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2. RELATED WORK 
2.1 Device Association Using Sensor Fusion 
“Sensor fusion” refers to the combination of multiple disparate 
sensors to obtain a more useful signal. Of particular relevance to the 
present work are fusion techniques that seek to associate two 
devices by finding correlation among sensor values taken from both. 
For example, when two mobile devices are held together and 
shaken, accelerometer readings from both devices will be highly 
correlated ([3], [7]). Detecting such correlation can cause 
application software to pair or connect the devices in some useful 
way. Similarly, when a unique event is observed to happen at the 
same time at both devices, various pairings may be established. 
Perhaps the simplest example is connecting two devices by pressing 
buttons on both devices simultaneously [10], but the same idea can 
be applied across a variety of sensors. For example, two devices that 
are physically bumped together will measure acceleration peaks at 
the same moment in time. Hinckley et al. [2] refers to these 
interactions as “synchronous gestures.”  

It can be particularly useful to establish correlations across very 
different modalities, since often such modalities complement each 
other. We mention just a few of these “cross-modal” approaches: a 
mobile phone may be located and paired with an interactive surface 
by correlating an acceleration peak in the device with the 
appearance of a touch contact [12], or when the surface detects the 
visible flashing of a phone at the precise moment it is triggered [18]. 
An object tagged with an RFID chip can be detected and located as 
it is placed on an interactive surface by correlating the appearance of 
a new surface contact with the appearance of an RFID tag [8]. 

2.2 Correlating Image and Device Motion 
A small number of previous works investigate the idea of correlating 
mobile device inertial sensor readings with movement observed in a 
video camera. 

Kawai et al. [4] propose correlating accelerometers worn at the 
waist with visual features to track young children in school. They 
consider tracking head-worn red LEDs, as well as tracking the 
position of motion blobs. For the accelerometer measurements, they 
consider integrating to obtain position for direct comparison with the 
visual tracking data, as well as deriving pedometer-like features. 
While the paper lacks specifics, the authors favor pedometer 
features in combination with markerless motion blob visual features. 

Shigeta et al. [13] propose computing normalized cross-correlation 
between the motion trajectory of an object and device accelerometer 
readings to determine which of several tracked objects contains the 
device. Their approach requires a window of many samples to 
perform correlation and relies on an external process to find and 
track objects from monocular video. Plötz et al. [9] use a similar 
approach to synchronize inertial sensors and video cameras. 

Teixeria et al. [15] propose identifying and tracking people across 
multiple existing security cameras by correlating mobile device 
accelerometer and magnetometer readings. They describe a hidden 
Markov model-based approach to find the best assignment of sensed 
devices to tracked people. As with Shigeta et al., they rely on an 
external process to generate tracked objects and use a large 
matching window, though they demonstrate how their approach can 
recover from some common tracking failures. 

Most closely related to the present work is Rofouei et al.’s ShakeID 
system, which matches smartphone accelerometer values with the 
acceleration of up to four hands tracked by the Microsoft Kinect 
sensor [11]. The hand holding the phone is inferred by matching the 
device acceleration with acceleration of hand positions over a short 

window of time (1s). A Kalman filter is used to estimate the 
acceleration of each hand. The hand with the most similar pattern of 
acceleration is determined to be holding the device. This previous 
work further studies the correlation of contacts on a touch screen by 
the opposite hand. Ultimately touch contacts are associated with the 
held device by way of the Kinect tracked skeleton that is seen to be 
holding the device. 

All of the above previous works require that a small number of 
candidate objects are first tracked. The subsequent correlation 
process involves determining which of these object’s motion most 
closely matches that of the device. The step of generating candidate 
objects can be prone to failure. For example, ShakeID compares the 
motion of the tracked hands of the one or two users detected by the 
Kinect sensor skeletal tracking process. If the device is not held in 
the hand, or if the Kinect skeletal tracking fails, the device cannot be 
tracked. Furthermore, holding a mobile device can impact the hand 
tracking process to an extent that estimating hand acceleration 
robustly is difficult. Kinect skeletal tracking requires a fronto-
parallel view of the users. Thus relying on Kinect skeletal tracking 
constrains where the camera may be placed. For example, skeletal 
tracking fails when the camera is mounted in the ceiling for an 
unobstructed top-down view of the room. 

