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ABSTRACT

A standard approach to estimating online click-based met-
rics of a ranking function is to run it in a controlled exper-
iment on live users. While reliable and popular in practice,
configuring and running an online experiment is cumber-
some and time-intensive. In this work, inspired by recent
successes of offline evaluation techniques for recommender
systems, we study an alternative that uses historical search
log to reliably predict online click-based metrics of a new
ranking function, without actually running it on live users.
To tackle novel challenges encountered in Web search,
variations of the basic techniques are proposed. The first
is to take advantage of diversified behavior of a search en-
gine over a long period of time to simulate randomized data
collection, so that our approach can be used at very low cost.
The second is to replace exact matching (of recommended
items in previous work) by fuzzy matching (of search re-
sult pages) to increase data efficiency, via a better trade-off
of bias and variance. Extensive experimental results based
on large-scale real search data from a major commercial
search engine in the US market demonstrate our approach
is promising and has potential for wide use in Web search.
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1. INTRODUCTION

Many Web-based services are by nature systems that in-
teract with users. A search engine, for example, starts with
a query issued by a user, returns a ranked list of documents,
and observes user feedback often in the form of clicks and
document consumption. Other examples are advertising and
recommender systems that suggest one or multiple items to a
user and in return receive feedback such as whether the user
adopts/purchases the item(s) or not. Very often, such user
feedback strongly indicates quality of the system. In adver-
tising and recommender systems, for instance, it is natural
to prefer a system with high adoption/conversion rate and
possibly the revenue associated with it (e.g., [7, 20]).

In Web search ranking, the problem we focus on in this
work, useful signals can be extracted from user (click) feed-
back to infer whether a search event is successful or not.
Commonly used examples include click-through rate (CTR),
time to click on the search result page (SERP), and mean re-
ciprocal of click positions, etc. In this paper, we consider the
problem of estimating the average value of such pre-defined
online signals across user visits.

Although human judgment labels are commonly used in
practice to optimize such Web-based systems, they are inher-
ently approximations to the quality of end user experience.
This limitation suggests the need and importance to mea-
sure and optimize online metrics, even though label-based
optimization can be a very useful starting point.

Often the metric of interest depends on user feedback,
and hence on system output as well.! Therefore, one usually
does not know what the user feedback would have been if the
system output changes, unless a highly accurate user model
is available. Such an observation leads to a fundamental
challenge when estimating a metric of a search engine: based
on search log collected by running a version of the engine on
users in the past, it is often difficult or even impossible to
reliably estimate a metric of a modified engine.

The standard approach to this problem is to run an A/B
experiment(e.g., [16]), also known as a randomized con-
trolled experiment: incoming users are randomly split into
two groups, where the control group is served by a baseline
system and the treatment group by a variant. After running
the experiment for a period of time (often ranging from one
week to a few weeks), online metrics of the two systems
are compared, and the one with higher metric values wins.
While A /B experiments are highly valuable for making data-

'In this paper, we focus on metrics that depend on user
feedback. Metrics that do not depend on user feedback are
typically easy to estimate from historical data.



driven decisions to improve Web-based services, they are
expensive for a few reasons. First, the turn-around time is
long: it usually takes days or even weeks before comparisons
of the control and treatment engines start to be statistically
significant. Second, the engineering efforts are nontrivial to
run a flight: as the new ranker will serve live users, sub-
stantial care has to be taken to ensure the ranker does not
lead to catastrophic results. Third, search traffic is a lim-
ited resource. Quite often, multiple experiments compete
for search traffic, and it is challenging to run several exper-
iments at the same time.

Offline evaluation is therefore of great, practical interest.
It aims to predict online metrics of a search engine without
actually running it on live users, thus addressing all three
difficulties above and substantially improving experimenta-
tion agility and quality. Offline evaluation has been studied
and successfully applied to recommendation and advertising
(e.g., [3, 7, 17, 21, 27]), using statistical tools from causal
inference. The key of these techniques is to first collect ran-
domized data and then properly correcting sampling bias
when evaluating a new system.

In the context of Web search ranking, however, the prob-
lem is even more challenging due to the exponentially large
number of possible SERPs for any given query. First, data
collection is very expensive since all possible SERPs will
need to be shown with nonzero probability, a condition often
required by reliable offline evaluation methods [3, 21]. Sec-
ond, offline evaluation results’ variance roughly depends re-
ciprocally on the number of possible SEPRs (c.f., Section 5)
and can be too large in practice to be useful.

