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Abstract
The lack of performance isolation in multi-tenant dat-
acenters at appliances like middleboxes and storage
servers results in volatile application performance. To in-
sulate tenants, we propose giving them the abstraction of
a dedicated virtual datacenter (VDC). VDCs encapsulate
end-to-end throughput guarantees—specified in a new
metric based on virtual request cost—that hold across
distributed appliances and the intervening network.

We present Pulsar, a system that offers tenants their
own VDCs. Pulsar comprises a logically centralized con-
troller that uses new mechanisms to estimate tenants’
demands and appliance capacities, and allocates data-
center resources based on flexible policies. These al-
locations are enforced at end-host hypervisors through
multi-resource token buckets that ensure tenants with
changing workloads cannot affect others. Pulsar’s design
does not require changes to applications, guest OSes,
or appliances. Through a prototype deployed across 113
VMs, three appliances, and a 40 Gbps network, we show
that Pulsar enforces tenants’ VDCs while imposing over-
heads of less than 2% at the data and control plane.

1 Introduction
In recent years, cloud providers have moved from sim-
ply offering on-demand compute resources to providing
a broad selection of services. For example, Amazon EC2
offers over twenty services including networked stor-
age, monitoring, load balancing, and elastic caching [1].
Small and enterprise datacenters are also part of this
trend [56, 59]. These services are often implemented us-
ing appliances, which include in-network middleboxes
like load balancers and end-devices like networked stor-
age servers. Although tenants (i.e., customers) can build
their applications atop these services, application perfor-
mance is volatile, primarily due to the lack of isolation
at appliances and the connecting network. This lack of
isolation hurts providers too—overloaded appliances are
more prone to failure [59].

We present Pulsar, the first system that enables
datacenter operators to offer appliance-based services
while ensuring that tenants receive guaranteed end-to-
end throughput. Pulsar gives each tenant a virtual data-
center (VDC)—an abstraction that affords them the elas-
ticity and convenience of the shared cloud, without relin-
quishing the performance isolation of a private datacen-

ter. A VDC is composed of virtual machines (VMs), and
resources like virtual appliances and a virtual network
that are associated with throughput guarantees. These
guarantees are independent of tenants’ workloads, hold
across all VDC resources, and are therefore end-to-end.

Providing the VDC abstraction to tenants presents
two main challenges. First, tenants can be bottlenecked
at different appliances or network links, and chang-
ing workloads can cause these bottlenecks to shift over
time (§2.1). Second, resources consumed by a request
at an appliance can vary based on request characteristics
(type, size, etc.), appliance internals, and simultaneous
requests being serviced. For example, an SSD-backed
filestore appliance takes disproportionately longer to
serve WRITE requests than READ requests (§2.4). This
behavior has two implications: (i) the capacity, or max-
imum achievable throughput, of an appliance varies de-
pending on the workload. This is problematic because
the amount of appliance resources that can be allocated
to tenants becomes a moving target. (ii) Standard met-
rics for quantifying throughput, like requests/second or
bits/second, become inadequate. For example, offering
throughput guarantees in request/second, irrespective of
the request type, requires the operator to provision the
datacenter conservatively based on the costliest request.

Pulsar addresses these challenges and provides the
VDC abstraction. It responds to shifting bottlenecks
through a logically centralized controller that periodi-
cally allocates resources to tenants based on their VDC
specifications, demands, and appliance capacities. These
allocations are enforced by rate enforcers, found at end-
host hypervisors, through a novel multi-resource token
bucket (§4.4). Since the actual cost of serving requests
can vary, Pulsar charges requests using their virtual cost,
given in tokens (§3). This is a unified metric common
to all VDC resources, and hence throughput in Pulsar is
measured in tokens/sec. For each appliance, the provider
specifies a virtual cost function that translates a request
into its cost in tokens. This gives tenants a pre-advertised
cost model, and allows the provider to offer guarantees
that are independent of tenants’ workloads without con-
servative provisioning.

Pulsar’s implementation of the VDC abstraction al-
lows the provider to express different resource allocation
policies. The provider can offer VDCs with fixed or min-
imum guarantees. The former gives tenants predictable



performance, while the latter allows them to elastically
obtain additional resources. The provider can then allo-
cate spare resources to tenants based on policies that, for
example, maximize profit instead of fairness. Addition-
ally, tenants enjoy full control of their VDC resources
and can specify their own allocation policies. For exam-
ple, tenants can give some of their VMs preferential ac-
cess to an appliance, or can divide their resources fairly.

The flexibility of these policies comes from decom-
posing the allocation of resources into two steps: (1)
a per-tenant allocation step in which tenants receive
enough resources to meet their VDC specifications, and
(2) a global allocation step in which spare resources
are given to tenants with minimum guarantees that have
unmet demand (§4.1). For each step, tenants and the
provider can choose from existing multi-resource allo-
cation mechanisms [24, 30, 38, 48, 57] to meet a variety
of goals (e.g., fairness, utilization, profit maximization).

Overall, this paper makes the following contributions:

• We propose the VDC abstraction, and present the de-
sign, implementation, and evaluation of Pulsar.

• We introduce a unified throughput metric based on
virtual request cost. This makes it tractable for the
provider to offer workload-independent guarantees.

• We design controller-based mechanisms to estimate
the demand of tenants and the capacity of unmodified
appliances for a given workload.

• We design a rate-limiter based on a new multi-resource
token bucket that ensures tenants with changing work-
loads cannot affect other tenants’ guarantees.

A key feature of Pulsar is its ease of deployment. Pul-
sar isolates tenants without requiring any modifications
to applications, guest OSes, appliances, or the network.
As a proof of concept, we deployed a prototype imple-
mentation of Pulsar on a small testbed comprising eleven
servers, 113 VMs, and three types of appliances: an SSD-
backed filestore, an in-memory key-value store, and an
encryption appliance. We show that Pulsar is effective at
enforcing tenant VDCs with data and control plane over-
heads that are under 2% (§6.3). We also find that con-
troller scalability is reasonable: the controller can com-
pute allocations for datacenters with 24K VMs and 200
appliances in 1–5 seconds (§6.4).

2 Motivation and background
Performance interference in shared datacenters is well
documented both in the context of the network [33, 46,
55, 70, 71], and of shared appliances like storage servers
(filestores, block stores, and key-value stores) [25, 31,
46], load balancers [49], IDSes [20], and software
routers [23]. These observations have led to propos-

als that provide performance isolation across the net-
work [12, 14, 28, 43, 51, 52, 60, 73], storage servers [26,
62, 66, 72], and middleboxes [23]. However, in all cases
the focus is either on a single resource (network or stor-
age), or on multiple resources within a single appliance.

By contrast, today’s cloud platforms offer a diverse
selection of appliances that tenants can use to compose
their applications. Measurements from Azure’s datacen-
ters show that up to 44% of their intra-datacenter traffic
occurs between VMs and appliances [49]. In this sec-
tion, we show that tenants can be bottlenecked at any
of the appliances or network resources they use, that
these bottlenecks can vary over time as tenants’ work-
loads change, and that the end result is variable appli-
cation performance. Furthermore, we show that existing
mechanisms cannot address these challenges.

2.1 How do tenant bottlenecks change?

We begin with a simple experiment on our testbed (de-
tailed in Section 6) comprising 16-core servers con-
nected using RDMA over converged Ethernet (RoCE) on
a 40 Gbps network. The setup, depicted in Figure 1(a),
involves three physical servers and two appliances: a file-
store with an SSD back-end and an encryption appliance.
The filestore is a centralized appliance providing persis-
tent storage for all the VMs, while the encryption appli-
ance is a distributed appliance present inside the hypervi-
sor at each server. There are three tenants, A–C, running
synthetic workloads on six, six, and twelve VMs respec-
tively. Tenant A is reading from the filestore and tenant B
is writing to the filestore, resulting in 64 KB IO requests
across the network. Tenant C is running an application
that generates an all-to-one workload between its VMs.
This models the “aggregate” step of partition/aggregate
workloads, a common pattern for web applications [10].