In comparison to previous work, CrossMotion avoids the difficulty 
of choosing candidate objects by matching low level motion features 
throughout the image. It may be used in many situations where 
skeletal tracking is noisy or fails outright and thus can be used in a 
wide variety of application scenarios. Whereas most of the related 
work performs matching over a significant window in time, 
CrossMotion uses a fully recursive formulation that relies on storing 
only the previous frame’s results, not a buffer of motion history. In 
fact, the recursive nature of the computation allows it to be applied 
everywhere in the image in real time, avoiding the need to track 
discrete objects. 

We argue that to correlate image and device motion for the purposes 
of locating the device or the user carrying it, the best approach is to 
match image motion directly, since as with “synchronous gestures” 
the pattern of image motion will provide the discriminative power to 
robustly detect the device or its user. Making fewer assumptions 
about the appearance of the device or user extends the range of 
applicability of the approach, and makes the technique less complex, 
more robust, and ultimately more useful. 

We take some inspiration from models of visual search which 
feature a pre-attentive, massively parallel processing stage in which 
low level features are computed across the visual field, to be 
selected by further higher-level top-down processes [19]. For 
example, a pedestrian can detect interesting motion in the periphery, 
such as a car approaching a crosswalk, even on a windy day where 
the visual scene is full of motion.  

Maki et al. [5] and Stein et al. [14] similarly propose matching 
trajectories of a set of features tracked using optical flow. Trajectory 
acceleration magnitude is compared to device acceleration 
magnitude to find the closest matching trajectory. These previous 
works require that the tracked points be periodically resampled to 
maintain even distribution throughout the image. Maki et al. 
demonstrates tracking 512 points, while our recursive approach uses 
optical flow rather differently, considering all pixel locations in the 
image without relying on a set of proposed features, effectively 
tracking a few hundred thousand points. Furthermore, these 
previous works compare acceleration magnitude which is invariant 
to orientation. CrossMotion instead uses the full 3D acceleration in a 
known coordinate frame, and thus avoids many simple scenarios 
that lead to false matches when using only acceleration magnitude 
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differences. While it is beyond the scope of the paper to fully 
explain the Kalman filter (see [17] for a good introduction), we 
attempt to describe the basics of the technique by way of explaining 
the particular formulation used in CrossMotion. 

The Kalman filter is closely related to the simpler “exponential” 
filter which computes a smoothed estimate ݔ௧ of a scalar ݖ௧ using 
the recursive relation: ݔ௧ = ௧ିଵݔ + ௧ݖ)ߙ −  (௧ିଵݔ
where the gain ߙ ∈ (0,1) controls the degree to which the filter 
incorporates the “innovation” ݖ௧ 	−  ௧ିଵ. The smaller the gain, theݔ
less the filter follows the observation ݖ௧, and the more the signal is 
smoothed. An improved version of the exponential filter is  ݔ௧ = ∗௧ݔ + ௧ݖ)ߙ −  (∗௧ݔ
where ݔ௧∗ is a prediction of ݔ௧ given ݔ௧ିଵ (for example, by assuming 
constant velocity). The Kalman filter is essentially this “improved” 
exponential filter, and moreover includes a principled means to set 
the value of the gain given our uncertainty in both the prediction ݔ௧∗	and observation ݖ௧.  
For our problem of estimating acceleration from image motion, we 
first consider the motion of a single object in 3D. The familiar 
equations of motion predict the object’s position ܠ௧∗, velocity ܞ௧∗ and 
acceleration ܉௧∗	from previous values, ܠ௧ିଵ, ܞ௧ିଵ, and ܉௧ିଵ: ܠ௧∗ = ௧ିଵܠ + ݐ∆௧ିଵܞ + ∗௧ܞ ଶݐ∆௧ିଵ܉12 = ௧ିଵܞ + ∗௧܉ ݐ∆௧ିଵ܉ =  ௧ିଵ܉