Our contributions are three-fold. First, to the best of our
knowledge, our work is the first to apply causal inference
techniques to offline-evaluate metrics of a Web search ranker.
Second, in order to address novel challenges encountered in
Web search, two variations of the basic offline evaluation
technique are proposed and studied, making the method re-
alistic for this application domain. Third, we demonstrate
the proposed solution is promising through extensive exper-
iments using large-scale real search log from a commercial
search engine.

2. PRELIMINARIES

This section provides notation, setup, and related work.

2.1 Notation

Here, we formulate the ranking problem as a contextual
bandit, a popular model in machine learning and statistics,
for capturing interaction between user and the search ranker.
In a contextual bandit [18], the system repeatedly observes
contextual information that is independent and identically
distributed (IID). For each observation, it takes an action
and receives a possibly randomized reward. The reward de-
pends on contextual information and the selected action, and
rewards for other (not selected) actions are not observed.

In the context of Web search ranking, we denote the set
of contextual information by Q—the set of distinct queries,
and for any ¢ € Q, let A, be the set of actions—the set of
possible SERPs for query g. A ranker, denoted , selects a
SERP a € A,. For convenience in this paper, we consider
the general case where 7 is stochastic. That is, for each g, it
computes a multinomial distribution 7 (-|q) over Aq, so that
a € Ay is chosen with probability 7(alg). In practice, 7 is
often a deterministic function [4, 29]. For this important

special case, we abuse notation a bit using 7(q) to denote
the unique action 7 selects for query ¢. In the contextual
bandit literature, 7 is often considered as a policy. In the
rest of the paper, the pairs policy/ranker, context/query,
and action/SERP are used interchangeably.

The interaction between ranker and user proceeds in a
round-by-round fashion as follows: at round ¢,

1. A wuser visits the search engine and submits a query

q € Q, drawn IID from some unknown distribution D.

2. The ranker selects the action a = 7(q) € Ag; that is,

it shows the SERP a to the user.

3. The user consumes the SERP and based on her feed-

back a numerical reward signal r € R is computed.

A few notes are in place. First, we assume r € [0, R] for
some known constant R > 0, since any bounded reward
signal can be easily shifted and rescaled to lie within this
range. Second, the distribution that ¢ is drawn from can
be time-dependent, to reflect daily and weekly population
changes of queries encountered by a search engine. Our ap-
proach (and its associated guarantees) is not affected when
the distribution becomes time-dependent.

The possibly stochastic reward signal measures how suc-
cessful the system meets the user’s need in that round. Its
distribution depends on both the query and the action, and
is not known (and usually difficult to model accurately). Ex-
amples of rewards are found in the next subsection. Our goal
in this work is to estimate the average value of a pre-defined
reward function when serving users with a new ranker 7:

v(m) = Egepana(io[r] = Eq | D w(alg)Elrlg,al| . (1)
a€A,

In words, the metric is the average reward obtained by run-
ning the (possibly stochastic) policy on queries encountered
by a search engine over a long period of time. If 7 is deter-
ministic, the definition may be simplified as

v(m) = Eq~plrlg, m(q)] - (2)

2.2 Example Metrics

Many important metrics used in practice can be obtained
by defining appropriate rewards. For example, if we define
r to be 1 if there is a click on the SERP and 0 otherwise,
then v(m) is the per-impression click-through rate (CTR) of
the ranker. One can also easily define similar metrics for
clicks that satisfy certain desired conditions, or incorporate
monetary information to measure revenue.

Another popular type of metrics attempts to quantify how
soon a user finds the information she needs. An example is
the amount of time it takes for a user to click (or take any
other pre-defined user action) after she submits a query. A
related one is the reciprocal rank of the document that the
user clicks on the SERP.

In our experiment, we focus on estimating the fraction of
successful search activities of a ranking function. This re-
quires defining what it means by a success in a Web search
scenario, which typically depends on user clicks on the docu-
ments, amount of time spent on clicked documents (e.g., [5]),
positions of clicked documents, and perhaps other informa-
tion. For sensitivity reasons, the precise definition of success
cannot be revealed, but it suffices to note that this metric
is nothing but a concrete way to define the reward signal
in the contextual bandit framework. A reader can simply



interpret it as CTR of the whole SERP (not individual doc-
uments on the SERP), without sacrificing understanding of
the technical details of this work.

2.3 Related Work

A lot of work has been done to evaluate rankers in in-
formation retrieval and Web search [25]. The dominant ap-
proach is to collect relevance labels from human judges for
a collection of query-document pairs, which are then used
to compute offline metrics like mean average precision [1]
and normalized discounted cumulative gains [14]. For these
metrics, the label information used to compute them is inde-
pendent of user feedback, unlike the online metrics we focus
on here. Such a non-interactive nature makes the judgment-
based approach a relatively inexpensive and easy-to-use so-
lution for ranking function evaluation.

