RAP - Resource Adaptive Programming
with an application to robust and fast file copying

Utkarsh Upadhyay Nikolaj Bjgrner
IIT Kanpur Microsoft Research
utkarshu@iitk.ac.irf nbjorner@microsoft.com
Abstract

Network file copy programs are prime examples of system egiitins that use various resources:
CPU, disk and network. The resources used in a local-aresrietwhere network throughput can
be higher than disk throughput, are incompatible with resesiused when copying files over a high-
latency, low-bandwidth remote network. A customary solutio scaling network applications is
by using asynchronous programming, but the model is notdijramenable to chatty exchanges.
We here provide a programming abstraction based on resadag@ive thread-pools as a layer for
network and disk resources. The layer is encapsulated usiriglows(monads) in the F# program-
ming language; and we report on experiments withhoClonea parallelized version of the Windows
RoboCopy program. In addition to the resource adaptiverJ®@boClone also includes the remote
differential compression (RDC) protocol.

1 Introduction

The advent of multi-core processors has renewed attentiarsing parallelism for utilizing all avail-
able cores on computation intensive applications. Yetiesys software is rarely solely CPU bound;
resources such as networks and disks are prolific bottlenigcknost system applications. The im-
portance of utilizing parallelism is no less in these cotgebut applications will have to adapt to a
heterogeneous set of resources, each with different dashiThe situation of utilizing these resources
is aggravated by additional two factors: operating syst@yers provide abstraction boundaries, many
of which make it difficult for applications to take advantagieghe underlying resources optimally, and
main-stream programming language constructs are not tereatomatically and transparently allocate
system resources, such as threads, when they are useful.

Our main quest is designing and building abstractions te tgitimal advantage of system resources.
Ideally, the abstractions should allow applications todsource agnostic. We will address this partially
in the following by examining aveighted thread-podhyer and a particular application.

A good example of an application that use various resouneegatwork file copy programs. They
access disk to read and write files; the content of files areosen a network with different latencies and
bandwidths, and when the copy programs use compressioritafgs, they also rely on the CPU cores
as a set of resources. Often, systems software addressesrédseurces only as an afterthought. As a
case in point, a substantial improvement between Micrd3attook 11 and Outlook 12 was the use of
asynchronous remote procedure calls instead of synchsarmuiote procedure calls in Outlook 11.

A customary solution to scaling network applications is biyng asynchronous programming paradigms
[17] [11], [1]. Asynchronous programming facilitates ugioperating system thread resources in useful
ways while network or file system calls are pending. Asynobts programming alone does not solve
the problem of scaling protocols between chatty, but badtiwsparse, versus non-chatty, but bandwidth
intensive phases.

*This work was performed while interning at Microsoft Resear

RAP Upadhyay and Bjgrner

We here provide a programming abstraction based on resadagtive thread-pools as a layer for
network and disk resources. The layer is encapsulated usirdglows(monads) in the F#[19] program-
ming language; and we report on experiments iRtiboClone a parallelized version of the Windows
RoboCopy program [6]. The use of monads for encapsulatirggatting or asynchronous programs is not
new, for instance, run-times for asynchronous programnmrige context of network applications have
been pursued in [13][22], but to our knowledge these appremclo not consider adapting the work-
load according to physical constraints, rather these agbes use monads for program layering. While
RoboClone is a research vehicle for resource adaptive gmoging, it does offer an API that is compat-
ible with RoboCopy. Network administrators or every dayrasen therefore substitute RoboCopy by
RoboClone in the same environment with minimal change inpset

1.1 Workflows

Workflowsis a programming paradigm that is supported in F#. Simildraditional monadic program-
ming, known from programming language theoryl[14],![21], M}15], Opal [10] and Haskell[]4],
they allow encapsulating various side-effects. In paldicut is possible to use workflows to encap-
sulate asynchronous programming. Asynchronous progragfieiatures are well known to address
resource optimization in the context of high-latency netnsystems. Standard asynchronous program-
ming methodologies require carefully organizing all cohffow to yield when reaching blocking pro-
cedure calls and requires carefully organizing code fdbaeks. It is easy to overlook blocking calls
during coding and it may be very difficult to re-organize caodéntroduce context switches afterwards.
Workflows have the prospect of guaranteeing that contextbes are performed on blocking calls while
allowing the impression of a sequential programming style.