We focus on tenant performance across three phases of
the experiment—phase transitions correspond to one of
the tenants changing its workload. The first set of bars in
Figure 1(b) shows the aggregate throughput for the three
tenants in phase 1. Tenants A and B are bottlenecked at
the filestore. Having similar workloads, they share the
SSD throughput and achieve 5.2 Gbps each. Tenant C,
with its all-to-one traffic, is bottlenecked at the network
link of the destination VM and achieves 29.9 Gbps.

In the next phase, tenant B’s traffic is sent through
the encryption appliance (running AES). This may be re-
quested by the tenant or could be done to accommodate
the provider’s security policy. Tenant B’s throughput is
thus limited by the encryption appliance’s internal bottle-
neck resource: the CPU. As depicted in phase 2 of Fig-
ure 1(b), this decreases tenant B’s performance by 7×,
and has a cascading effect. Since more of the filestore ca-
pacity is available to tenant A, its performance improves
by 36%, thereby reducing tenant C’s throughput by 9.2%
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(a) Experiment setup with three tenants.
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(b) Tenant performance varies as bottlenecks change.

Figure 1—Tenant performance is highly variable and depends on the appliances used and the workloads of other tenants. Numbers
in (a) represent the # of VMs for a tenant; arrows represent the direction of traffic. The x-axis labels in (b) indicate the bottleneck
appliance: “FS” is filestore, “EN” is encryption appliance, and “NW” is network.

50th 90th 95th 99th Duration (mins)

Key-value IO 0.04 0.14 0.28 0.41 2
Filestore IO 0.14 0.24 0.32 0.87 2 – 23
Network 0.002 0.004 0.005 0.61 1.3 – 49

Figure 2—Throughput at selected percentiles normalized based
on the maximum value in each trace. Large differences between
the median and higher percentiles indicate workload changes.
The last column shows the duration of these changes.

(since both tenants are colocated on the same server and
share the network link).

In phase 3, tenant C generates more network flows
from each of the source VMs to the destination VM.
Since most TCP-like transport protocols achieve per-
flow fairness, this allows tenant C to grab more of
the bandwidth at the destination’s network link and its
throughput improves. However, this degrades the perfor-
mance of tenant A’s colocated VMs by 2.1×. These VMs
are unable to saturate the filestore throughput and are in-
stead bottlenecked at the network.

Overall, these simple yet representative experiments
bring out two key takeaways:

• Variable application performance. A tenant’s perfor-
mance can vary significantly depending on its work-
load, the appliances it is using, and the workloads of
other tenants sharing these appliances.

• Multiple bottlenecks. The performance bottleneck for
tenants can vary across space and time. At any instant,
tenants can be bottlenecked at different resources
across different appliances. Over time, these bottle-
necks can vary (as shown by the x-label in Fig. 1(b)).

The observations above are predicated on the preva-
lence of workload changes. We thus study tenant work-
loads in the context of two production datacenters next.

2.2 How common are workload changes?

We investigate workload changes by examining two traf-
fic traces: (i) a week-long network trace from an enter-
prise datacenter with 300 servers running over a hun-
dred applications, (ii) a two-day I/O trace from a Hot-
mail datacenter [67] running several services, including
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Figure 3—Tenant A can acquire a greater share of any appli-
ance or the network by being aggressive. “(C)” is closed-loop
workload, “(O)” is open-loop workload.

a key-value store and a filestore. Figure 2 tabulates the
percentiles of the per-second traffic, normalized to the
maximum observed value in each trace. The big differ-
ence (orders of magnitude for the key-value and network
traces) between the median and higher percentiles indi-
cates a skewed distribution and changing workloads. To
study the duration of workload changes, we identified the
time intervals where the observed traffic is higher than
the 95th percentile. The last column of Figure 2 shows
that these workload changes can vary from minutes to
almost an hour; such changes are common in both traces.

2.3 Why is tenant performance affected?

The root cause for variable tenant performance is that
neither the network nor appliances isolate tenants from
each other. Tenants can even change their workload to
improve their performance at others’ expense. We expose
this behavior through experiments involving two tenants
with six VMs each; the results are depicted in Figure 3.

In the first scenario, both tenants generate the same
number of TCP flows through a network link, and hence,
share it equally. However, tenant A can grab a greater
share of the link bandwidth simply by generating more
flows. For instance, the first set of bars in Figure 3 shows
that tenant A can acquire 80% of the link bandwidth by
generating four times more flows than tenant B.

Similar effects can be observed across appliances,
but their relative performance depends on the nature of
their workload. With closed-loop workloads, each tenant
maintains a fixed number of outstanding requests against
the appliance. Any tenant can improve its performance
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(a) Key-Value Store
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(b) SSD Filestore
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(d) HDD Filestore
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Figure 4—For appliances, the cost of serving a request can vary with request characteristics. “C-Writes” in (b) represents WRITE

requests that can be compressed by the filestore’s SSDs. “Sequential” and “Random” in (d) refers to the workload’s access pattern
(for both READs and WRITEs). (e) depicts the costs of a WAN Optimizer that performs compression for compressible (“Normal”)
and incompressible (“Random”) requests; the cost of serving requests that are cached is also depicted.

by being aggressive and increasing the number of re-
quests outstanding. For example, the second set of bars
in Figure 3 shows the relative throughput of two tenants
accessing a filestore. When both tenants have the same
number of outstanding requests, they share the appliance
equally. However, tenant A can acquire 80% of the file-
store throughput simply by having four times as many re-
quests outstanding as tenant B. In the case of open-loop
workloads, there is no limit on the number of outstanding
requests; in the absence of any isolation at the appliance,
a tenant’s share is dictated by the transport protocol used.
The last set of bars in Figure 3 exposes this behavior.

2.4 Why are absolute guarantees hard to provide?

Isolating appliances is challenging because the resources
consumed can vary substantially across individual re-
quests. Figure 4 depicts this observation for five appli-
ances: an in-memory key-value store, an SSD-backed
and an HDD-backed filestore, an encryption appliance,
and a WAN optimizer that performs compression [8].
For each appliance, we measured its throughput for a
stream of requests with identical characteristics. We use
the average time for serving a request as an approxima-
tion of the actual request cost. For the encryption appli-
ance (Fig. 4(c)), the request cost depends on the encryp-
tion algorithm being used. For the HDD-backed filestore
(Fig. 4(d)), the request cost depends not only on the re-
quest size, but also on the access pattern (sequential or
random). A request’s cost also depends on the appliance
internals (including optimizations like caching). For ex-
ample, Figure 4(b) shows that WRITE requests that can
be compressed by the filestore SSDs (“C-Writes”) are
cheaper to serve than an incompressible write workload.

Another source of variability is the interference be-
tween tenant workloads. This exacerbates the difficulty
of quantifying a request’s cost as a function of its char-
acteristics. The combinatorial explosion resulting from
considering all possible workload combinations and the
diversity of appliances makes this problem intractable.

Variable request cost has two implications for perfor-

mance isolation. First, while tenants should ideally re-
ceive guarantees in request/sec (or bits/sec) across an ap-
pliance, offering such guarantees regardless of tenants’
workloads is too restrictive for the provider. Offering
guaranteed requests/sec requires provisioning to support
tenants always issuing the most expensive request (e.g.,
maximum-size WRITEs at a filestore appliance). Simi-
larly, offering guaranteed bits/sec requires provisioning
based on the request with the maximum cost-to-size ra-
tio. Moreover, both cases require the provider to quantify
the actual request cost which, as we discussed, is hard.