However, the non-interactive nature also causes limita-
tions, as pointed out by several authors [2, 28], as they
are approximations of the quality of end user experience.
Consequently, in industry, people have also measured var-
ious online metrics that indicate whether a search activity
is successful or not. These metrics are the ones we try to
estimate in this paper, since they depend on user feedback.
The standard way is to run an A /B experiment (e.g., [1, 16])
to directly measure online metrics, or to run an interleav-
ing experiment that gives directional evaluation results [6,
24]. In contrast to existing methodology, we aim to rely on
historical data to perform offline estimates of them.

Recent, some authors applied offline evaluation techniques
to estimate online metrics for a specific type of experiments,
namely interleaving [12, 13]. Such interesting work assumes
availability of properly randomized, interleaved SERPs, and
uses such data to predict outcomes of interleaving experi-
ments for a new pair of rankers. In contrast, our focus here
is for more general online experiments and can be directly
applied to a wider range of online metrics (such as those
involving revenue), with minimal need for data collection.

An alternative to A/B testing is to build a user click model
and then use it to simulate user clicks on results produced
by a new ranker. Much progress has been made in the past
that led to refined models that deepen our understanding
of user engagement (e.g., [8, 10, 11]). Furthermore, some
of these click models can be used to define useful offline
metrics that have positive correlations with certain online
metrics [9]. Here, we aim to estimate the online metrics
themselves, instead of finding an proxy metric.

As explained in Section 3, the approach we take here is
closely related to previous offline evaluation work for recom-
mender and advertising systems based on contextual ban-
dits [18, 21], and to causal inference in statistics [17] as well.
Our work is along the same line, although we make two crit-
ical adjustments to enable it to work for Web search. The
first is the idea of using “natural exploration” to replace ac-
tive exploration [26], taking advantage of inherent diversity
of a search engine. The second is to use approximate action
matching for a better bias/variance trade-off.

3. BASIC TECHNIQUES WHEN RAN-
DOMIZATION DATA ARE AVAILABLE

If one is able to run the policy on live users (that is, online
evaluation), as in an A/B experiment, it is straightforward
to estimate the policy value: we can simply run the policy

to serve users, observe user feedback, compute the reward
for each impression, and then average the reward. By the
law of large numbers, this empirical average will converge to
the true metric value with probability one.

However, the fundamental challenge in offline evaluation
lies in the following counterfactual nature: for a particular
query, if the ranker produces a different ranking than the one
by the data-collection ranker, it is difficult, if not impossible
at all, to reliably predict user feedback in response to the
new ranking result. One therefore simply does not have the
reward information for evaluating a new ranker.

As studied in previous work [21, 3], the key to reliable
offline evaluation is to use randomization during data col-
lection. Specifically, we may run an experiment on a small
fraction of users that is dedicated to randomized data col-
lection: when a user issues a query ¢, instead of always
following production ranker 7 to return a SERP m(q), we
add some pre-defined noise to 7y so that a random SERP is
shown to the user, with reward observed and recorded. Note
that such randomization occurs on the impression level, so if
the same user issues the same query a second time, she may
see a different SERP. The process can be adapted if one is
interested in user-level or search-session-level metrics.

When the data-collection experiment finishes, we will have
a set of “exploration” data D = {{gi, ai, pi, i) }1<i<n, where
i indexes a distinct impression, ¢; is the query issued by
user in that impression, a; is a ranking list (say, top 10
document list), p; = p(a;|q;) is the probability of showing
a; for ¢; in the data-collection flight, and 7; is the resulting
click-based metric (say, search-success-or-not, time to click).
In the literature, p; is also known as the propensity score.

Now, given any new, possibly randomized ranker m, we
can estimate its value by the following estimator [3, 26]:

Ui () == 1 i L(a”qi)r-
oo -1 P v

The intuition behind the estimator is that, for any given
query ¢, some actions have higher selection probability dur-
ing data collection, so they are over-represented in the data.
The division by propensity scores is to correct such a sam-
pling bias. In fact, it can be easily shown that the estimator
is unbiased in the following sense:

E[v1(m)] = (7).

In other words, on average v; is identical to the true policy
value that we try to estimate. Therefore, as long as variance
is controlled, one can estimate the policy value to within a
certain confidence level; further details and discussions can
be found in [3, 19, 26].