1.2 RoboCopy

RoboCopyl[6] is a widely used program for robustly copyingdibver faulty networks. RoboCopy man-
ages download resumption and makes it easy to administnateetrieve copy job summaries. Robo-
Copy uses the SME _[18] protocol for copying files. The SMB poml is exposed transparently over
the APIs used for accessing files locally or remotely. Faainse,Fi | eCopyEx, Backup Read/Wi t e,
Set/ Get Fil eTine/Fil eAttributes use either local file system calls, or perform networkedscall
over SMB when the files that are accessed reside on remotameaciRoboCopy works well in the field,
but the version released with Windows Server 2008 is subjestme bottlenecks that cause administra-
tors of large copy jobs to look for alternatives:

1. Most of the Win32 APIs used by RoboCopy translate to syorotus remote procedure calls. In
scenarios with high latency, such synchronous calls forrotdemeck, which is noticeable since
RoboCopy runs on a single thread.

2. Even if a file changes slightly from one copy to anothee®dpyEXx, or Backup Read/Write will
not be able to take advantage of the pre-existing data onetstinatiof

We would like to stress that the first limitation with Robo@dp not specific to it. Bottlenecks due to
blocking calls appear in several applications that use atyrotocols; and engineering these applica-
tions to being resource adaptive can require a substaffial. e

1This limitation is somewhat specific to RoboCopy. Microsaffers products, such as DFS-R, that minimize the amount
of data copied over when files are changed only slightly.

RAP Upadhyay and Bjgrner

1.3 Parallelism and Concurrency

Note that we used the terminology parallelism and not carogy: we use parallelism when multiple
threadscooperatein accomplishing a task, we use concurrency when threadspeteto accomplish
each their task. Concurrency control is important, alschin ¢ontext of parallelism, but it is not the
prevalent problem. The main objective with parallelism &xmizing the use of available resources.

2 F# workflows

F# contains facilities for building custom workflows. We Malild a continuation passing stylgCPS)
workflow. It can be viewed as a special case of #isgnc monad in F#[[19]. The CPS workflow
encapsulates a basic type arguneatinto a continuation. That is, it wrapsa into the type(’ a - >
unit) -> unit. F# requires to supply the basic primitivBsnd, Ret ur n, Let andDel ay in order
to construct a workflow. These primitives are inserted bydbmpiler when using the custom workflow
syntax. Listind 2.1 shows the described CPS workflow.

Listing 2.1 A CPS workflow

nodul e CPS =
type "a prim= P of (("a ->unit) -> unit)

let Primtive f =P f

et RunWait (P pfn) =
| et doneE =
new Event WAi t Handl e(f al se, Event Reset Mbde. Manual Reset)
pfn (doneE. Set >> ignore);
i gnore (doneE. Wi tOne())

I et RunCont (P pfn) cont = pfn cont

type CPSBuil der() =
menber p.Bind((P pfn), f) =
P (fun cont -> pfn (fun a ->1let (Pg) =f ain g cont))
menber p. Ret urn(x) P (fun cont -> cont x)
menber p.Let(x, f) f x
menber p.Delay(f) = f ()

| et cps = new CPSBui |l der ()

It contains two methods for invoking the workflow with a contation. The functiorRunwai t
invokes the workflow with a continuation that sets an eventvdits for the continuation to be called.
This allows using the workflow in a multi-threaded contextheTfunctionRunCont just applies the
workflow to a continuation that is passed in.

RAP Upadhyay and Bjgrner

Bandwidth Product
Delay m Delay
Product ® Bandwidth

Normalized with
Cincinnati’s values.