The second implication is that the capacity, or max-
imum aggregate throughput, of an appliance can vary
over time and across workloads. This is problematic be-
cause sharing an appliance in accordance to tenants’
guarantees—while ensuring that it is not underutilized—
requires a priori knowledge of its capacity.

2.5 Why are existing solutions insufficient?

Existing systems focus on either network or appliance
isolation. In Section 6.1, we show that, independently,
these solutions do not guarantee end-to-end throughput.
This raises a natural question: is a naive composition
of these systems sufficient to provide end-to-end guaran-
tees? The answer, as we explain below, is no.1

Consider a two-tenant scenario in which both tenants
are guaranteed half of the available resources. Tenants A
and B each have a single VM sharing a network link and
a key-value store appliance (KVS). Tenant A issues PUTs
and tenant B issues GETs to the KVS. On the network,
GETs are very small as they contain only the request
header; PUTs contain the actual payload. This means that
isolating requests based on network semantics (i.e., mes-
sage size) would allow many more GETs than PUTs to be
sent to the KVS. This is problematic because process-
ing GETs at the KVS consumes as many resources as
processing PUTs (Fig 4(a)). Even if the KVS optimally

1A very similar proposition is discussed as a strawman design in
DRFQ [23, §4.2], where each resource within a middlebox is man-
aged by an independent scheduler.



schedules the arriving requests, the task is moot: the
scheduler can only choose from the set of requests that
actually reaches the KVS. Effectively, tenant B’s GETs
crowd out tenant A’s PUTs, leading to tenant B dominat-
ing the KVS bandwidth—an undesired outcome!

The key takeaway from this example is that naively
composing existing systems is inadequate because their
mechanisms are decoupled: they operate independently,
lack common request semantics, and have no means
to propagate feedback. While it may be possible to
achieve end-to-end isolation by bridging network and
per-appliance isolation, such a solution would require
complex coordination and appliance modifications.

3 Virtual datacenters
We propose virtual datacenters (VDCs) as an abstrac-
tion that encapsulates the performance guarantees given
to tenants. The abstraction presents to tenants dedicated
virtual appliances connected to their VMs through a vir-
tual network switch. Each appliance and VM link is as-
sociated with a throughput guarantee that can be either
fixed or minimum. Tenants with fixed guarantees receive
the resources specified in their VDCs and no more. Ten-
ants with minimum guarantees forgo total predictabil-
ity but retain resource elasticity; they may be given re-
sources that exceed their guarantees (when they can use
them). These tenants can also specify maximum through-
put guarantees to bound their performance variability.

Figure 5 depicts a sample VDC containing two virtual
appliances (a filestore and an encryption service), N vir-
tual machines, and the connecting virtual network. The
guarantees for the filestore and the encryption service are
Gs and GE, respectively. VMs links’ guarantees are also
depicted. These guarantees are aggregate: even if only
one or all N VMs are accessing the virtual filestore at a
given time, the tenant is still guaranteed GS across it.

For a tenant, the process of specifying a VDC is anal-
ogous to that of procuring a small dedicated cluster: it
requires specifying the number of VMs, and the type,
number, and guarantees of the virtual appliances and vir-
tual network links. Note that VM provisioning (RAM,
# cores, etc.) remains unchanged—we rely on existing
hypervisors to isolate end-host resources [4, 7, 29, 68].
Providers can offer tenants tools like Cicada [42] and
Bazaar [35] to automatically determine the guarantees
they need, or tenants can match an existing private dat-
acenter. Alternatively, providers may offer templates for
VDCs with different resources and prices, as they do to-
day for VMs (e.g., small, medium, etc.).

Virtual request cost. In Section 2.4 we showed that
the actual cost of serving a request at an appliance can
vary significantly. We address this by charging requests
based on their virtual cost in tokens. For each appliance
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…VM1 VMN

Virtual Network

Figure 5—A VDC is composed of virtual appliances and VM
links associated with throughput guarantees (in tokens/sec).
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Figure 6—Sample virtual cost functions showing the mapping
between request characteristics and their cost in tokens.

and the network, the provider advertises a virtual cost
function that maps a request to its cost in tokens. Ten-
ant guarantees across all appliances and the network are
thus specified in tokens/sec, a unified throughput metric.
This strikes a balance between the provider and tenants’
requirements. The provider is able to offer workload-
independent guarantees without conservative provision-
ing, while tenants can independently (and statically) de-
termine the requests/second (and bits/second) throughput
that can be expected from an appliance.

Figure 6 shows examples of virtual cost functions.
The key-value store cost function states that any request
smaller than 8 KB costs a flat 8K tokens, while the cost
for larger requests increases linearly with request size.
Consider a tenant with a guarantee of 16K tokens/sec.
The cost function implies that if the tenant’s workload
comprises 4 KB PUTs, it is guaranteed 2 PUTs/s, and if
it comprises 16 KB PUTs, it is guaranteed 1 PUTs/s. For
the network, the relation between packet size and tokens
is linear; tokens are equivalent to bytes. Cloud providers
already implicitly use such functions: Amazon charges
tenants for DyanamoDB key-value store requests in in-
tegral multiples of 1 KB [2]. This essentially models a
virtual cost function with a step-wise linear shape.

The provider needs to determine the virtual cost func-
tion for each appliance. This typically involves approxi-
mating the actual cost of serving requests through bench-
marking, based on historical statistics, or even domain
expertise. However, cost functions need not be exact
(they can even be deliberately different); our design ac-
counts for any mismatch between the virtual and actual
request cost, and ensures full appliance utilization (§4.3).
It is thus sufficient for the provider to roughly approxi-
mate a request’s cost from its observable characteristics.
Section 8 discusses appliances for which observable re-
quest characteristics are a poor indicator of request cost.



4 Design
Pulsar enables the VDC abstraction by mapping tenant
VDCs onto the underlying physical infrastructure and
isolating them from each other. Pulsar’s architecture, de-
picted in Figure 7, consists of a logically centralized con-
troller with full visibility of the datacenter topology and
tenants’ VDC specifications, and a rate enforcer inside
the hypervisor at each compute server. The controller es-
timates tenants’ demands, appliance capacities, and com-
putes allocations that are sent to rate enforcers. The rate
enforcers collect local VM traffic statistics, and enforce
tenant allocations.

Pulsar’s design does not require the modification of
physical appliances, guest OSes, or network elements,
which eases the path to deployment. It also reconciles
the isolation requirements of tenants with the provider’s
goal of high utilization by allocating spare capacity to
tenants that can use it. Specifically, Pulsar’s allocation
mechanism achieves the following goals:

G1 VDC-compliance. Tenants receive an allocation of
resources that meets the guarantees specified in their
VDCs. A tenant can choose from different mecha-
nisms to distribute these resources among its VMs.

G2 VDC-elasticity. Tenants receive allocations that do
not exceed their demands (i.e., the resources they can
actually consume). Moreover, spare resources are al-
located to tenants with minimum guarantees and un-
met demand in accordance to the provider’s policy.

4.1 Allocating resources to tenants

We treat each appliance as an atomic black box and do
not account for resources inside of it. For example, a key-
value store includes internal resources like its CPU and
memory, but we treat all of them as a single resource.
Henceforth, a “resource” is either a network link or an
appliance.2 Each resource is associated with both a ca-
pacity that can vary over time and must be dynamically
estimated, and a cost function that maps a request’s char-
acteristics into the cost (in tokens) of servicing that re-
quest. All of Pulsar’s mechanisms act directly on tenant
flows. A flow encapsulates all connections between a pair
of VMs that share the same path (defined in terms of
the physical resources used). Note that a flow can have
the same source and destination VM, as is the case with
flows that access end-devices like storage servers.

