0 1.0
Stanford > 96 14.0 1.2 > 96 0.9 0.8
Stanford Unreach. > 113 11.0 1.2 > 113 0.9 0.9
Stanford Loop > 143 3.0 1.3 > 143 0.9 1.2
Average > 71 6.0 1.2 > 71 0.9 1.0

Table 3: Impact (given as speedup) of optimizations implemented in the Datalog with difference of cubes engine in a
few representative benchmarks. Values higher than 1.0 mean that the technique reduced the running time.

tional operation. We tested Guard split, which takes a
rule formula and splits into a guard (which can be effi-
ciently represented in difference of cubes), and the rest
(rewrites) The guard is then cached in the difference of
cubes format and is directly ANDed with the relations
whenever needed. Then, we have dependency simplifi-
cation, which amounts to simplifying the input in SMT
format with Z3’s simplification tools. For example, if
there are three router rules that match 111%, 11 %%, and
1 % %, the guard for the third rule can be simplified from
the negation of the first two rules to the negation of just
the second rule.

Next, the de-CNF optimization reverts the transforma-
tion that Z3 applies to formulas to put them in CNF in
order to arrange the formulas in a more convenient form
for the difference of cubes representation. Finally, we
have backward and forward subsumption, which discard
previously derived or newly derived facts, respectively,
which can potentially reduce the memory usage. For ex-
ample, if the reachability set is currently 10x and we de-
cide to union it with 1%, the 1% subsumes the 10x, and
therefore the result of the operation would be just 1 x .

We observe that the crucial optimizations were not the
generic optimizations that apply in any setting such as
subsumption or dependency simplification. The essential
optimizations were select-project and de-CNF. Select-
project gets around artifacts of the Datalog implemen-
tation, and de-CNF works around the fact that Differ-
ence of Cubes does not work well with the canonical
SMT representation in terms of CNF (Conjunctive Nor-
mal Form). While dependency simplification mostly im-
proves performance, subsumption provides no gain or
even hurts performance!

[21] also describes the best configuration settings
for each tool. For example, the Datalog implementa-
tions work best with a so-called “unbound compression”
option disabled. Unbounded compression is needed
for Datalog table implementations that are typically not
compressed; this is unnecessary for backends like Differ-
ence of Cubes that are inherently compressed.

12

9 Conclusion

Tools such as Veriflow [17] and NetPlumber [15] use ad-
hoc custom code, and are therefore hard to extend. If
network verification is to mature into a networking CAD
industry, its tools must evolve into more standard, prin-
cipled and extensible techniques, building upon common
foundations developed over many years, constantly be-
ing improved, and used in other application domains.

Our paper shows that the efficiency of state-of-the-art
network verification tools can be matched by re-using
existing verification machinery optimized for the net-
work verification domain. Adding incremental analysis
as in Veriflow and NetPlumber [15,17] can result in even
faster speeds. Specifically, we showed that this result
can be achieved using a general-purpose Datalog engine
specialized using a difference-of-cubes data representa-
tion and combined with a select-and-project operator that
efficiently capture frequent bit-copying constraints from
input to output packets.

Our work allows the full power of Datalog to be used
in the network domain. For example, we are building a
synthesis tool for Azure firewalls from a high-level spec-
ification language (instead of operators typing low-level
ACLs in error-prone fashion). Given the results of this
paper, we plan to use Datalog to compute reachability
sets and add additional constraints for minimality (e.g.,
router X has no more than 10 rules). By building on
solid foundations, standard components, publicly avail-
able code and benchmarks, network verification can ben-
efit from future improvements that will undoubtedly take
place.

Conversely, the study of network verification problem
instances provides insights into exploitable aspects of
the domain (e.g., formulas with one level of negation).
Our new backends are available for use in other verifica-
tion domains. In fact, many of our algorithms including
the select-and-project implementation using equivalence
classes were designed for general-purpose usage. Some
of this machinery is not strictly needed for networking,
but helps advance the craft and science of verification.

References

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

AL-SHAER, E., AND AL-HAJ, S. FlowChecker: configuration
analysis and verification of federated openflow infrastructures. In
SafeConfig (2010).