Figure 2: Delay-bandwidth numbers sampled from Buildli®g Microsoft, Redmond

3 The delay-bandwidth product

The capacity of a network is characterized by the so-
called delay-bandwidth product. This product, which
is the time for a round-trip multiplied by the number
of bytes sent per time unit, indicates how a sender on s W
receiver should scale their send and receive buffersju)
This situation is illustrated in Figufe 1, where data is £
transmitted from a sender on the left to a receiver orf Delay r
the right. The sender (and receiver) should maintain DATA _—
a buffer of size at leasfelay x bandwidth in order e
to allow the transmission control protocol (TCP) to | _—
utilize the available bandwidth maximally while also Sender Receiver
re-sending data until acknowledgment is received.
Figure[2 shows a number of delays and band-
widths and their products for samples taken from
Buildling 99, Microsoft, Redmond. Observe how the
delay-bandwidth product compares between Dallas and SAftita: the higher bandwidth to Dallas
compensates for the lower delay, resulting in a similar peod

Figure 1: Network round trip delays

3.1 Modeling the effect of system delays

An application utilizes the available network resourcetgnoglly if it is able to fill up the send and receive
buffers on both parties. Modern implementations of the TERtack will automatically tune these
buffers to fit the effective delay-bandwidth product, batieg it up to applications to take advantage of
this. The operating system utilisi | eCopyEx does scale the nhumber of bytes copied during round-trips
over SMB, but this only has an effect for large files. Wheneagying over files and directories whose
size is smaller than the network buffers, this advantags geg&y. To summarize, we have the two cases:

4

RAP Upadhyay and Bjgrner

e Chatty communication: small files but round-trip intensiviehe application will be responsible
for filling up the send/receive buffers.

e Transfers of large files: Existing file copy functiors,l eCopyEx, scales the send/receive buffer
internally according to network resources.

Based on these observations we assigveaghtto each file copy activity. The weight is set to the
number of bytes in the file. Assuming the underlying protazan fill up the send-buffer with enough
bytes copied in parallel, the job of the thread-pool is tovaparecisely a number of threads that is
sufficient for filling up the send-buffer. This gives as estim the number of threads that can be spawned
for concurrent copy tasks, as:

network _buffer = delay x bandwidth x congestion Q)

file_data = min(network_buffer, max(packet_size, file_size)) 2
network _buffer

threads < ————— 3

#ihreads < file_data ®)

But this estimate is not accurate. It does not take into auctie time it takes to retrieve data from
disk. If we assume that each thread incurs an additionalsdiek based on the data they access, the seek
time may dominate the equation if we allocate too many thgead

Specifically, we can also provide a rough bound on the numb#reads by the ratio of the delay
with the disk seek time.

delay

#threads < (4)

seek_time

We will be using the two bounds frorhl(3) arid (4) in the follogiwhen controlling the number of
spawned threads. However, these inequations can be intpfestber by considering these possibilities
together as follows.

We know that the seek time on the disk depends on the numbhbrezds trying to simultaneously
read from the disk and the sizes of the files the threads adengeal he average disk seek time is 12ms
for a 5,400 rpm disk while the network latency in a closelytkiAN might be as low as 1ms. Also,
a number of active threads which might result in frequerdaghing of the disk, thereby increasing the
effective seek time. Figuld 3 illustrates this situatiorheTthroughput is measured on writing files of
size 1, 2 and 4 MB, using between 1 and 31 threads. The throtighearly decreases as the number of
threads competing to write to the same disk increase.

Hence, the ideal number of threads would be that when the mimadudata being sent over the
network does not have to wait at all in the Sender’s TCP huffierother words, lets(n) be the seek
time used byn threads to retrievéile_data; from files1, ... n, then|s(n) — delay| should be kept at a
minimum too. Combining this with the condition that the ambaf data being sent should at any time
be close to thelelay x bandwidth product, we have the following condition to give us the idaainber
of threads:

min <| Z file_data; — delay x bandwidth| + A|s(n) — delay|> (5)
1=1

where:

RAP Upadhyay and Bjgrner

Throughput v/s
Threads Writing
35

30
25
220

1MB files

K-]
s 15 —2MB files
10 —4MB files

1 357 91113151719212325272931

Figure 3: Throughput by number of threads writing to disk

n is the number of threads
{file_data} is the ordered set of all file data (defined above)
s(n) can be set teek_time x n+ >, #&ka
A is a Lagrangian multiplier

However, the expression suffers from various implememtatelated drawbacks. Foremost, the de-
termination of exactly how theeek_time depends on its parameters that can only be roughly estimated
Hence, arriving at a value of the multipliaris practically difficult.