4. SIMULATE RANDOMIZATION WITH
PRODUCTION RANKER DIVERSITY

The approach above assume availability of randomized ex-
ploration data, a large amount of which may not be easy to
collect, due to various practical restrictions like user dissatis-
faction concerns. In contrast, the production ranker already
produces a large amount of search log at almost no cost. It
would be desirable to extract the most use of such data.

One idea that we pursue here is to use inherent diversity
in ranker behavior (for the same query, in different flights
and/or over different time periods) to simulate randomiza-
tion, even if the individual rankings were computed deter-



ministically in each impression. Such diversity is usually
caused by factors such as continuous updates of the rank-
ing function, changing features of query—document pairs,
constant updates of the engine’s indexes, etc. Such di-
versity leads to “natural exploration” behavior of the sys-
tem that we will try to take advantage of. Since such
data will play the same role as the (randomized) explo-
ration data described previously, we use the same notation
D = {{qi, a:i,pi,7i) h1<i<n for it and also refer it to as the
exploration data. No confusion should be raised, as it is
the only data we use for the following discussions and ex-
periments. Furthermore, the ranker we try to evaluate is in
general different from past rankers that were used to gener-
ate exploration data.
To be precise, let us define by

n

> Hai =g}

=1

n(q)

n(qa a’) = ZH{% =4q,a; = a‘}
=1

the counts of query ¢ and of the query-SERP pair (gq,a),
respectively, observed in the exploration data, where I{C} is
1 if condition C holds true and 0 otherwise. The probability
of the simulated randomization becomes
Tl(q“ ai)

n(gi)

and the previous unbiased estimator becomes

B () = %Zwr

n(q“ a‘i)

pi = plailg:) ==

By grouping the terms in the summation by distinct query-
action pairs, we obtain the following offline metric estimator
for a new ranker:

Bm = =S n) S wlalg)(e )

n

a€Ay
= Zﬁ(Q) Z w(alq)7(q,a), (3)
q a€Aq

where 11(q) := n(q)/n is the relative frequency of ¢ in data
D, and

~ 1
(g, a) := w(g,a) > g =q,a: = a}r

is the average of reward for (¢,a) in D. We adopt the con-
vention that 7(¢,a) = 0 when n(g,a) = 0. In other words,
the estimator v is like first building a regressor 7 to predict
E[r(q, a)] for every observed (g,a) pairs, and then plugging
it in the definition of v(7). For this reason, it is also called a
regression estimator and is near-optimal in a strong statis-
tical sense: for reasonable sample size n, the regression esti-
mator’s mean square error is always within constant factor
of the optimal estimator’s mean square error, and is asymp-
totically optimal as the sample size goes to infinity. [22]

4.1 A Variant with Target Query Distribution

In our experiment, we will use data collected in the past
(the exploration data) to estimate online metrics for flights
that occurred later (the test data). It is a reasonable as-
sumption that query distributions in exploration and test

data are similar. But for certain segments of queries, this as-
sumption is likely to be violated. For example, time-sensitive
queries may have a highly varying distribution over a short
period of time, so queries that are common six months ago
may not be popular any more now, and vice versa. Such a
gap makes it hard to walidate the evaluation approach we
propose here.

To remove this gap, we can replace v; above by summing
over queries in test data, although the reward estimates 7 are
still estimated using exploration data. This yields a slightly
different estimator, denoted vs:

B = —S @ Y g0 a)

n
* acA,

= Y Y o)), 4

q acAg

where n., n.(q), and n.(g, a) are the corresponding counts in
test data, and the second equality is due to the observation
that the ranker to be evaluated is defined through test data
by (alq) = n«(g, a)/n.(q).

It should be emphasized that 72 is given to remove query
distribution mismatch between exploration and test data for
the purpose of our experiments in the paper. What it tries to
validate empirically is whether metrics are similar between
exploration and treatment data, when query distributions
match perfectly. But when building an experiment success
predictor in reality, test data are not available, since frequent
online experiments with new rankers is what we try to avoid
in the first place. On the other hand, there is a reason to
use as many search log as possible to get better estimate of 7
and to increase coverage of (g, a), implying pretty outdated
data have to be used. So, query frequencies n(q) observed
in the past (used in v1) may be quite different from what
would be observed if 7 is flighted now. An easy fix is to use
recent search log to obtain query frequencies n(q) and plug
them in 7.

4.2 Special Case for Deterministic ~

In most practical situations, we are interested in evaluat-
ing a deterministic ranker, in which case the estimator can
be simplified from the more general form presented earlier.
We provide the formula here due to the importance of such
a special case. Recall from Section 2 that, when 7 is deter-
ministic, 7(q) refers to the unique action it selects for query
q. The two estimators can be expressed as:

Wm = Y @) la)

B = - Y@ ).

n

4.3 Variance Estimation

In addition to the point estimates given above, variance
information is also needed to evaluate whether a difference
between estimates of two policies’ values is statistically sig-
nificant. Here, we give a simple-to-compute approzimation
for variance.