Allocations in Pulsar are performed in control inter-
vals (e.g., 1 sec), and involve the controller assigning
allocation vectors to flows. Each entry in an allocation
vector describes the amount of a particular resource that
a flow can use over the control interval. A flow’s alloca-
tion is the sum of two components. First, a local com-
2Network links are bidirectional and are treated as two resources.
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Figure 7—Pulsar’s architecture is made up of a centralized con-
troller that apportions resources to tenants, and distributed rate
enforcers that uphold these allocations.

ponent is computed by applying a local policy (chosen
by the tenant from a pre-advertised set) to the tenant’s
VDC. Next, a global component is computed by apply-
ing a global policy (chosen by the provider) to the phys-
ical infrastructure. The local policy describes how a ten-
ant distributes its guaranteed resources to its flows, while
the global policy describes how the provider distributes
spare resources in the datacenter to flows with unmet de-
mand. We describe multi-resource allocation next, fol-
lowed by a description of the local and global allocations.

Multi-resource allocation (MRA). The goal of an
MRA scheme is to distribute multiple types of re-
sources among clients with heterogeneous demands.
MRA schemes have been around for decades, primar-
ily in the context of multi-capacity (or multi-dimension)
bin packing problems [41, 45, 47, 54]. However, recent
work [16, 19, 24, 30, 38, 40, 48, 57] has extended MRA
schemes to ensure that the resulting allocations are not
only efficient, but also meet different notions of fairness.

Generally, an MRA mechanism for m clients (flows in
our context) and n resources provides the interface:

A← MRA(D, W, C) (1)

where A, D, and W are m×n matrices, and C is an n-entry
vector. Di,j represents the demand of flow i for resource j,
or how much of resource j flow i is capable of consuming
in a control interval. Ai,j contains the resulting demand-
aware allocation (i.e., Ai,j ≤ Di,j for all i and j). W con-
tains weight entries used to bias allocations to achieve
a chosen objective (e.g., weighted fairness, or revenue
maximization). C contains the capacity of each resource.
With Pulsar, we can plug in any mechanism that imple-
ments the interface above for either allocation step.

Local allocations. Pulsar gives each tenant a private
VDC. To give tenants control over how their guaran-
teed resources are assigned to their flows, we allow them
to choose a local MRA mechanism (MRAL). For exam-
ple, tenants who want to divide their VDC resources
fairly across their flows could choose a mechanism
that achieves dominant-resource fairness (DRF) [24]
or bottleneck-based fairness [19]. Alternatively, tenants
may prefer a different point in the fairness-efficiency
space, as achieved by other mechanisms [38, 57]. Hence,



tenant t’s local allocation matrix (At) is given by:

At ← MRAL(Dt, W t, Ct) (2)

Dt and W t are demand and weight matrices containing
only t’s flows, and Ct is the capacity vector containing
the capacities of each virtual resource in t’s VDC. These
capacities correspond to the tenant’s guarantees, which
are static and known a priori (§3). W t is set to a default
(all entries are 1) but can be overridden by the tenant. We
describe how flow demands are estimated in Section 4.2.

Global allocations. To achieve VDC-elasticity, Pulsar
assigns unused resources to flows with unmet demand
based on the provider’s global policy.3 This policy need
not be fair or efficient. For example, the provider can
choose a global allocation mechanism, MRAG, that maxi-
mizes its revenue by favoring tenants willing to pay more
for spare capacity, or prioritizing the allocation of re-
sources that yield a higher profit (even if these allocations
are not optimal in terms of fairness or utilization).

The resulting global allocation is the m× n matrix AG,
where m is the total number of flows (across all tenants
with minimum guarantees), and n is the total number of
resources in the datacenter. AG is given by:

AG ← MRAG(DG, WG, CG) (3)

DG contains the unmet demand for each flow across each
physical resource after running the local allocation step;
entries for resources that are not in a flow’s path are set
to 0. The weights in WG are chosen by the provider, and
can be derived from tenants’ VDCs to allow spare re-
sources to be shared in proportion to up-front payment
(a weighted fair allocation), or set to 1 to allow a fair
(payment-agnostic) allocation. The n-entry capacity vec-
tor CG contains the remaining capacity of every physical
resource in the datacenter. Since tenants’ demands vary
over time, we describe how we estimate them next.

4.2 Estimating a flow’s demand

The first input to Pulsar’s MRA mechanisms is the de-
mand matrix D. A row in D represents the demand vector
for a flow, which in turn, contains the demand (in tokens)
for each resource along the flow’s path. The controller
computes each flow’s demand vector from estimates pro-
vided by rate enforcers. At a high level, the rate enforcer
at a flow’s source uses old and current request statistics
to estimate a flow’s demand for the next interval.

A flow’s demand is the amount of resources that the
application sourcing the flow could consume during a
control interval, and it depends on whether the applica-
tion is open- or closed-loop. Open-loop applications have
no limit on the number of outstanding requests; the ar-
rival rate is based on external factors like user input or
timers. Consequently, a rate enforcer can observe a flow
3Tenants with fixed guarantees are excluded from global allocations.

f ’s demand for the current control interval by tracking
both processed and queued requests.

The two components used to estimate the demand for
flows of open-loop applications are the utilization vector
and the backlog vector. Flow f ’s utilization vector, uf [i],
contains the total number of tokens consumed for each
resource by f ’s requests over interval i.4 Note that if f ’s
requests arrive at a rate exceeding its allocation, some
requests will be queued (§4.4). f ’s backlog vector, bf [i],
contains the tokens needed across each resource in order
to process all the requests that are still queued at the end
of the interval. Put together, the demand vector for flow
f for the next interval, df [i + 1], is simply the sum of the
utilization and backlog vector for the current interval:

df [i + 1] = uf [i] + bf [i] (4)
Estimating the demand for flows of a closed-loop ap-

plication is more challenging. These flows maintain a
fixed number of outstanding requests which limits the
usefulness of the backlog vector (since queuing at any
point in time cannot exceed the number of outstanding
requests). To address this, we account for queuing that
occurs throughout a control interval and not just at the
end of it. Within each control interval, we obtain periodic
samples for the number of requests that are queued above
and are outstanding beyond the rate enforcer; a flow’s
queuing (qf ) and outstanding (of ) vectors contain the av-
erage number of requests (in tokens) that are queued and
outstanding during a control interval. The demand vector
for closed-loop flows at interval i + 1 is thus given by:

df [i + 1] = uf [i] + qf [i] ·
uf [i]
of [i]

(5)

where “·” and “/” are element-wise operations. The ra-
tionale behind the second component is that an average
of of [i] outstanding tokens results in a utilization of uf [i].
Consequently, if the rate enforcer were to immediately
release all queued requests (which on average account
for qf [i] tokens), the maximum expected additional uti-
lization would be: qf [i] · (uf [i]/of [i]).

In practice, however, it is difficult to differentiate be-
tween open- and closed-loop workloads. To reduce the
probability that our mechanism under-estimates flow de-
mands (which can result in violation of tenants’ VDCs),
we use the maximum of both equations:

df [i + 1] = uf [i] + max
(

bf [i], qf [i] ·
uf [i]
of [i]

)
(6)

During every control interval, rate enforcers compute
and send demand vectors for their flows to the controller,
allowing it to construct the per-tenant and the global de-
mand matrices. To avoid over-reacting to bursty work-
loads, the controller smoothens these estimates through
an exponentially weighted moving average.
4Rate enforcers derive tokens consumed by a flow’s requests on re-
sources along its path by applying the corresponding cost functions.



4.3 Estimating appliance capacity

Recall that appliance capacity (measured in to-
kens/second) is the last input to Pulsar’s MRA mecha-
nisms (§4.1). If an appliance’s virtual cost function per-
fectly describes the actual cost of serving a request, the
appliance capacity is independent of its workload; the ca-
pacity is actually constant. However, determining actual
request cost is hard, and thus virtual cost functions are
likely to be approximate. This means that the capacity of
an appliance varies depending on the given workload and
needs to be estimated dynamically.