3.2 Measuring system delays

We here summarize how our prototype implementation measystem delays.

3.2.1 Measuring bandwidth

We measure bandwidth simply by maintaining a wall-clockheftime copying started. We also maintain
the total number of bytes copied. This number is updatedyevee a file copy completes, and the
bandwidth is set to the total number of bytes divided by valine wall-clock.

3.2.2 Measuring delay

Delay is estimated by sampling some of the file system calldentiy RoboClone. While SMB2 may
use a different number of round-trips for some of the calis, dverage number of round-trips will be
constant. We have found it useful to use the following caltsefstimating the round-trip time:

e Fi ndFirstFil e, used to start enumerating the contents of a directory. ddiis requires at least
2 round-trips over SMB.

e Fi ndNext Fi | e continues directory enumeration. It requires either notdeast one round-trip.
It could be the case that the call requires no round-trips Ththe case when the result is already
cached on the caller. The latency will then be below a milisel. On the other hand, when the
result is not cached, the round-trip latency will be notidea

e CGet Fil el nf or mat i onByHandl e retrieves file information given a file handle. It requires at
least one round-trip.

RAP Upadhyay and Bjgrner

3.2.3 Measuring disk seek time

Magnetic disk technology has not changed much in the lastifsades. Standard manufacturing char-
acteristics of disks remain yielding disks operating at(620K RPM (revolutions per minute). This
translates to a maximal seek time in the area of 5-10ms. Camoaph is therefore currently to fix the
seek time on all systems to 10ms. The physics of solid stakes dire of course completely different, and
they are not covered by this rough model.

3.3 Real TCP scaling

Applications that interact with a disk and network will bebgacted to how these layers perform their
own tuning. There are several proposed and adapted extereial algorithms for TCP:

e TCP implementations typically use Nagle’s algorithm|[Mhich provides congestion control for
TCP connections. If existing requests have not yet beenoadkdged, the algorithm buffers up
small outgoing packets on the sender’s side. Applicatiamsset the CP_NODELAY bit on packets
to force transmission.

e TCP window scaling [12] algorithm allows senders and remsiautomatically scaling their send/re-
ceive buffer based on observed network delay and bandwithie. Windows TCP stack did not
implement such tuning until Vista. In contrast, in Vistae TCP/IP stack contains an auto-tuning
mechanism that dynamically changes the advertised re@égidow based on the characteristics
of the path over which the connection is made. Auto-tunirigshienprove TCP throughput over
high bandwidth-latency paths by not artificially limitinget throughput[[9]. In pre-Vista operat-
ing systems, network administrators have to set a regisly\cklledTCPW ndowSi ze to manually
configure the receive and send buffers [7].

e Slow start, congestion avoidance, fast retransmit, andré&®very algorithms[[3]; and initial
window size choices [2] exemplify some of the algorithms lempented by TCP stacks to utilize
network resources optimally in a setting where networkueses change dynamically.

3.3.1 Isthe quest attainable?

Since automatic window tuning was only made available irtayig was not possible to provide truly

automatic adaptive programming layers on Windows platforn®ther obstacles remain in different
low-level layers. For example, data sent over RPC are fratgdeinto buffers of a machine- and
implementation- dependent maximal size. While the RPCdstahallows implementations to nego-
tiate a fragment size based on mutual capabilities [20]nb&imal size is typically chosen relative to
how much kernel memory is statically allocated to RPC bsffén Windows 2000 and later operating
systems, one can observe by sniffing the network traffic tiaE Buffers are at most 5840 bytes [8]. As
the TCP_NODELAY hit gets set on every such fragment, it inherently limits tdg@plications can leave to

synchronous RPC traffic to tune. Microsoft's implementatid RPC (known as MS-RPC) also offers
asynchronous pipes. The asynchronous pipes are not litoytéided buffer size constraints.