First of all, recall that r; € [0, R] for some constant R. If
r; corresponds to binary events like click-or-not or success-
or-not, then R = 1. Under the boundedness condition, the
variance of r; can be bounded by V(r;) < R?/4, which is



tight when 7; is a Bernoulli random variable (taking values
in {0, R}) with parameter 1/2. Since 7(q, a) is the average
of n(q, a) such IID random variables, we immediately have

2

V(?(% a)) < m~

Consequently, the variance of the two estimators follows im-
mediately:

()

V) = 52 3 Ty, a)
g ac€Aqg
R < n(a)® ns(q,a)*
= W 2 op 2; ng.a)
V@) = 53 Y ne(g.aV((,0)
*q a€Ay
= 4n2 Z Z n*
g a€Ay

For the important special case when 7 is deterministic, the
above formula may be simplified as

V@) = o > on(@) V(e (@)

R? n(q)?

= Wznw(q»
V(@a(m) = nzzn* 9)*V(7(q,7(q)))

< R’ n.(q)*

4n? 2= n(g,7(q))

Given a variance estimate, confidence intervals can be es-
timated. For example, 95% confidence interval is 1.96 x

Note that the above variance estimation formula works
for both continuous and discrete-valued metrics, as long as
the metrics have a bounded range inside [0, R]. While being
very general, the variance upper bound given in Equation 5
may not be most tight. An empirically better alternative, as
discussed in previous work [3, 19], is to estimate V(7(q, a))
from data, using classic normal approximation techniques or
recent statistics results [23].

4.4 Limitations

Although the proposal here is inspired by the unbiased
estimator reviewed in Section 3 and shares many similarities,
the estimator obtained from simulated exploration data loses
the nice unbiasedness guarantee in general. One key problem
is that, the search log is not exploratory enough to cover all
possible rankings for any query. Consequently, if for some
query ¢q the target policy 7 selects a ranking that has no
occurrence in data (meaning n(g,m(q)) = 0), there will be
no information to predict what the online metric would be
if ranking 7(q) is displayed to the user.

Another source of bias of our approach is introduced by
potential confounding in the data [3] — for example, when
selection of SERPs in exploration data depends on both the
query and additional information (such as user location).

Randomized data collection can remove these two biases,
hence should be attempted whenever possible.

S. FUZZY MATCHING

A major difficulty common to the approaches in Sections 3
and 4 is that A, can be large for many queries ¢, leading to
two consequences:

e The larger A, is, the smaller n(g, a) tends to be for ev-
ery a, and a larger variance is expected from our esti-
mators (c.f., Equation 5). To understand the influence,
consider the special situation when 7 is deterministic,
all n(q) are identical and equals n/Q (Q is the number
of distinct queries found in D), and |A4| = K. Then,
the variance estimation for v7, as given in the previous
section, becomes R*K/(4n). So the variance roughly
grows linearly with the size of average size of A,.

e The larger A, is, the less likely metric information
can be extracted from data to estimate v(w). In fact,
as observed empirically, queries that share common
SERPs between exploration and test data tend to be
more head-ish ones. It follows that 4, tends to be
larger when ¢ is tail, and so have lower chances to be
included in the offline estimation formula.

The idea of fuzzy matching is to relax the condition of ez-
act matching between two rankings, so that two rankings a
and a’ are considered identical when they are “close” enough.
By doing so, we can effectively reduce the size of A,, since
many rankings collapse into one, and can alleviate the diffi-
culty described above.

Here, we consider a special case of fuzzy matching that
focus on top-ranked URLs in a ranking. For example, if
we only focus on the top L = 4 URLs on the SERP, two
rankings that only differ in positions below L will be treated
as the same ranking. Such fuzzy matching will inevitably
introduce bias in the evaluation results (since URLs below
top L do have influence on metrics), but hopefully we will
be able to find a good trade-off by choosing L properly.