BRYANT, R. E. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput. 35, 8 (Aug. 1986), 677-691.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL,
D. L., AND HWANG, L. J. Symbolic model checking: 1020 states
and beyond. In LICS (1990).

CERI, S., GOTTLOB, G., AND TANCA, L. What you always
wanted to know about Datalog (and never dared to ask). IEEE
Trans. on Knowl. and Data Eng. 1, 1 (Mar. 1989), 146-166.

CLARKE, E. M., BIERE, A., RAIMI, R., AND ZHU, Y. Bounded
model checking using satisfiability solving. Formal Methods in
System Design 19, 1 (2001), 7-34.

DE MOURA, L., AND BJ@RNER, N. Z3: an efficient SMT solver.
In TACAS (2008).

EEN, N., MISHCHENKO, A., AND BRAYTON, R. Efficient
implementation of property directed reachability. In FMCAD
(2011).

FEAMSTER, N., AND BALAKRISHNAN, H. Detecting BGP con-
figuration faults with static analysis. In NSDI (2005).

FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic: a
network programming language. In ICFP (2011).

GODEFROID, P., AND YANNAKAKIS, M. Analysis of boolean
programs. In TACAS (2013).

HASSEL C.
hassel-public.

https://bitbucket.org/peymank/

HODER, K., AND BI@RNER, N. Generalized property directed
reachability. In SAT (2012).

HODER, K., BJORNER, N., AND DE MOURA, L. uZ: an effi-
cient engine for fixed points with constraints. In CAV (2011).

JUNKER, U. QUICKXPLAIN: Preferred explanations and relax-
ations for over-constrained problems. In AAAI (2004).

KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G.,
MCKEOWN, N., AND WHYTE, S. Real time network policy
checking using header space analysis. In NSDI (2013).

KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
space analysis: static checking for networks. In NSDI (2012).

KHURSHID, A., Z0oU, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. Veriflow: verifying network-wide invariants in real
time. In NSDI (2013).

MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GOD-
FREY, P. B., AND KING, S. T. Debugging the data plane with
Anteater. In SIGCOMM (2011).

MARQUES-SILVA, J., JANOTA, M., AND BELOV, A. Mini-
mal sets over monotone predicates in boolean formulae. In CAV
(2013).

MCKEOWN, N. Mind the gap. In SIGCOMM (2012). http:
//youtu.be/Ho239zpKMwQ.

NETWORK VERIFICATION WEBSITE. http://web.ist.utl.
pt/nuno.lopes/netverif/.

STANFORD BENCHMARK. http://goo.gl/FtzxRr.

WHALEY, J., AND LAM, M. S. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI
(2004).

[24]

[25]

[26]

[27]

XIE, G. G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREEN-
BERG, A. G., HIALMTYSSON, G., AND REXFORD, J. On static
reachability analysis of IP networks. In INFOCOM (2005).

ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN,
N. Automatic test packet generation. In CoNEXT (2012).

ZHANG, S., AND MALIK, S. SAT based verification of network
data planes. In ATVA (2013).

ZHANG, S., MALIK, S., AND MCGEER, R. Verification of com-
puter switching networks: An overview. In ATVA (2012).

A Encoding Reachability in Datalog

In this section, we show how to encode reachability
queries using Datalog. Note that Datalog offers a simpler
and powerful higher level way of specifying verification
questions. Existing networking verification tools do not
have any such a higher level language or if they do as in
FlowExp [15] they are ad hoc (no clear semantics) and
less powerful. We also how the Datalog queries can be
simply extended to allow for faults which would require
new algorithmic machiney and recoding in say [15].

A.1 All reachable packets in destination

We simply reverse the direction of rules.

A(dst, src)
R (dst,src — A(dst,src)
Ro(dst',src! — G ANIdAR(dst,src

)
Gi3 AId AR (dst,src)
Gop N1d ARy (dst,src)
Gsp ANId ARz (dst, src)
Gy A SetO A\ R3(dst, src)
? B(dst,src)

A.2 All packets that reach a destination

We add all destinations as additional facts. For example,
we add the fact D(dst,src) besides the fact B(dst, src).