4 A Weighted Thread-pool

Sectiori 2 described a continuation based workflow, and @€8tdescribed the delay-bandwidth product
and how it affects how many threads should be spawned inlglaimalorder to take advantage of the
available network resources. We here put these togethewrighted thread-popwhich dynamically
adjusts the number of allocated threads according to whethiork and disk resources are used.

7

RAP Upadhyay and Bjgrner

4.1 Parameters

We use a class of parameters to encapsulate the delay-liihdwoduct as it gets converted into an
upper bound on the admissible weights.

Listing 4.1 Delay-bandwidth parameters

type Paraneters(b, d, seek, congestion, threads) =
cl ass
| et nutabl e del ay
| et rut abl e bandwi dth
menber p.update d bw =
delay <- d; bandwi dth <- bw
menber p.max_weight with get () =
ui nt 64(bandwi dth = delay * congestion / 1000. 0)
menber p.max_threads with get () =
mn threads (max 1. (delay/seek) |> int)

d
b

end

The parameters maintained are

e del ay - the round-trip delay in milliseconds.
e bandwi dt h - an estimate of the network bandwidth in bytes per second.
e seek - estimated disk seek time.

e congesti on - a congestion factor. The congestion factor indicates tizhvlxtent we let Robo-
Clone over-commit the send-buffer with data. Over-comimgtthe send-buffer causes potentially
threads to block during network communication, but alsovedl us to scale the network commu-
nication upwards should the available network bandwidtttdiate.

e t hr eads - the maximal number of threads we are willing to spawn witliiapplication. It can
be set based on processor capabilities.

From these parameters, we can compute the maximal numbetaesf BoboClone is allowed to push
over the network at any given time. It is calculated as thaydelandwidth product multiplied by the
congestion ratio. Since the delay was given in millisecamt$the bandwidth used bytes per second, the
calculation includes a division by 1000. Similarly, the rimaal number of threads that can be spawned
is bounded by the ration of the delay and seek time.

4.2 ThreadPool utilities

The weighted thread-pool maintains two countamsmthreads which counts the number of threads
currently spawned, arntdtal_weight which carries the current sum of weights that are assigiedalso
summarize utilities that update these counters and checktiether a new weight (and possibly also a
new thread) can be added. For exangde_f or k checks whether a thread may be spawned to run a task
with a given weight. It call€heck wei ght 1, which checks if the given weight plus the current total
weight does not exceed the maximal weight. It also checlkeitturrent number of running threads, plus
one, does not exceed the maximal number of threads.f #hk utility encapsulates spawning threads.
It increments the current weight, and current number ofdtiset an_f or k holds). It then creates a
background thread. Background threads do not prevent dicaign from shutting down.

The queue class is defined in Appendix A.

RAP Upadhyay and Bjgrner

Listing 4.2 Weighted thread-pool utilities

type Wi ght edThr eadPool (param : Paraneters) =

cl ass
let token = ref O
let lock fn = 1ock token fn

| et task_queue = new queue<(uint64 * (unit -> unit))>()
let mutable numthreads = 0
| et nutable total weight = OUL
let inc_thread () = numthreads <- numthreads + 1
|l et dec_thread () = numthreads <- numthreads - 1
| et check_weightl w= w + total _wei ght <= param max_wei ght
|| total weight =0

check_wei ght (weight, task) = check_wei ght1 wei ght

let can_fork w = check _weightl w &&
num t hreads < param max_t hr eads

let inc_weight w= total _weight <- total _weight + w
l et dec_weight w = total _weight <- total _weight - w
let fork weight fn =

i nc_wei ght wei ght;

inc_thread();

| et thread = new Thread(ThreadStart(fn))

t hread. | sBackground <- true;

thread. Start ()

4.3 Thread-pool core

The core of the thread-pool is given in listingl4.3, and wé aére describe the main methods. The main
method for activating a givenask with awei ght is to call ther un method.

e run callsrun_l ocked, which is executed within a lock. We here assume for sintplitiat the
weight passed toun is below the maximal allowed weight.

e run_l ocked checks if the thread-pool can fork a thread givenMbieght . If this is the case, then
a thread gets forked with theask, otherwise the task and weight are en-queued into a queue.

e run_t ask gets invoked within a thread. It executes the task, thes cah_next | ocked within
a lock.

e run_next | ocked, decrements the weight associated with a task that was)astuted. It then
attempts to deque one task to run on the current thread, asutdfessful, it also tries to fork
additional threads to run tasks usihgr k_nor e_t asks.

e fork_nore_t asks attempts to deque tasks from the task queue as long as tleeeesaifficient
number of spare threads and a sufficient amount of weightitsrahilable.