Some notation is in place. For any query ¢, let A4 be all
rankings observed in data. We say a ~ o’ if a and a' are
considered the same. With the binary equivalence relation
~, Aq can be partitioned into a collection of distinct subsets,
Ag1,Aq,2, - .., so that each A, ; contains rankings that are
considered identical. Now, we just need to treat Aq,; as new
actions and apply the same techniques as before. Similar to
the exact-match case, define the following quantities:

’I’L(q, Aq,j) = Z n(‘]a a)

a€Ag

> iHai =q,ai € Agi}mi

7(q, Aq,j) = S Hagi =q,a; € Ag s}
1
— - - I i = {,0q € A g
n(QaAq,j) Z {q o qJ}T

Finally, given ¢ and a, let j(g,a) be the (inverted) index
such that a € Ay j(q,a)-

For fuzzy matching with binary relation ~, the previous
estimators can be adapted using the quantities above:

PROPOSITION 1. The estimator in FEquation 8 becomes
the following with fuzzy matching:

> wrma (@' |@)n(q, a)7(q, a)
Z“ 2 > (@, )

a€Aq

The extension to Vs is similar.



6. EXPERIMENTS

In this section, we describe the experiments to evaluate
the performance of the prediction method. Our experiment
has several objectives. First, we would like to know how ac-
curate the predictions for individual flights are. Also, since
the goal of online experiment is to determine the relative
performance of each flight, we would like to know how accu-
rately the relative performance between two ranking meth-
ods are predicted.

For this paper, our method is to use the existing exper-
imentation data to evaluate the prediction technique. In
other words, we collected experimentation data for a year,
and split the data into two periods to generate the explo-
ration and test data, respectively. Finally, we can see to
what extent the metric value estimates based on exploration
data approximate the metric values in test data.

6.1 Data Collection

For our experiment, we used large-scale log data from the
random sample of ranking-related online experiments for a
major search engine in US market. Each record in the data
takes the form of (Query, Top-8 results, Metric Values, Im-
pression Count). Our data contains the log data of one year
period, where the first 6 months are used as exploration-set
and the following months are used as test set. Our data set
contains 190 ranking algorithms (rankers) within 44 ranking
experiments.

We created two types of data sets for our experiments
which are then used to estimate and evaluate the model,
respectively. First, we used the data in Period I to generate
the exploration data set described in Section 4. That is,
we aggregated the data by query, action, the (simulated)
probability of action and reward values. Second, we used the
data in Period II to generate the test data set. That is, we
aggregated the data by ranker, query, action, the (simulated)
probability of action and reward values.

Given the two data sets, our experiment is to estimate the
metric value for each ranker in the test data using reward
signals from the exploration data. We achieve this by join-
ing the exploration and test data using (query, action) as
key. And the fuzzy matching introduced in Section 5 is used
to control the definition of action used for the experiments
using both estimators 9; and 3.

6.2 Results

6.2.1 Metric Value Prediction

We present the results for predicting absolute metric val-
ues, where we plotted the predicted metric values against
actual metric values. The results in Figure 1 and Figure 2
shows that the correlation is strongest when defining action
based on Top 3 web results, followed by Top 5 web results.
In fact, there seems to be virtually no correlation when using
Top 8 web results (i.e., exact match) to define action.

Table 1 shows the same trends, where the level of cor-
relation (Cor(.)) gets lower as we define action in a more
fine-grained manner. As a possible explanation, you can
see that the number of (Query,Action) matches decreases
sharply when we use the exact match. Between the 1st and
the 2nd estimator, we find that the 2nd estimator provides
slightly better correlation, which implies that the mismatch
in query count does have some impact.

Table 1: Results for predicting absolute metric val-
ues.

TopK | Cor(?1) Cor(vz2) #(Query,Action)

3 0.549 0.596 645,749,791
5 0.431 0.438 244,046,777
8 -0.271 -0.254 63,646,334

Table 2: Results for predicting the delta in metric

values between two rankers.
TopK | Accuracy Correlation

3 58.5% 0.450
5 56.1% 0.396
8 50.7% 0.370

6.2.2 Metric Delta Prediction

We present the results for predicting the delta in metric
values between two rankers. Each experiment in our test
data contains two rankers: one is a baseline ranker (“con-
trol”) and the other is a proposed new ranker (“treatment”).
The experiment was used to discover whether the proposed
ranker is superior to the baseline ranker. Such pairs of
rankers are therefore ideal pairs for our purpose to predict
metric deltas.

In particular, for each experiment, we calculated the dif-
ference in the metric value between the two rankers. The
results in Figure 3 shows the distribution of predicted delta
between two rankers within each experiment for varying level
of approximate match, against the true metric differences
based solely on test data. It can be seen that the correlation
is quite strong for Top-3 (fuzzy) match, and worst for Top-8
(exact) match.