For networks, congestion control protocols implicitly
estimate link capacity and distribute it among flows.
However, they conflate capacity estimation with resource
allocation which limits them to providing only flow-level
notions of fairness, and their distributed nature increases
complexity and hurts convergence time. Instead, Pulsar’s
controller serves as a natural coordination point, allow-
ing us to design a centralized algorithm that estimates
appliance capacity independently of resource allocation.
This decoupling enables tenant-level allocations instead
of being restricted to flow-level objectives. Furthermore,
global visibility at the controller means that the mecha-
nism is simple—it does not require appliance modifica-
tion or inter-tenant coordination—yet it is accurate.

The basic idea is to dynamically adapt the capac-
ity estimate for the appliance based on congestion sig-
nals. “Congestion” indicates that the capacity estimate
exceeds the appliance’s actual capacity and the appli-
ance is overloaded. We considered both implicit con-
gestion signals like packet loss and latency [22, 37, 74],
and explicit signals like ECN [53] and QCN [32]. How-
ever, obtaining explicit signals requires burdensome ap-
pliance modifications, while implicit signals like packet
loss are not universally supported (e.g., networked stor-
age servers cannot drop requests [58]). Indeed, systems
like PARDA [26] use latency as the sole signal for esti-
mating system capacity. Nevertheless, latency is a noisy
signal, especially when different flows have widely dif-
ferent paths.5 Instead, we use the controller’s global vis-
ibility to derive two implicit congestion signals: appli-
ance throughput and VDC-violation.

Appliance throughput is the total throughput (in to-
kens) of all flows across the appliance over a given in-
terval. When the capacity estimate exceeds the actual ca-
pacity, the appliance is overloaded and is unable to keep
up with its workload. In this case, appliance throughput
is less than the capacity estimate, signaling congestion.

The second congestion signal is needed because we
aim to determine the appliance’s VDC-compliant ca-
pacity—the highest capacity that meets tenants’ VDCs.
Since capacity is workload-dependent, and VDCs im-

5PARDA dampens noise through inter-client coordination.

pact the nature of the workload that reaches the appli-
ance, the VDC-compliant capacity can be lower than
the maximum capacity (across all workloads). To un-
derstand this, consider a hypothetical encryption appli-
ance that serves either 4 RC4 requests, or 1 RC4 and 1
AES request per second (i.e., AES requests are 3× more
expensive than RC4 requests). Assume that the virtual
cost function charges 2 tokens for an AES request and
1 token for an RC4 request, and that two tenants are ac-
cessing the appliance—tAES with a minimum guarantee
of 2 tokens/s, and tRC4 with a minimum guarantee of 1
token/s. The VDC-compliant workload in this scenario
corresponds to 1 AES and 1 RC4 request every second,
resulting in a VDC-compliant capacity of 3 tokens/s.
However, notice that the maximum capacity is actually 4
tokens/s (when the workload is 4 RC4 requests). Assum-
ing 1-second discrete timesteps and FIFO scheduling at
the appliance, using a capacity of 4 tokens/s in Pulsar’s
global allocation step would result in tAES’s guarantee be-
ing violated at least once every 3 seconds: Pulsar allows
an additional RC4 request to go through, leading to un-
even queuing at the appliance, and a workload that is not
VDC-compliant. To avoid this, we use VDC-violation as
a congestion signal.

Capacity estimation algorithm. We use a window-
based approach for estimating appliance capacity. At a
high level, the controller maintains a probing window in
which the appliance’s actual capacity (CREAL) is expected
to lie. The probing window is characterized by its ex-
tremes, minW and maxW, and is constantly refined in re-
sponse to the presence or absence of congestion signals.
The current capacity estimate (CEST ) is always within the
probing window and is used by the controller for rate
allocation. The refinement of the probing window com-
prises four phases:

À Binary search increase. In the absence of conges-
tion, the controller increases the capacity estimate to
the midpoint of the probing window. This binary search
is analogous to BIC-TCP [74]. The controller also in-
creases minW to the previous capacity estimate as a lack
of congestion implies that the appliance’s actual capacity
exceeds the previous estimate. This process repeats until
stability is reached or congestion is detected.

Á Revert. When congestion is detected, the con-
troller’s response depends on the congestion signal. On
observing the throughput congestion signal, the con-
troller reverts the capacity estimate to minW. This en-
sures that the appliance does not receive an overload-
ing workload for more than one control interval. Further,
maxW is reduced to the previous capacity estimate since
the appliance’s actual capacity is less than this estimate.

Â Wait. On observing the VDC-violation signal, the
controller goes through the revert phase onto the wait
phase. The capacity estimate, set to minW in the revert
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Figure 8—Pulsar estimates an appliance’s capacity by probing
for a higher capacity and responding to congestion signals. Sta-
bility is reached once the probing window is small enough.

phase, is not changed until all guarantees are met again.
This allows the appliance, which had been overloaded
earlier, to serve all outstanding requests. This is particu-
larly important as, unlike network switches, many appli-
ances cannot drop requests.

Ã Stable. Once the probing window is small enough
(e.g., 1% of the maximum capacity), the controller
reaches the stable state in which the capacity estimate is
adjusted in response to minor fluctuations in workload.
Our mechanism relies on tracking the average number of
outstanding requests (measured in tokens) at the appli-
ance during interval i, O[i],6 and comparing its value to
the average number of outstanding requests at the appli-
ance at the beginning of the stable phase, Os. The differ-
ence between these observations affects CEST as follows:

CEST [i + 1] = CEST [i]− α · (O[i]− Os) (7)

where α governs the sensitivity to workload changes.
The rationale is that Os serves as a good predictor of the
number of outstanding requests that can be handled by
the appliance when it is the bottleneck resource. When
the outstanding requests at interval i (O[i]) exceed this
amount, the appliance is likely to be overloaded; the
estimate is reduced to ensure that fewer requests are
let through by the rate enforcers during the next inter-
val. The opposite is also true. Furthermore, workloads
reaching the appliance that differ significantly (more than
10%) from the workload at the beginning of the stable
phase restart the estimation process.

Figure 8 depicts a sample run of our algorithm on an
appliance with an actual capacity (CREAL) of 6500 to-
kens/second. Both minW and maxW are initialized to
conservative values known to be much lower/higher than
CREAL, while the current estimate (CEST ) is initialized
to minW. The dotted lines represent minW and maxW,
while the solid line represents CEST . At time t = 1, there
is no congestion signal, so the controller enters phase À,
resulting in CEST being set to 7500 (an overestimate).
During the next interval, the controller notices that the
6The average number of outstanding requests at an appliance, O, is
derived by summing over all flows’ outstanding vectors (§4.2) and
retrieving the entry corresponding to the appliance.

total appliance throughput does not match CEST , which
triggers phase Á. The queues that built up at the appli-
ance due to capacity overestimation remain past t = 3,
causing VDCs to be violated and leading into phase Â.
This lasts until time t = 5, at which point all remnant
queues have been cleared and the controller is able to go
back to phase À. This process repeats until stability is
reached at time t = 9.

4.4 Rate enforcement

Pulsar rate limits each flow via a rate enforcer found
at the flow’s source hypervisor. Existing single-resource
isolation systems use token buckets [65, §5.4.2] to rate-
limit flows. However, traditional token buckets are insuf-
ficient to enforce multi-resource allocations, as tenants
with changing workloads can consume more resources
than they are allocated.