We therefore see that the weighted thread-pool allows tawmhyrally adjust the number of threads
that are spawned based on an estimate of the workload antimatesof which resources are consumed.
The thread-pool abstracts from the fact that it is used fowork and disk resources.

9

RAP

Upadhyay and Bjgrner

Listing 4.3 Weighted thread-pool core

| et

and

and

and

rec run_|l ocked wei ght task =
if can_fork weight then

fork (weight, fun () -> run_task wei ght task)
el se

task_queue. Enqueue ((wei ght, task))

run_task weight task =

task ();

match |l ock (fun () -> run_next | ocked weight) with
| None -> dec_thread ()

| Some (weight, task) -> run_task weight task

fork nmore_tasks () =
if can_fork O then
mat ch task_queue. Takel f check_wei ght with
| None -> ()
| Some (weight, task) ->
fork (weight, fun () -> run_task wei ght task);
fork_nmore_tasks ()

run_next | ocked wei ght =
dec_wei ght wei ght;
mat ch task_queue. Takel f check_weight with
| None -> None
| Sone (weight’', task) ->
i nc_wei ght weight’;
fork_nmore_tasks ();
Sone (weight’', task)

menber this.run weight task =

lock (fun () -> run_l ocked wei ght task)

4.4

Parameter updates

The parameters described in listingl4.1 maintain a currstninate of the delay and bandwidth. These
estimates may need to be adjusted during a copy operatiovhiknthe runtime that spawns new threads
query the parameters for the maximally allowed weight andimally allowed number of threads, we

also

need to provide feedback into the parameters to adjasthe delay and bandwidth parameters

as they are observed or change. Lisfind 4.4 contains a mathhd Wi ght edThr eadPool class that
takes the same lock that gets held when the parameters drarebupdates the parameters with updated
delays and bandwidth estimates.

Listing 4.4 Updating weights

menber this.update_weight bw delay =
lock (fun () -> param update del ay bw)

10

RAP Upadhyay and Bjgrner

4.5 Task parallelism

Listing[4.8 contains the two methods for spawning threaolpasks. The methodo_spawn taks a list
of tasks, which are closures of typait -> unit CPS. pri m paired with weights. Each task is run
potentially in parallel.

Listing 4.5 Spawning parallel threads with continuations

menber this.do_spawn tasks =
CPS.Primtive (fun cont ->
if tasks =[] then

cont ()
el se
l et count = ref (List.length tasks)
let contl () =
if O = Interlocked. Decrenent count then cont()

List.iter (fun (task, w ->
this.run w (fun () -> CPS. RunCont (task()) contl)) tasks

)

menber this.run_wait asy = CPS. RunWait asy

5 Applying the thread-pool

We are finally in a position where we can illustrate the uséefiteighted thread-pool and encapsulation
in F# workflows.

Listing[5.1 illustrates how the weighted thread-pool canged in the context of a file copy program.
At the heart of a file copy program as a recursive walk over trectbry structure of the source. Files
and directories that are found at the source are copied ovilretdestination. The structure suggests
that file copying can be easily parallelized: files can be edpndependently, and as soon as a parent
directory has been copied, then all sub-directories ansif@dsiding under the parent can be copied.

In the context of RoboClone, we found one case that requioedwrrency control. After each file
copy operation, the attributes, the security settings hadiime stamp of the parent directory needs to
be updated. This task can cause a sharing violation if nieltfreads attempt to write to the parent
directory at the same time. Hence, a lock had to be placedeopatent directory prior to copying these
settings.