Given observation ܢ௧ of the 3D position of a tracked object, we 
correct the predictions of position, velocity and acceleration with ܠ௧ = ∗௧ܠ + ௫ܓ ∗ ௧ܢ) − ௧ܞ (∗௧ܠ = ∗௧ܞ + ௩ܓ ∗ ௧ܢ) − ௧܉ (∗௧ܠ = ∗௧܉ + ܓ ∗ ௧ܢ) −  (∗௧ܠ
where ∗ denotes element-wise multiplication. Kalman gains ܓ௫, ܓ௩, ܓ relate the innovation, or error in the prediction of position, to 
changes in each of our estimates of position, velocity and 
acceleration. Kalman gain is computed as described in [17], and is 
related to our uncertainty in our predictive model ܠ௧∗ and 
observations ܢ௧. In particular, it is crucial to assign a high 
uncertainty to our estimate of acceleration  ܉௧ to reflect our belief 
that acceleration of the object varies over time (indeed, this is the 
quantity we wish to estimate). Similarly, our uncertainty in ܢ௧ is 
related to the noise of our sensor. 

Finally, we note that the usual formulation of Kalman gain is time-
varying. However, if the uncertainty of our predictive model and 
observations is constant, Kalman gain converges to a constant value 
[17], as presented above. This leads to a simplified implementation 
of the update equations, and further underscores the relationship 
between the Kalman filter and the simpler exponential filter. 

3.2.4 Incorporating Flow 
CrossMotion maintains a Kalman filter of the form described above 
to estimate 3D acceleration at each pixel location in the image. We 
denote our estimated position, velocity and acceleration at each 
pixel location ݔ,  .௫,௬,௧ respectively܉ ௫,௬,௧ andܞ ,௫,௬,௧ܠ as ݕ

Optical flow information is used in two ways: first, the flow at a 
point in the image is a measurement of the velocity of the object 
under that point. It thus acts as input to our estimate of acceleration 
using the Kalman filter. Second, we can use flow to propagate 

motion estimates spatially, along patches of the image whose 
motion is being estimated. In this way the Kalman filter can use 
many observations to accurately estimate the acceleration of a given 
patch of an object as it moves about the image. 

Flow quantities ݑ௫,௬ and ݒ௫,௬ (which we abbreviate as ݑ and ݒ) are 
incorporated by predicting ܠ௫,௬,௧∗ ∗௫,௬,௧ܞ	, , and ܉௫,௬,௧∗  from ܠ௫ା௨,௬ା௩,௧ିଵ, ܞ௫ା௨,௬ା௩,௧ିଵ, and ܉௫ା௨,௬ା௩,௧ିଵ using the equations of 
motion as above. In practice, ܠ௫,௬,௧, ܞ௫,௬,௧ and ܉௫,௬,௧ are stored as a 
2D array the same dimension as the Kinect infrared image, but 
because ݔ + ݕ and ݑ +  ௫ା௨,௬ା௩,௧ିଵ are best computed by bilinear܉ ௫ା௨,௬ା௩,௧ିଵ, andܞ ,௫ା௨,௬ା௩,௧ିଵܠ are real valued, quantities ݒ
interpolation on the 2D array. Finally, observation ܢ௫,௬,௧ is simply 
the 3D world coordinate position at image coordinates ݔ,  In this .ݕ
process, the Kalman filter at ݔ, ݔ updates motion estimates found at ݕ + ,ݑ ݕ +  in the previous time step, and motion estimates follow ݒ
along or “track” the objects whose motion is being estimated. 

This interpolation finally motivates computing optical flow in 
reverse fashion, from time ݐ to time ݐ −  ௫,௬ are definedݒ ௫,௬ andݑ :1
for all integer values ݔ,  Computing flow in the usual fashion from .ݕ
time ݐ − 1 to time ݐ might leave some pixels without “predecessors” 
from the previous frame, even if previous motion estimates are 
distributed across multiple pixels using bilinear interpolation. 
Computing flow from time ݐ to time ݐ − 1 avoids this problem. 