While the scatterplot shows the general trend, what re-
ally matters are the decisions based on the values. In other
words, each comparison between two rankers can be deter-
mined to be WIN (proposed ranker significantly better than
the baseline), LOSS (proposed ranker significantly worse
than the baseline), or TIE (otherwise). We want to see
whether our offline evaluation method gives good predic-
tions of online flight successes or not.

In order to make decisions based on the metric values, we
used the two-sample t-test with p-value threshold of 0.05
on both predicted and actual delta values. Then we calcu-
lated the accuracy as the sum of diagonal divided by the
total number of pairs being compared. Table 2 presents
the accuracy values as well as the correlation between the
predicted and actual delta. Note that if we make random
decisions among WIN/LOSS/TIE, the accuracy is 33.3%,
and our improvement is statistically significant. If we pre-
dict the majority outcome, the prediction is TIE which is
not useful at all.

Table 3 presents the confusion table between predicted
outcome and the actual outcome of experiments, as well as
the accuracy /recall of predictions for each outcome. Again,
there seems to be a clear bias in the prediction results. That
is, there are many cases where predicted outcome was pos-
itive (a WIN case) while actual outcome was TIE (or even
LOSS), but very few cases in the opposite direction. We can
call it an “optimistic” bias in that the prediction results are
more positive than actual experimental outcome. We delve
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Figure 1: Scatterplot for actual (X) vs. predicted (Y) click ratio based on the 1st estimator (v:), where the
action is defined by Top 3, 5 and 8 web results, respectively.
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Figure 2: Scatterplot for actual (X) vs. predicted (Y) click ratio based on the 2nd estimator (72), where the
action is defined by Top 3, 5 and 8 web results, respectively.

into why that is the case in the following sections. Such a
bias is also reflected by the relatively high accuracy of LOSS
predictions

It should be noted that, for our purpose, an optimistic bias
is relatively easy to handle: if a proposed ranker is predicted
to be a WIN, one can run it in a real experiment on users
to find out whether it is really the case. On the other hand,
if a LOSS prediction is made, it is a strong indication that
the ranker is not worth running a real experiment. There-
fore, our technique can be used to weed out unpromising
techniques early on without going through with an online
experiment.

Finally, we examine how often the offline prediction gives
results opposite to the actual outcomes. A disagreement
happens when a WIN is predicted for a LOSS flight or when
a LOSS is predicted for a WIN flight. The disagreement ratio
is the ratio between number of disagreements and number of
WIN/LOSS flights. As shown in Table 4, the disagreement
ratio is reasonably low across various K values.

6.3 Analysis of Bias

Table 3: WIN/TIE/LOSS confusion table between
actual outcomes (columns) and predicted outcomes
(rows) for different K values of topK fuzzy matching.
Accuracy/recall are also included for each outcome.

K=3 LOSS TIE  WIN | Accuracy Recall
WIN 3.4% 19.0% 13.7% 37.8% 65.1%
TIE 8.8% 38.0% 6.8% 70.9% 63.4%
LOSS | 6.8% 2.9% 0.5% 66.7% 35.9%
K=5 LOSS TIE  WIN | Accuracy Recall
WIN 3.9% 11.7%  5.9% 27.3%  27.9%
TIE 122% 47.3% 15.1% 63.4% 78.9%
LOSS | 29% 1.0% 0.0% 75.0% 15.4%
K=8 LOSS TIE  WIN | Accuracy Recall
WIN 4.4% 18.5% 7.3% 24.2%  34.9%
TIE 12.7% 41.5% 13.7% 61.2% 69.1%
LOSS | 2.0% 0.0% 0.0% 100% 10.3%
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Figure 3: Scatterplot for actual (X) vs. predicted (Y) delta in click ratio between two rankers in the same
experiment where the action is defined by Top 3, 5 and 8 web results, respectively.

K 3 5 8
Disagreement ratio | 9.8% 9.8% 11.0%

Table 4: Disagreement ratio for different K values.

In Section 6.2.2, we observed that the metric delta pre-
diction results are more optimistic than actual experimental
outcome. This means that the predicted metric value for ex-
perimental ranker tends to be higher than the control ranker.
Among many possible explanations, one clear difference be-
tween two rankers is the coverage of exploration data. That
is, experimental rankers should produce more results that
are not found in the exploration data set than the control
rankers, which is mostly the rankers already in production.

In order to verify the hypothesis, we investigated the re-
lationship between the degree of optimistic bias measured
by the ratio of predicted metric value against actual metric
value, and the coverage of exploration data in terms of the
percentage of matching records. Figure 4 shows the results,
where the negative correlation is clear in the rightmost plot,
which employs the exact matching strategy.