A.3 Non-reachability / black holes

The complement to the All-SAT answer are packets that
are dropped or loop without reaching the specified desti-
nations.

A.4 Forwarding loop detection

To determine if there are any packets leaving A and
revisit the same node twice add an extra argument
to every predicate. The argument remembers (non-
deterministically) a node on the route. If the node re-
appears, then there is a loop:

A(dst, src,0)

Gia ANId AR (dst,sre,)
Ry (dst s’ 0)
Ry(dst,src’)

R, (dst',src’ ;o)

Ry (dst s’ 0)
Ry (dst',src’ , 0)
Ry(dst',src’ r2)
Loop(dst',src)

? Loop(dst,src)

14

A.5 Cycle detection

To determine if there are packets leaving A and getting
trapped in an infinite loop we take a snapshot of both the
node and the contents of the packet.

A(d,s,d,s,0)
I/éz(d,,sl,do,S(),g) — GuAIdAR(d,s,dy,so,l)
Ry(d,s,dy,s0,¢) :— ﬁz(d,s,do,so,ﬁ)
Ry(d,s,d,s,r) :— ﬁg(d,s,do,so,f)
Loop(d,s) :— ﬁz(d,s,d,s,)

? Loop(d,s)

A.6 All packets flow through a middle-box

We add a 0-1 indicator variable v (for visit) to track if the
middle-box was traversed. For example, if the middle
box is R3 we have

A(dst,src,0)

A(dst,sre,v)

Gip N1d ARy (dst, sre,v)
Gi3 ANId AR, (dst,src,v)
Gop N1d ARy (dst,sre,v)
Gsp N1d AR5 (dst, src,v)
Gy A\ SetO ARz (dst, sre,v)
? B(dst,src,0)

R (dst,src,v
Ry(dst',src’ v
R3(dst’ ,src’ v

B(dst',src’ v

D(dst' ,src’, 1
Ry(dst',src’, 1

)
)
)
)
)
)

A.7 Disjoint paths for different protocols

Similar to loop detection, instrument the predicates with
one more variable that non-deterministically remembers
a node on a path from A to B. We then pose a query of
the form:

? A(dsty,sreo,b),A(dsty, srcy, b)),
Protoy(dsty, srcq), Proto) (dsty, srcy)

It returns the set of packets from the two protocols that
flow through the same node ¢ on the way to B.

A.8 Fault resilience

The encodings so far use non-determinism to model load
balancing and failover (broadcast). Suppose we would
like to check reachability in the presence of both faults
as well as broadcasts.

We assume that faults are manifested by disabled
routers and we are interested in checking fault tolerance
up to a fixed number k of disabled routers. So if there

are n routers we can use a logical formula over an n-bit
vector to set at most k bits, indicating disabled routers.
The bit-vector is passed as an additional argument and
rules are only enabled if the fault bit, corresponding to
the router being simulated, is not set. Thus, for an encod-
ing into Datalog we have a vector d of disabled routers.
For example, if d[1] is the position used by router Ry,
then our original encoding uses rules of the form:

R (dst,sre,d) :— G ANldARy(dst',src’,d) A—d][1]

We can constrain d to have at most k bits set using a
logical formula AztMostK (d). The set of packets that can-
not reach B from A with d faults are specified in Datalog
with negation:

? AtMostK(d) A —A(dst,src,d)

We can of course strengthen the query to check if there
are packets that reach the destination without faults, but
are blocked in the presence of faults:

? A(dst,src,d") NAtMostK (d) N —A(dst, src,d)

And we can enumerate packets that reach B under all
legal faults:
nA(dst,src) :— AtMostK(d) A—A(dst,src,d)
? —nA(dst, src)

A.9 Maximum path length

We can query for packets that traverse some path that
exceeds a threshold by adding a parameter that counts
the number of nodes.

A(dst,src,0)
R (dst,src,k+1) :— A(dst,src,k)
Ry(dst',src’ k+1) :— Gia Ald ARy (dst,src,k)

? B(dst,src,k) Nk > threshold

15