3.3 Sensor Fusion 
3.3.1 Common Coordinate System 
In the following, we describe a one-time calibration procedure 
which obtains the camera’s orientation with respect to the ENU 
coordinate frame of the mobile device. Motion observed in the 
camera may then be transformed to ENU coordinates and compared 
to device accelerations directly.   

While there are many ways to compute the relative orientation of the 
Kinect camera to the coordinate system used by our mobile device, 
we adopt a straightforward semi-automatic procedure that is easy to 
implement and gives good results. First the mobile device is placed 
display-side down on a plane that is easily observed by the Kinect 
camera, such as a wall or desk. Viewing the color video stream of 
the camera, the user clicks on three or more points on the plane. 

The 3D unit normal ܖ of the plane in Kinect coordinates is 
computed by first calculating the 3D position of each clicked point 
and fitting a plane by a least-squares procedure. The same normal ܖ௪ in ENU coordinates is computed by rotating the unit vector ܢ 
(out of the display of the device) by the device orientation. 
Similarly, gravity unit vector  in camera coordinates is taken from 
the 3-axis accelerometer built in to the Kinect sensor. Gravity ௪ in 
the ENU coordinate frame is by definition –  .ܢ

The 3×3 rotation matrix M୩୧୬ୣୡ୲→୵୭୰୪ୢ that brings a 3D camera 
point to the ENU coordinate frame is calculated by matching the 
normals ܖ and ܖ௪, as well as gravity vectors  and ௪, and 
forming orthonormal bases K and W by successive cross products: 

ଵܓ = ଶܓ ,ܖ = ଷܓ ,‖ೖ×ೖܖ‖ೖ×ೖܖ = ܖ × ଶ, Kܓ = ൦	ܓଵ	ܓଶ	ܓଷ൪ 
ଵܟ = ଶܟ ,௪ܖ = ଷܟ ,‖ೢ×ೢܖ‖࢝×ೢܖ = ௪ܖ ଶ, Wܟ× = ܟଵ	ܟଶ	ܟଷ M୩୧୬ୣୡ୲→୵୭୰୪ୢ	 = 	KିଵW 

219



While this procedure uses a mobile device to place the Kinect 
camera in ENU coordinates, we note that this calibration need only 
be performed once when the camera is mounted. An unfamiliar 
device will work with the system without further calibration as long 
it also reports orientation in ENU coordinates. 

3.3.2 Matching 
3D image accelerations are estimated at each pixel and transformed 
to the ENU coordinate system as described above. The acceleration 
observed at each pixel may be compared directly to the device 
acceleration ܌௧: ݎ௫,௬,௧ = ටฮ܉௫,௬,௧ −  ௧ฮଶ܌

Regions of the image that move with the device will give small 
values of ݎ௫,௬,௧. In particular, the hope is that pixels that lie on the 
device will give the smallest values (Figure 2c). If we assume that 
the device is present in the scene, it may suffice to locate its position 
in the image by finding ݔ∗,  ௫,௬,௧. However, otherݎ that minimizes	∗ݕ
objects that momentarily move with the device, such as those rigidly 
attached (e.g., the hand holding the device and the arm) may also 
match well.  

In practice, locating the device by computing the instantaneous 
minimum over ݎ௫,௬,௧ will fail to find the device when it is 
momentarily still or moving with constant velocity. In these cases 
device acceleration may be near zero and so matches many parts of 
the scene that are not moving, such as the background. We address 
this by smoothing ݎ௫,௬,௧ with an exponential filter to obtain ݏ௫,௬,௧. 
This smoothed value is “tracked” using optical flow and bilinear 
interpolation, in the same manner as the Kalman motion estimates 
(Figure 2d). Small values over the smoothed value ݏ௫,௬,௧ will pick 
out objects that match device acceleration over the recent past 
(depending on smoothing parameter ߙ) and “remember” the 
moments when some non-zero device acceleration uniquely 
identified it in the image. In the case where the device stops moving, 
the small values ݏ௫,௬,௧ will stay with the device for some time, 
hopefully until the device moves again. 