To understand why, assume a rate-limiter based on a
single-resource token bucket where the bucket is filled
with tokens from the first entry in a flow f ’s allocation
vector (the same applies to any other entry). Further as-
sume that f goes through 2 resources and its estimated
demand vector at interval i is 〈800, 5000〉 (i.e., f is ex-
pected to use 800 tokens of resource 1 and 5,000 of re-
source 2). Suppose that the controller allocates to f all of
its demand, and hence f ’s allocation vector is also 〈800,
5000〉. If f changes its workload and its actual demand
is 〈800, 40000〉—e.g., a storage flow switching from is-
suing ten 500 B READs to ten 4 KB READs, where the
request messages are the same size but the response mes-
sage size increases—the rate-limiter would still let ten
requests go through. This would allow f to consume 8×
its allocation on resource 2; an incorrect outcome!

To address this, we propose a multi-resource token
bucket that associates multiple buckets with each flow,
one for each resource in a flow’s path. Each bucket is
replenished at a rate given by the flow’s allocation for
the corresponding resource. For example, in the above
scenario, a request is let through only if each bucket con-
tains enough tokens to serve the request. Since f was al-
located 5,000 tokens for resource 2, only one 4 KB READ
is sent during interval i, and the remaining requests are
queued until enough tokens are available. This mecha-
nism ensures that even if a flow’s workload changes, its
throughput over the next control interval cannot exceed
its allocation, and thus cannot negatively impact the per-
formance of other flows or tenants.

4.5 Admission control

Pulsar’s allocation assumes that tenants have been ad-
mitted into the datacenter, and their VDCs have been
mapped onto the physical topology in a way that ensures
that enough physical resources are available to meet
their guarantees. This involves placing VMs on physical



servers and virtual appliances on their respective coun-
terparts. While VM placement is well-studied [12, 14,
18, 44, 50, 73], prior proposals do not consider appliance
placement. Our observation is that Hadrian’s [14] place-
ment algorithm can be adapted to support appliances.

Hadrian proposes a technique for modeling network
bandwidth guarantees (among a tenant’s VMs and across
tenants) as a max-flow network problem [13, §4.1.1].
The result is a set of constraints that guide VM place-
ment in the datacenter. Pulsar’s VDCs can be similarly
modeled. The key idea is to treat appliances as “tenants”
with a single VM, and treat all VM-appliance interac-
tions as communication between tenants. Consequently,
we are able to model the guarantees in tenants’ VDCs
as a maximum-flow network, derive constraints for both
VM and virtual appliance placement, and use Hadrian’s
greedy placement heuristic to map tenants’ VDCs.

However, Hadrian’s placement algorithm requires that
the minimum capacity of each resource be known at ad-
mission time. While we assume that both the datacenter
topology and link capacities are static and well known,
determining the minimum capacity for each appliance is
admittedly burdensome. Fortunately, Libra [61] proposes
a methodology that, while tailored to SSDs, is general
enough to cover numerous appliances. Furthermore, the
work needed to derive appliances’ minimum capacities
can be used towards deriving cost functions as well.

5 Implementation
We implemented a Pulsar prototype comprising a stan-
dalone controller and a rate enforcer. The rate enforcer
is implemented as a filter driver in Windows Hyper-V.
There are two benefits from a hypervisor-based imple-
mentation. First, Pulsar can be used with unmodified ap-
plications and guest OSes. Second, the hypervisor con-
tains the right semantic context for understanding char-
acteristics of requests from VMs to appliances. Thus,
the rate enforcer can inspect the header for each re-
quest to determine its cost. For example, for a request
to a key-value appliance, the enforcer determines its type
(GET/PUT) and its size in each direction (i.e., from the
VM to the appliance and back). For encryption requests,
it determines the request size and kind of encryption.

The driver implementing the rate enforcer is ≈11K
lines of C; 3.1K for queuing and request classification,
6.8K for stat collection, support code, and controller
communication, and 1.1K for multi-resource token buck-
ets. The rate enforcer communicates with the controller
through a user-level proxy that uses TCP-based RPCs; it
provides demand estimates to the controller, and receives
information about flows’ paths, cost functions, and allo-
cations. Each flow is associated with a multi-resource to-
ken bucket. The size of each bucket is set to a default of

token rate × 1 second. A 10 ms timer refills tokens and
determines the queuing and outstanding vectors (§4.2).

The controller is written in ≈6K lines of C# and runs
on a separate server. Inputs to the controller include a
topology map of the datacenter, appliances’ cost func-
tions, and tenants’ VDC specifications. The control in-
terval is configurable and is set to a default of 1 second.
Our traces show that workload changes often last much
longer (§2.1), so a 1 second control interval ensures good
responsiveness and stresses scalability. The controller es-
timates appliance capacity as described in Section 4.3. To
prevent reacting to spurious congestion signals that result
from noisy measurements we require multiple consistent
readings (3 in our experiments).

At the controller, we have implemented DRF [24], H-
DRF [16], and a simple first-fit heuristic as the available
MRA mechanisms. In our experiments, we use DRF for
local allocations (all weights are set to 1), and H-DRF
for global allocations (weights are derived from tenants’
guarantees). When computing these allocations the con-
troller sets aside a small amount of headroom (2–5%)
across network links. This is used to allocate each VM a
(small) default rate for new VM-to-VM flows, which en-
ables these flows to ramp up while the controller is con-
tacted. Note that a new TCP connection between VMs
is not necessarily a new flow since all transport connec-
tions between a pair of VMs (or between a VM and an
appliance) are considered as one flow (§4).

6 Experimental evaluation
To evaluate Pulsar we use a testbed deployment coupled
with simulations. Our testbed consists of eleven servers,
each with 16 Intel 2.4 GHz cores and 380 GB of RAM.
Each server is connected to a Mellanox switch through
a 40 Gbps RDMA-capable Mellanox NIC. At the link
layer, we use RDMA over converged Ethernet (RoCE).
The servers run Windows Server 2012 R2 with Hyper-
V as the hypervisor and each can support up to 12 VMs.
We use three appliances: (i) a filestore with 6 SSDs (Intel
520) as the back-end, (ii) an in-memory key-value store,
and (iii) an encryption appliance inside the hypervisor
at each server. Admission control and placement is done
manually. Overall, our key findings are:

• Using trace-driven experiments, we show that Pulsar
can enforce tenants’ VDCs. By contrast, existing solu-
tions do not ensure end-to-end isolation.

• Our capacity estimation algorithm is able to predict
the capacity of appliances over varying workloads.

• We find that Pulsar imposes reasonable overheads at
the data and control plane. Through simulations, we
show that the controller can compute allocations of
rich policies for up to 24K VMs within 1-5 seconds.
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Figure 9—VDCs with minimum guarantees for tenants A–D

Tenant READ or GET % IO Size Outstanding IOs #

Database IO (B) 61% 8 KB 8
Trans. Log (C) 1% 0.5 KB 64
Email (D) 56% 64 KB 8

Figure 10—Workload characteristics of each VM for tenants
B–D are derived from a two-day Hotmail trace (§2.2).

6.1 Virtual datacenter enforcement

We first show that Pulsar enforces tenants’ VDCs. The
experiment involves four tenants, A–D, with their VDCs
shown in Figure 9. For example, tenant A has forty-
nine VMs, each with a minimum network bandwidth
of 400 MT/s. For the network, tokens are equivalent
to bytes, so these VMs have a guarantee of 400 MB/s
(3.2 Gbps). This tenant also has a virtual encryption ap-
pliance with a minimum guarantee of 1600 MT/s. For
ease of exposition we use the same cost function for all
three appliances in our testbed: small requests (≤8 KB)
are charged 8 Ktokens, while the cost for other requests
is the equivalent of their size in tokens (Figure 6(b) de-
picts the shape of this cost function).

Workloads. Tenant A has an all-to-one workload with
its VMs sending traffic to one destination VM (this mod-
els a partition/aggregate workflow [10]). We use Iome-
ter [5] parameterized by Hotmail IO traces (§2.2) to drive
the workloads for tenants B–D; we tabulate their charac-
teristics in Figure 10. Database IO is used for tenant B’s
key-value store access, while Transactional log IO and
Email message IO to Hotmail storage are used for C and
D respectively. Traffic from tenants A and B is encrypted
with RC4 by the encryption appliance before being sent
on the wire. Since tenant C generates 512 byte requests
that cost 8 Ktokens, its bytes/sec throughput is 1

16
th

of the
reported tokens/sec. The bytes/sec throughput for other
tenants is the same as their tokens/sec.