The result indicates that the increase in coverage means
reduced bias, and the trend is most conspicuous for the case
of exact match. This trend is consistent with what we ob-
served in Figure 3 and Table 3, where the results were most
concentrated in the upper left corner for exact match case.

6.4 Segment-level Results

Our prediction method relies on the assumptions that
there is no confounding in the exploration data (c.f., Sec-
tion 4.4), that there are sufficient amount of exploration data
(i-e., metric values for different set of results) for each query,
and that we have enough observations for each (Query, Ac-
tion) pair. The other requirement is that the users’ click
behavoir would be consistent between exploration and ex-
ploration data for the same query.

Since these assumptions may not hold for certain type of
queries, we can hypothesize that the performance of pre-
diction method should vary across different query segments.
We classified queries into different segments, and then cal-
culated the predicted and actual metric values as before, to

Table 5: Correlation between predicted and actual
metric values for different segments with different K
values in fuzzy matching.

TopK Segment Cor Count
3 Head 0.916 364,757
Body 0.962 553,892,081

Tail 0.722 90,867,404

Local 0.342 60,448,865

Navigational 0.642 120,343,701

Overall 0.934 645,124,406

5 Head 0.875 345,640
Body 0.894 229,862,589

Tail 0.860 13,636,733

Local 0.413 24,049,649

Navigational 0.648 58,680,950

Overall 0.885 243,845,041

8 Head 0.563 304,142
Body 0.962 61,433,473

Tail 0.993 1,809,956

Local 0.453 6,369,383

Navigational 0.575 23,107,195

Overall 0.872 63,547,643

see how the correlation between predicted and actual metric
values changes for different segments.

The results in Figure 5 shows the level of correlation for
different segments. It is clear that the correlation for the
body segment is strongest in overall in Top 3 and 5 matching,
and that the Local segment has lowest correlation, followed
by Navigational. Table 5 presents the same results with the
number of matching records. Note that the number of tail
queries in Top 8 match is much smaller than Top 3 and 5
matches. We hypothesize that this have led to exceptionally
higher correlation on that segment.

Between Head/Body/Tail, the Body segment shows the
highest correlation in overall, which is reasonable in that
there would be sufficient variety of per-query results shown
to the user, with enough sample size for each result. In
Head segment where there are many signals for ranking, we
are unlikely to observe lots of variation in Top-k results. For



1.04 112 [
N ?
1.02 b, 2 S Ao 1.10 .. ':-
2 £ . P
1.00 .i ..1. S o i 108 ° ! ‘...
* - o, o™
098 1 1.06 o ° R,
0 ® Q.
096 ° 1.04

0.94 ° 1.02 .

0.92 1.00
030 035 040 045 050 055 060 065 0.1 0.2

°® -
. 125 o %
X
e3°
3 o
120
. t
1.15
L]
o 110

%

1.0

5
04 0.5 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Figure 4: Scatterplot for the ratio of predicted metric value against actual metric value, plotted against %
of matching records, where the action is defined by Top 3, 5 and 8 web results, respectively.
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Figure 5: Correlation between predicted and actual
metric values for different segments with varying K
values in fuzzy matching.

tail, while the variety might exist, there should be very few
data points for each alternative ranking.

Low correlation for local segment can be explained if we
note that the click pattern is likely to vary across different
locations even for the same query, creating confounding that
leads to a bias. For navigational queries, where the clicks
would be heavily skewed toward the top few results, we hy-
pothesized that there may not be enough exploration data
that can allow effective prediction.

7. CONCLUSIONS

In this work, we proposed an offline approach to estimat-
ing online metrics of a new ranker that typically depend on
user feedback. This approach does not require running ev-
ery such new ranker on live users and is therefore less expen-
sive than standard A /B experiments. Compared to previous
work with the same motivation in recommender and adver-

tising systems, we proposed two variations to address novel
challenges encountered in Web search.

Our approach shows promise based on extensive experi-
ments on large-scale data collected from a major search en-
gine. The fuzzy matching technique based on Top-3 results
can predict actual metric values closely (Pearson correla-
tion 0.6), and the prediction of experimental results between
control and treatment ranking techniques shows reasonably
high accuracy upto 58.5% — significantly higher than chance
results (33.3%).

The promising results lead to a few directions for future
work. First, while there is no conceptual difficulty, we would
like to apply the same technique to estimate session-level and
user-level metrics. Second, we conjecture that our evalua-
tion method can benefit from more flexible fuzzy matching
criterion, in which the similarity between two SERPs of the
same query can be measured by a real number (e.g., [15]),
as opposed to the binary same-or-different SERP matching
outcomes considered in this paper.
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