Our current implementation takes a further optional step to avoid the 
problem of matching static backgrounds by adding a small penalty 
to pixel locations that exhibit little motion. 

An important consideration in performing the above matching 
process is that the latency of the Kinect sensor is much greater than 
that of the mobile device, including WiFi communications. Without 
accounting for this difference, the measure of similarity ݎ௫,௬,௧ will be 
inaccurate. CrossMotion accounts for the relative latency of the 
Kinect sensor by artificially lagging the mobile device readings by 
some small number of frames. In our prototype implementation this 
lag is tuned empirically to five frames, approximately 80ms. 

Figure 3 shows a typical trace of device acceleration and image 
acceleration at ݔ∗,  Considering that these values are computed in .∗ݕ
very different ways, they track each other surprisingly well.  

In some applications it may not be appropriate to assume that the 
device is in the scene. For example, the user holding the device may 
leave the camera’s field of view. In this case the minimum value 
over ݏ௫,௬,௧ can be checked against a threshold to reject matches of 
poor quality. We denote the minimum value at ݔ∗,  .∗ݏ as	∗ݕ
4. IMPLEMENTATION 
Our prototype implementation of CrossMotion uses a Microsoft 
Kinect for Windows v2 sensor and a Nokia Lumia 920 running 
Windows Phone 8. Device acceleration and orientation information 

is transmitted to a host PC over WiFi at a rate of approximately 
50Hz. The Kinect camera is configured using the Microsoft Kinect 
for Windows v2 Developer Preview SDK to acquire infrared and 
depth images at resolution 512×424 at 30Hz. CrossMotion uses the 
Brox optical flow API in OpenCV 2.4.7. This optical flow 
implementation uses the GPU to achieve real time performance, and 
is written in Nvidia’s CUDA GPU programming language. Our host 
PC runs Windows and includes an Nvidia GeForce GTX 660Ti 
graphics card hosting CUDA 5.5. 

All image processing runs at 30Hz. Optical flow calculations are 
performed on the full resolution infrared image. Per-pixel Kalman 
filter updates and sensor fusion matching is implemented in CUDA. 
Optical flow parameters (e.g., smoothness) and Kalman filter 
parameters (sensor noise and process noise) are derived empirically. 

 
Figure 3. Device acceleration compared to image acceleration at 

the point ࢞∗,  in each of the coordinate axes. The device was ∗࢟
held in by the user and moved back and forth. Note how device 

and image acceleration track each other closely.  

4.1.1 Computing Orientation 
Today’s mobile devices combine gyros, accelerometers and 
magnetometers to compute absolute orientation. Gyros measure 
angular velocity and are used to provide fast, accurate updates to 
orientation, while the noisier magnetometers and accelerometers are 
used to take observations of magnetic north and gravity. The 
absolute orientation information in the observations of magnetic 
north and gravity is applied to gradually remove the inevitable drift 
encountered when using gyros alone. Accelerometers measure the 
direction of gravity only when the device is motionless. Thus, if the 
device is undergoing significant motion, the orientation estimate 
may be distorted for some time. We find that when using the built-in 
Windows Phone 8 API for orientation, orientation estimates are 
disrupted by vigorous motion, and several seconds are required to 
recover. Because CrossMotion relies on accurate orientation 
information to transform accelerometer outputs to the ENU 
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coordinate frame, when using the built-in API vigorous motion 
causes CrossMotion fusion to fail for a few seconds. 

Our own implementation of an algorithm to compute absolute 
orientation allows us to make trade-offs that differ from the built-in 
implementation. Our implementation opts for near instantaneous 
drift correction when the device is deemed motionless, and 
otherwise performs updates to the orientation estimate using the 
gyro running at 250Hz. 

5. EVALUATION 
CrossMotion may be useful in applications where the user interacts 
with a large display using speech and gesture, or with a phone 
application that is connected with the display. In these settings it 
may be valuable to know the identity of the user, their location in 
front of the display, and possibly the location of the device.  