Tenants A and C are aggressive: each of A’s VMs has
8 connections to the destination, while C’s generate a
closed-loop workload with 64 outstanding IO requests.

Topology. Figure 11 shows the physical topology of the
testbed. We arrange tenants’ VMs and appliances across
our servers so that at least two tenants compete for each
resource. Tenants A and B compete for the encryption
appliance. Tenants C and D compete for the bandwidth at
the physical filestore appliance. Further, the destination
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Figure 11—Testbed’s physical topology. Numbers indicate # of
VMs while arrows show the direction of traffic.
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Figure 12—VM-to-VM and VM-to-appliance traffic of four
tenants (113 VMs). Pulsar ensures all guarantees are met.

VM for tenant A, the key-value store used by tenant B,
and all the VMs of tenant D are co-located on the same
server. Thus, they compete at the server’s network link.

Tenant guarantees. For the workload in this experi-
ment, the end-to-end throughput for tenants A-D should
be at least 400, 1600, 800, 800 MT/s respectively.

Tenant performance. The first half of Figure 12 shows
that, with Pulsar, the aggregate throughput of each tenant
exceeds its minimum guarantee. Further, spare capacity
at each resource is shared in proportion to tenants’ guar-
antees. On average, tenant A gets 1100 MT/s for its VM-
to-VM traffic, tenant B gets 3150 MT/s for its key-value
traffic, and tenants C and D get 930 and 900 MT/s across
the filestore respectively.

By contrast, the second half of Figure 12 shows base-
line tenant throughput without Pulsar. We find that the
aggressive tenants (A and C) are able to dominate the
throughput of the underlying resources at the expense of
others. For instance, tenants C and D have the same guar-
antee to the filestore but C’s throughput is 3× that of D’s.
Tenant B’s average throughput is just 580 MT/s, 64%
lower than its guarantee. Similarly, tenant D’s average
throughput is 575 MT/s, 28% lower than its guarantee.

In this experiment, the total throughput (across all ten-
ants) with Pulsar is lower than without it by 8.7%. This is
because Pulsar, by enforcing tenant guarantees, is effec-
tively changing the workload being served by the data-
center. Depending on the scenario and the cost functions,
such a workload change can cause the total throughput to
either increase or decrease (with respect to the baseline).

We also experimented with prior solutions for single-
resource isolation. DRFQ [23] achieves per-appliance
isolation for general middleboxes, while Pisces [62] and
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Figure 13—Prior isolation mechanisms fail to meet tenants’
guarantees. Per-appliance isolation violates C and D’s guaran-
tee, while network only isolation violates D’s guarantee.
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Figure 14—Pulsar’s capacity estimation. The solid black line
represents the estimated capacity. The guarantees of the three
tenants have a ratio of 3:2:1 which is preserved throughout.

IOFlow [66] focus on storage appliances. With such per-
appliance isolation, the filestore, key-value store, and en-
cryption appliances are shared in proportion to tenant
guarantees but not the network. Figure 13 shows that
with per-appliance isolation, tenants B and D miss their
guarantees by 63% and 12% respectively. Note that even
though tenant D is bottlenecked at the filestore, it is
sharing network links with tenant A whose aggressive-
ness hurts D’s performance. We also compare against
network-only isolation, as achieved by Hadrian [14]. Fig-
ure 13 shows that with this approach, tenant C is still able
to hog the filestore bandwidth at the expense of tenant D,
resulting in D’s guarantee being violated by 30%.

6.2 Capacity estimation

We evaluate Pulsar’s capacity estimation algorithm with
an experiment that involves three tenants, B–D, whose
workloads are tabulated in Figure 10. Unlike the previ-
ous experiments, we focus on one appliance at a time,
and change the setup so that all three tenants use the ap-
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pliance being evaluated. The appliance guarantees for the
tenants are 600, 400, and 200 MT/s, respectively.

To experiment with varying workloads, we activate
tenants one at a time. Figure 14(a) shows the esti-
mated capacity and tenant throughput for the key-value
store appliance. In the first phase, tenant D operates in
isolation. The capacity estimate starts at a low value
(3000 MT/s) and increases through the binary search
phase until the appliance is fully utilized. After 8 sec-
onds, the capacity estimate stabilizes at 6840 MT/s. Ten-
ant C is activated next. Its VMs generate small 512 B
requests that are more expensive for the key-value store
to serve than they are charged, so the appliance’s capac-
ity reduces. The controller detects this workload change
and the capacity estimate is reduced until it stabilizes
at 3485 MT/s. Finally, when tenant B is activated, the
appliance’s actual capacity increases as the fraction of
small requests (from C’s VMs) reduces. The controller
searches for the increased capacity and the estimate sta-
bilizes at 5737 MT/s. Note that the guarantees of all three
tenants are met throughout. Using H-DRF as the MRAG

mechanism ensures that spare resources are given based
on tenants’ guarantees, preserving the 3:2:1 ratio. In all
three phases, the estimate converges within 15 seconds.

Figure 14(b) shows capacity estimation for the file-
store. As tenants are added, their workloads increase the
percentage of small WRITEs, leading to a decrease in the
appliance’s capacity. The root cause for the lower capac-
ity is that the cost function that we chose undercharges all
small requests and incorrectly charges WRITEs the same
as READs (cf. Fig 4(b)). To account for this mismatch, the
capacity estimate is consistently refined and converges to
a value that ensures the appliance is neither being under-
utilized nor are tenants’ guarantees being violated. We
validate our observations by re-running the experiments
with more accurate cost functions. The result is a ca-
pacity estimate that remains constant despite workload
changes. We also experimented with the encryption ap-
pliance and the HDD-filestore, and the estimation results
are similar. We omit them for brevity.

6.3 Data- and control-plane overheads

We first quantify the data-plane overhead of our rate
enforcer. We measure the throughput at an unmodified
Hyper-V server and compare it to the throughput when
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Figure 16—Average time for computing rate allocations

our rate limiter is enabled. To show worst-case overheads
we use the in-memory key-value store since that achieves
the highest baseline throughput. 12 VMs are used to gen-
erate a workload with the same number of PUTs and
GETs. We vary the request size from 512 B to 64 KB, thus
shifting the bottleneck from the key-value store’s CPU
for small IO requests to the network for larger requests.

Figure 15 shows the average throughput from 5 runs.
The worst-case reduction in throughput is 15% and hap-
pens for small request sizes (<32 KB). This overhead is
due mostly to data structure locking at high 40+ Gbps
speeds. The overhead for requests larger than 32 KB is
less than 2%. The CPU overhead at the hypervisor was
less than 2% in all cases.

In terms of control-plane overhead, the network cost
of the controller updating rate allocations at the servers is
140 bytes/flow, while the cost of transmitting statistics to
the controller is 256 bytes/flow per control interval. For
example, for 10,000 flows this would mean 10.4 Mbps
of traffic from the controller to the rate limiters and
19.52 Mbps of traffic to the controller. Both numbers
are worst-case—if the rate allocation or the statistics col-
lected by the rate enforcer do not change from one inter-
val to the next, then no communication is necessary. The
latency (including work done by both the controller and
the hypervisor) for setting up a rate limiter for a given
flow is approximately 83 µs. In general, these numbers
indicate reasonable control plane overheads.