6 Experience

We conducted several experiments with various incarnatadithe RoboClone prototype. We used a
pair of machines, one in Redmond, Washington, USA, and therah Warshaw, Poland. The observed
delay varied between 200ms and 250ms. Our main working sefisted of a few thousand files files
taken from a standard Windows Server 2008 installationorttgrised a mixed set of directories and files
of various sizes (from 20KB and up to 10MB). Preliminary fesuvere encouraging. The prototype
implementation offered speedups over RoboCopy rangirmg &» (for a mix of larger files) to 7x (for a
mix of smaller files).

11

RAP Upadhyay and Bjgrner

Listing 5.1 Parallel walk

type files = | File of string | Dir of string = (files list)

let acc _file acc f =

match f with | Filen->accn| _ -> ()
let file walk acc name dir_list =

List.iter (acc_file acc) dir_list

let acc_dir acc f =

match f with | Dir (n,fs) ->acc nfs | _ -> ()
let dir_walk acc nane dir_list =

List.iter (acc_dir acc) dir_Ilist

| et copy nane = ..

et walk_nmain nane dir_list =
let p = Paraneters(...) in
I et pool = new Wei ghtedThreadPool (p) in
let rec walk nane dir_list =
CPS. cps {
let tasks = ref []
do copy nane
do dir_walk (acc_d tasks) nanme dir _|ist
do file_walk (acc_f tasks) nanme dir_|list
do! pool.do_spawn !tasks
return ()
}
and wal k_file file =
(fun () -> CPS.cps {return copy file}, sz file)
and acc_f list file =
list := (walk_file file)::!list
and wal k dir dir dir_list =
(fun () -> walk dir dir_list, sz dir)
and acc_d list dir dir_list =
list := (walk_dir dir dir_list)::!list
pool .run_wait (wal k name dir_list)

7 RDC - Remote Differential Compression

In addition to experimenting with a parallelism, we alsoedithe remote differential compression proto-
col (RDC) to RoboClone. The RDC protocol allows compres$ileg over low-bandwidth networks. It
does so by using a previous incarnation of a similar file totiage which file data needs to be retrieved
from a remote server.

RDC - Remote Differential Compression is a protocol usedctonpressing files over the network
by negotiating which file data to send by using checksums fidite. The MS-RDC DLL is distributed
with Windows Vista[[5]. One of the features of MS-RDC is thaligpbto identify similar files with the
purpose of aiding the remote differential compression.

12

RAP Upadhyay and Bjgrner

8 Conclusions

Our grand goal is to make it easier to write systems softwaaik utilizes resources in ways that adapt
to their availability. It is much easier to write such softeaising standard sequential programming
paradigms, but these paradigms do not directly work wellmthe application needs to be optimized
for network and disk utilization. One can of course writets@afe from scratch to use asynchronous
I/O, whenever possible, but even in the context of an apjdicahat uses asynchronous 1/O there will

inevitably be blocking system calls. Opening a file, is onehswr more subtly, page faults may appear
under global locks. We here proposed an approach based ghtegithread-pools, encapsulated in F#
workflows, to optimize an core network application: a file ggpogram. Our experimental evaluation

shows that such an approach offers a realistic run-time Fayeur application domain.

References

[1] Acme Labs. thttpd - tiny/turbo/throttling HTTP servénttp://www.acme.com/software/thttpd/.

[2] M. Allman, S. Floyd, and S. Partridge. Increasing TCRgi&l Window. http://tools.ietf.org/html/rfc3390.
[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion @dnt999. http://tools.ietf.org/html/rfc2581.
[4] Koen Claessen. A poor man’s concurrency monadsunct. Program.9(3):313—-323, 1999.

[5] Microsoft Corporation. Remote Differential Compremsi http://msdn.microsoft.com/en-
us/library/aa3732545.85.aspx.

[6] Microsoft Corporation. RoboCopy. http://www.micrdsasom/downloads/details.aspx? familyid=9d467a69-
57ff-4ae7-96ee-b18c4790cffd&displaylang=en.

[7]1 Microsoft Corporation. TCP Receive Window Size and WindScaling. http://msdn.microsoft.com/en-
us/library/ms819736.aspx.