To evaluate CrossMotion’s performance we considered two 
particular modes of use that may be useful in interacting with large 
displays by mobile device: gesturing towards the display while 
holding the device in the hand, and wearing the device in a pocket 
while moving about in front of the display. 

5.1 Experiment 1: Gesturing with the Device 
In our first experiment, we tested CrossMotion’s ability to track the 
mobile device as the user gestures in a front display, holding the 
device in the moving hand. This configuration approximates how a 
user might interact with a remote display application by gesturing 
with the device. As we are interested to see if CrossMotion 
performance is impacted by increasing distance from the camera, we 
varied the participants’ distance to the display. In a second set of 
trials we introduced a distractor user (one of the experimenters) 
which did their best to mimic the motion of the participant. This was 
repeated for each distance condition, giving a 2×2 design with 
distance and the presence of a distractor as experimental conditions. 
For the purposes of this study we take as ground truth the output of 
the Kinect SDK body tracking, which includes the 3D position of 
the hands, hip and middle of the spine. 

5.1.1 Procedure 
We solicited five adult participants (one female, four male) from the 
authors’ institution. All were right-handed and were familiar with 
using smartphones. 

Participants were instructed to stand on a marked spot on the floor 
1.5m from the display (near condition) or 2.5m from the display (far 
condition), and were directed to attend to the display, a 24” LCD. 
The Kinect camera was mounted above the display, about 180 cm 
above the floor, to observe the area in front of the display. An 
experimenter instructed the participant to hold the device in their 
right hand, orienting it so that it is approximately vertical, with the 
smartphone’s screen facing them.  

The experimenter explained the following set of trials, repeated for 
each distance condition: a letter was shown on the display for four 
seconds. During that time, the participant was instructed to “draw” 
the letter with the device by moving the device in the space in front 
of their body, and to finish approximately in four seconds. This 
duration was conveyed by a progress bar animation which finished 
at the end of four seconds. At the end of four seconds the screen was 
blanked. After a three second pause, during which time the 
participant was instructed to return to a comfortable center position 
in front of their body, another letter was presented. After a few 
practice trials, the participant performed the same task for each of 
the unistroke letters in the alphabet (17 letters, e.g., B, C, D, etc.). 
We note the letter stimulus was employed to merely cause the user 
to exhibit a variety of gestures, not to test letter recognition. 

Participants were told that the order of strokes in performing the 
letter gestures was unimportant. 

This set of trials was repeated but with the introduction of a 
distractor user (one of the experimenters) who did their best to 
mimic the precise motion of the participant. This distractor stood 
next to the participant and performed the same letter in the same 
stroke order, and at the same pace. This second set of trials was 
included to test the performance of CrossMotion in the presence 
other people, as well as give an initial indication of how easy it is to 
“spoof” a user’s motion.  

During every CrossMotion frame, including pauses, software logged 
the 3D position corresponding with the algorithm’s best match as 
well as the right hand joint position returned by the Kinect SDK 
body tracker. Software also logged whether the position of 
CrossMotion’s solution ݔ∗,  lies on the participant’s body as ∗ݕ
determined by the Kinect SDK’s “body index” image. 

5.1.2 Results 
Across all trials, of the 76,296 video frames (about 41 min), 1,629 
frames (2.1%) occurred when the WiFi connection from the mobile 
device dropped temporarily. Of the rest, 98.9% correctly placed  ݔ∗,  on the participant’s body. Taking the right hand position as ∗ݕ
ground truth, average error in 3D was 6.9cm (s.d. = 11.6cm). 
Position error in the “near” condition was 6.5cm (s.d. = 8.7cm), 
while error in the “far” condition was 7.4cm (s.d. = 14cm). The 
increase in error in the “far” condition may be attributed to one 
participant in that condition. We suspect that in that trial the 
magnetometer had fallen out of calibration. In any case, there is no 
reason to suspect that the difference in near and far is statistically 
significant. CrossMotion never placed its solution on the distractor 
user, thus the distractor condition had no effect on the results, and 
we do not report them separately. 