6.4 Controller scalability

We evaluate controller scalability through large-scale
simulations. Flow demand estimation and appliance ca-
pacity estimation incur negligible costs for the controller.
Local allocations are parallelizable, and involve much
fewer flows and resources than global allocations. We
thus focus on quantifying the cost of computing global
allocations. We simulate a datacenter with a fat-tree
topology [9] and 12 VMs per physical server. Tenants
are modeled as a set of VMs with a VDC specification.
Each VM sources one flow, either to another VM, or to
an appliance. This results in 12 flows per server, which is
twice the average number observed in practice [39, §4.1].
Based on recent datacenter measurements [49, Fig. 3],
we configure 44% of flows to go to appliances while the

timescale RW ratio IO size # Ios Bytes sent Bytes received timescale RW ratio IO size # Ios

100msec 13 48 60 75 53

1 sec 14 43 36 51 32 1 sec 11 47 41

10 sec 7 19 16 26 17 10 sec 5 21 27

30 sec 5 12 13 20 13 30 sec 5 14 33

1 min 4 10 13 29 15 1 min 7 13 43

10 min 3 10 16 197 76 10 min 3 12 28

timescale RW ratio IO size # Ios

1 sec 1 2 86

10 sec 5 21 27

20 sec 5 16 30

30 sec 5 14 33

1 min 7 13 43

10 min 3 12 28

30 min 1 4 13

timescale RW ratio IO size # Ios Bytes sent

1 sec 48 35 37 19

10 sec 50 48 44 43

20 sec 50 48 44 43

30 sec 49 49 43 43

1 min 49 48 43 41

10 min 50 60 38 29

30 min 47 70 26 10
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Figure 17—The choice of control interval affects the accuracy
of the utilization vector (§4.2) for estimating future demand.
The error reduces when the control interval is ≈10–30 seconds.

rest are VM-to-VM flows. For resources, we model each
server’s network link (uplink and downlink) and all phys-
ical appliances. Thus, for a datacenter with 2000 servers
and 200 appliances, we model 4200 resources.

Figure 16 shows the average allocation time with our
iterative DRF implementation as the global allocation
mechanism; we vary the total number of VMs and the
fraction of VMs that are active. We find that our con-
troller can compute allocations for a medium-scale data-
center with 24K VMs and 2000 servers within 1–5 sec-
onds. When only 20% of the VMs are active, allocation
time is at or below 1.5 seconds, even with 24K VMs.
However, high loads can push allocation time to as high
as 4.9 seconds. The majority of the time is spent perform-
ing element-wise arithmetic operations on the 4200-entry
vectors. This suggests that parallelizing these operations
could provide meaningful performance benefits. We are
currently experimenting with GPU implementations of
different allocation mechanisms.

Repeating the experiment with H-DRF shows that
costs are an order of magnitude higher. This highlights
the tradeoff between a policy’s expressiveness and its
computational burden.

6.5 Choice of control interval

Resource allocation in Pulsar is demand-driven. Hence,
the ideal control interval should capture the true demand
of flows. Estimating demand for a very short future inter-
val can be impacted by bursts in workload while estimat-
ing for a long interval may not be responsive enough (i.e.,
it may not capture actual workload changes). To verify
this, we used our network and IO traces (§2.2) to esti-
mate flow demand at various time-scales. Unfortunately,
the traces do not have queuing and backlog information,
so we cannot use Pulsar’s demand estimation mechanism
detailed in Section 4.2. Instead, we simply use past uti-
lization as an indicator of future demand. Specifically,
we approximate the demand for a time interval using an
exponentially weighted moving average of the utilization
over the previous intervals. Thus, the demand errors we
report are an over-estimate.



For the network, we use two demand metrics: bytes
sent and received. For the storage traffic, the metrics
are the number and mean size of IOs, and the read-
to-write IO ratio. Figure 17 shows the average demand
estimation error across several time-scales. As is well-
known [15, 39], most workloads exhibit bursty behavior
at very fine timescales (below 1 sec); hence, using a very
short control interval leads to large estimation errors. At
large time scales (several minutes), past utilization is a
poor predictor of future demand. For these workloads, a
control interval of ≈10–30 seconds is best suited for de-
mand estimation, offering a good trade-off between re-
sponsiveness and stability. While preliminary, these re-
sults indicate that Pulsar’s controller-based architecture
can cope with real datacenter workloads.

7 Related work
Section 2 briefly described existing work on inter-tenant
performance isolation. Below we expand that description
and contrast related work to Pulsar.
Appliance isolation. A large body of recent work fo-
cuses on storage isolation [17, 26, 27, 62, 66], but in
all cases the network is assumed to be over-provisioned.
While DRFQ [23] achieves fair sharing of multiple re-
sources within a single appliance, it differs from Pulsar
mechanistically and in scope: Pulsar decouples capacity
estimation from resource allocation, and provides isola-
tion across multiple appliances and the network. Further-
more, Pulsar provides workload-independent guarantees
by leveraging an appliance-agnostic throughput metric.

Like Pisces [62] and IOFlow [66], Pulsar uses a cen-
tralized controller to offer per-tenant guarantees. How-
ever, Pisces relies on IO scheduling at the storage server,
while Pulsar performs end-host enforcement without ap-
pliance modification. Moreover, Pulsar dynamically es-
timates the capacity of appliances, whereas IOFlow re-
quires that they be known a priori.
Network isolation. Numerous systems isolate tenants
across a shared datacenter network [11, 12, 14, 28, 36,
43, 51, 52, 60, 73]. Beyond weighted sharing [60] and
fixed reservations [12, 28, 73], recent efforts ensure min-
imum network guarantees, both with switch modifica-
tions [11, 14, 51], and without them [36, 43, 52]. Pulsar
extends the latter body of work by providing guarantees
that span datacenter appliances and the network.
Market-based resource pricing. Many proposals allo-
cate resources to bidding users based on per-resource
market prices that are measured using a common vir-
tual currency [21, 34, 63, 64, 69]. However, the value
of a unit of virtual currency in terms of actual through-
put (e.g., requests/sec) varies with supply and demand.
Consequently, a tenant’s throughput is not guaranteed.
By contrast, Pulsar charges requests based on their vir-

tual cost (measured in tokens). While tokens can be seen
as a virtual currency, the fact that each resource is asso-
ciated with a pre-advertised virtual cost function means
that a tenant’s guarantees in tokens/sec can still be stati-
cally translated into guarantees in requests/sec.
Virtual Datacenters. The term VDC has been used as
a synonym for Infrastructure-as-a-service offerings (i.e.,
VMs with CPU and memory guarantees [3, 6]). Sec-
ondNet [28] extended the term to include network ad-
dress and performance isolation by associating VMs with
private IPs and network throughput guarantees. Pulsar
broadens the VDC definition to include appliances and
ensures throughput guarantees across all resources.

8 Discussion and summary
Pulsar’s design relies on cost functions that translate re-
quests into their virtual cost. However, for some appli-
ances, observable request characteristics (size, type, etc.)
are not a good indicator of request cost. For example,
quantifying the cost of a query to a SQL database re-
quires understanding the structure of the query, the data
being queried, and database internals. Similarly, the iso-
lation of appliances that perform caching requires fur-
ther work. While Pulsar implicitly accounts for caching
through higher capacity estimates, it does not discrimi-
nate between requests that hit the cache and those that do
not. We are experimenting with stateful cost functions
that can charge requests based on past events (e.g., re-
peated requests within an interval cost less), to explicitly
account for such appliances.

In summary, Pulsar gives tenants the abstraction of a
virtual datacenter (VDC) that affords them the perfor-
mance stability of a in-house cluster, and the convenience
and elasticity of the shared cloud. It uses a centralized
controller to enforce end-to-end throughput guarantees
that span multiple appliances and the network. This de-
sign also allows for a simple capacity estimation mech-
anism that is both effective, and appliance-agnostic. Our
prototype shows that Pulsar can enforce tenant VDCs
with reasonable overheads, and allows providers to re-
gain control over how their datacenter is utilized.
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