[8] Microsoft Corporation. Windows 2000 startup and logeetffic analysis. http://technet.microsoft.com/en-
us/library/bb742590.aspx.

[9] Microsoft Corporation. Windows Vista Developer StoryNetwork Infrastructure: Overview.
http://msdn.microsoft.com/en-us/library/bb75698pxas

[10] Klaus Didrich, Andreas Fett, Carola Gerke, WolfgangeSkamp, and Peter Pepper. Opal: Design and
implementation of an algebraic programming languageutg Gutknecht, editoRrogramming Languages
and System Architecturesolume 782 of_ecture Notes in Computer Scienpages 228-244. Springer, 1994.

[11] Duane WesselsSquid: The Definite GuideD’Reilly and Associates, January 2004.

[12] Van Jacobson, R. Braden, and D. Borman. TCP Extensiams High Performance, 1992.
http://www.ietf.org/rfc/rfc1323.txt.

[13] Peng Li and Steve Zdancewic. Combining events and disréar scalable network services implementation
and evaluation of monadic, application-level concurrepditives. In Jeanne Ferrante and Kathryn S.
McKinley, editors,PLDI, pages 189-199. ACM, 2007.

[14] Eugenio Moggi. Notions of computation and monalté. Comput, 93(1):55-92, 1991.

[15] Peter D. Mosses. VDM Semantics of Programming Langsia@embinators and Monads. In Cliff B. Jones,
Zhiming Liu, and Jim Woodcock, editorBprmal Methods and Hybrid Real-Time Systermwume 4700 of
Lecture Notes in Computer Scienpages 483-503. Springer, 2007.

[16] John Nagle. Congestion Control in IP/TCP Internetvepd984. http://rfc.net/rfc896.html.

[17] Douglas C. Schmidt and James C. Hu. Developing flexibkk lagh-performance web servers with frame-
works and patternsACM Comput. Sury32(1es):39, 2000.

[18] SMB2, 2008. url:http://msdn2.microsoft.com/entibsAry/cc246482.aspx.

[19] Don Syme, Adam Granicz, and Antonio Cisterniitxpert F# Apress, 2008.

[20] The Open Group. DCE 1.1: Remote Procedure Call. httpa.opengroup.org/.

[21] Philip Wadler. Comprehending monaddathematical Structures in Computer Scief@@):461-493,1992.

13

RAP Upadhyay and Bjgrner

[22] Chris Waterson. An ocaml-based network services @tatf In CUFP '07: Proceedings of the 4th ACM
SIGPLAN workshop on Commercial users of functional programg, pages 1-2, New York, NY, USA,
2007. ACM.

A The queue class

Listing A.1 A queue implementation

let match list f list =
match list with [] -> None | x::xs ->f x xs

type 'a queue() = class

let nutable xs : "a list =[]
let mutable rxs : "a list =[]
let norm() =if xs =[] then (xs <- List.rev rxs; rxs <- [])

let matchl f = norm(); match_list f xs
menber . 1sEnpty() = xs =[] && rxs =[]

menber (. Enqueue(Xx) = rxs <- X :: XS
nmenber (. ToList() = List.append xs (List.rev rxs)
menber . Take() = matchl (fun y ys -> xs <- ys; Sone y)
menber g.Size() = norm(); List.length xs
nmenber (. TopPeek () = matchl (fun y ys -> Sone y)
nmenber q. Takelf pred =
norn() ;

match xs with
| y::ys when pred y -> xs <- ys; Sone y
| _ -> None

end

14

	Introduction
	Workflows
	RoboCopy
	Parallelism and Concurrency

	F# workflows
	The delay-bandwidth product
	Modeling the effect of system delays
	Measuring system delays
	Measuring bandwidth
	Measuring delay
	Measuring disk seek time

	Real TCP scaling
	Is the quest attainable?

	A Weighted Thread-pool
	Parameters
	ThreadPool utilities
	Thread-pool core
	Parameter updates
	Task parallelism

	Applying the thread-pool
	Experience
	RDC - Remote Differential Compression
	Conclusions
	The queue class