5.2 Experiment 2: Wearing the Device 
In the second experiment, we tested CrossMotion’s ability to 
reliably pick out the person carrying the phone; i.e., does ݔ∗,  lie ∗ݕ
on the user’s body. We are also interested to see if CrossMotion can 
further locate the device on the person. In many circumstances we 
might not expect to be able to locate the device, since, as noted 
earlier, CrossMotion does not track the device, but instead finds 
regions of the image which are consistent the motion of the device. 
Thus parts of the user’s body which are rigidly attached to the 
device may match as well as locations on the device itself. 

We consider two locations of the device on the body: hanging from 
a lanyard hung around the user’s neck, and placed in the right front 
pocket of a jacket. These positions were selected because they both 
have good analogues in Kinect’s body tracking outputs: the lanyard 
position matches well with the “middle spine” position, while the 
jacket pocket corresponds well with the “right hip” position. We 
used the same participants as in the first experiment. 

5.2.1 Procedure 
The placement of camera and display was the same as in the first 
experiment. In the “middle spine” condition, the phone was placed 
in a wearable lanyard-style badge holder, of the kind sometimes 
used at conferences. In the “right hip” condition, the phone was 
placed in the right front pocket of a light fleece jacket. In both 
conditions, the participant was instructed to move to any one of four 
markers on the floor when the remote display indicated, but to do so 
in way that they continually faced the remote display. Two of the 
markers were the same used in the first experiment, while two more 
were located at distance of 2m from the display, but at a distance of 
0.5m on either side of the line connecting the first two points. The 
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computer vision-based approach would be acceptable, and where 
users are likely carrying a mobile device such as a smartphone or 
tablet. Computer vision-based approaches to person tracking are 
attractive because they can yield fine-grained position information 
but they typically either rely on visible markers (as in [16]) or 
complex models of the user’s appearance. Other approaches require 
the user to carry new devices and therefore are unlikely to be 
adopted outside of critical applications. As an example way-finding 
application, consider providing directions to a visitor as they 
approach key hallway intersections, or when they leave an elevator. 
A CrossMotion-equipped depth camera could be installed at these 
locations to direct the visitor. 

CrossMotion’s ability to track and identify users by way of their 
mobile device makes it particularly appropriate for various device 
association problems. For example, a connection between a mobile 
device user and a wall display could be automatically established as 
the user approaches the display. Knowing the precise position with 
respect to the display can be used in number of ways. For example, 
when there are multiple simultaneous users, the wall display can 
render each user’s own set of virtual objects nearby. Users can 
“flick” objects from their device onto the display. Fine-grained 
person tracking and device association can also be used to detect 
when users bring their devices near to each other, which can used 
for a variety of applications [6].  

CrossMotion may be useful in various settings where it is valuable 
to track objects of interest as they move about the environment, 
particularly when it is undesirable to attach visual markers to those 
objects.  For example, young children wearing small wrist worn 
sensor packages could be tracked in school [4], a child’s stuffed 
animal could be tracked throughout the house, while real animals 
could be tracked to study their patterns of movement. The Xbox 
One Skype app performs an automatic digital pan and zoom to 
capture the active participants in the room, based on simple image 
motion processing techniques. CrossMotion might be used to limit 
this selection to particular users. Similarly, given a future long-range 
depth camera, a calibrated pan/tilt/zoom camera might follow a 
particular soccer player on the field. 

7. CONCLUSION 
We introduce CrossMotion, a cross-modal sensor fusion technique 
to detect and track mobile devices and the people carrying them. 
Because it matches inertial device motion with motion observed in 
video, it makes very few assumptions about the appearance of either 
the device or the user. This paper details a real time implementation 
of the technique based on estimating image acceleration from 
optical flow. Our initial experiments with the technique demonstrate 
its ability to find the user reliably (99% of the time). In many cases 
it can find the device itself even when it is not in direct view of the 
camera. While there are a number of considerations in applying the 
technique, we believe it is a unique and potentially useful option in 
many ubiquitous computing scenarios. 
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