
RAP - Resource Adaptive Programming
with an application to robust and fast file copying

Utkarsh Upadhyay
IIT Kanpur

utkarshu@iitk.ac.in∗

Nikolaj Bjørner
Microsoft Research

nbjorner@microsoft.com

Abstract

Network file copy programs are prime examples of system applications that use various resources:
CPU, disk and network. The resources used in a local-area network, where network throughput can
be higher than disk throughput, are incompatible with resources used when copying files over a high-
latency, low-bandwidth remote network. A customary solution to scaling network applications is
by using asynchronous programming, but the model is not directly amenable to chatty exchanges.
We here provide a programming abstraction based on resourceadaptive thread-pools as a layer for
network and disk resources. The layer is encapsulated usingworkflows(monads) in the F# program-
ming language; and we report on experiments withRoboClone, a parallelized version of the Windows
RoboCopy program. In addition to the resource adaptive layer, RoboClone also includes the remote
differential compression (RDC) protocol.

1 Introduction

The advent of multi-core processors has renewed attention to using parallelism for utilizing all avail-
able cores on computation intensive applications. Yet, systems software is rarely solely CPU bound;
resources such as networks and disks are prolific bottlenecks in most system applications. The im-
portance of utilizing parallelism is no less in these contexts, but applications will have to adapt to a
heterogeneous set of resources, each with different capabilities. The situation of utilizing these resources
is aggravated by additional two factors: operating system layers provide abstraction boundaries, many
of which make it difficult for applications to take advantageof the underlying resources optimally, and
main-stream programming language constructs are not tunedto automatically and transparently allocate
system resources, such as threads, when they are useful.

Our main quest is designing and building abstractions to take optimal advantage of system resources.
Ideally, the abstractions should allow applications to be resource agnostic. We will address this partially
in the following by examining aweighted thread-poollayer and a particular application.

A good example of an application that use various resources are network file copy programs. They
access disk to read and write files; the content of files are sent over a network with different latencies and
bandwidths, and when the copy programs use compression algorithms, they also rely on the CPU cores
as a set of resources. Often, systems software addresses these resources only as an afterthought. As a
case in point, a substantial improvement between MicrosoftOutlook 11 and Outlook 12 was the use of
asynchronous remote procedure calls instead of synchronous remote procedure calls in Outlook 11.

A customary solution to scaling network applications is by using asynchronous programming paradigms
[17] [11], [1]. Asynchronous programming facilitates using operating system thread resources in useful
ways while network or file system calls are pending. Asynchronous programming alone does not solve
the problem of scaling protocols between chatty, but bandwidth sparse, versus non-chatty, but bandwidth
intensive phases.

∗This work was performed while interning at Microsoft Research

1



RAP Upadhyay and Bjørner

We here provide a programming abstraction based on resourceadaptive thread-pools as a layer for
network and disk resources. The layer is encapsulated usingworkflows(monads) in the F# [19] program-
ming language; and we report on experiments withRoboClone, a parallelized version of the Windows
RoboCopy program [6]. The use of monads for encapsulating threading or asynchronous programs is not
new, for instance, run-times for asynchronous programmingin the context of network applications have
been pursued in [13][22], but to our knowledge these approaches do not consider adapting the work-
load according to physical constraints, rather these approaches use monads for program layering. While
RoboClone is a research vehicle for resource adaptive programming, it does offer an API that is compat-
ible with RoboCopy. Network administrators or every day users can therefore substitute RoboCopy by
RoboClone in the same environment with minimal change in setup.

1.1 Workflows

Workflowsis a programming paradigm that is supported in F#. Similar totraditional monadic program-
ming, known from programming language theory [14], [21], VDM [15], Opal [10] and Haskell [4],
they allow encapsulating various side-effects. In particular, it is possible to use workflows to encap-
sulate asynchronous programming. Asynchronous programming features are well known to address
resource optimization in the context of high-latency network systems. Standard asynchronous program-
ming methodologies require carefully organizing all control flow to yield when reaching blocking pro-
cedure calls and requires carefully organizing code for callbacks. It is easy to overlook blocking calls
during coding and it may be very difficult to re-organize codeto introduce context switches afterwards.
Workflows have the prospect of guaranteeing that context switches are performed on blocking calls while
allowing the impression of a sequential programming style.

1.2 RoboCopy

RoboCopy [6] is a widely used program for robustly copying files over faulty networks. RoboCopy man-
ages download resumption and makes it easy to administrate and retrieve copy job summaries. Robo-
Copy uses the SMB [18] protocol for copying files. The SMB protocol is exposed transparently over
the APIs used for accessing files locally or remotely. For instance,FileCopyEx, Backup Read/Write,
Set/Get FileTime/FileAttributes use either local file system calls, or perform networked calls
over SMB when the files that are accessed reside on remote machines. RoboCopy works well in the field,
but the version released with Windows Server 2008 is subjectto some bottlenecks that cause administra-
tors of large copy jobs to look for alternatives:

1. Most of the Win32 APIs used by RoboCopy translate to synchronous remote procedure calls. In
scenarios with high latency, such synchronous calls form a bottleneck, which is noticeable since
RoboCopy runs on a single thread.

2. Even if a file changes slightly from one copy to another, FileCopyEx, or Backup Read/Write will
not be able to take advantage of the pre-existing data on the destination1

We would like to stress that the first limitation with RoboCopy is not specific to it. Bottlenecks due to
blocking calls appear in several applications that use network protocols; and engineering these applica-
tions to being resource adaptive can require a substantial effort.

1This limitation is somewhat specific to RoboCopy. Microsoftoffers products, such as DFS-R, that minimize the amount
of data copied over when files are changed only slightly.

2



RAP Upadhyay and Bjørner

1.3 Parallelism and Concurrency

Note that we used the terminology parallelism and not concurrency: we use parallelism when multiple
threadscooperatein accomplishing a task, we use concurrency when threadscompeteto accomplish
each their task. Concurrency control is important, also in the context of parallelism, but it is not the
prevalent problem. The main objective with parallelism is maximizing the use of available resources.

2 F# workflows

F# contains facilities for building custom workflows. We will build a continuation passing style(CPS)
workflow. It can be viewed as a special case of theAsync monad in F# [19]. The CPS workflow
encapsulates a basic type argument’a into a continuation. That is, it wraps’a into the type(’a ->

unit) -> unit. F# requires to supply the basic primitivesBind, Return, Let andDelay in order
to construct a workflow. These primitives are inserted by thecompiler when using the custom workflow
syntax. Listing 2.1 shows the described CPS workflow.

Listing 2.1 A CPS workflow

module CPS =
type ’a prim = P of ((’a -> unit) -> unit)

let Primitive f = P f

let RunWait (P pfn) =
let doneE =

new EventWaitHandle(false, EventResetMode.ManualReset)
pfn (doneE.Set >> ignore);
ignore (doneE.WaitOne())

let RunCont (P pfn) cont = pfn cont

type CPSBuilder() =
member p.Bind((P pfn), f) =
P (fun cont -> pfn (fun a -> let (P g) = f a in g cont))

member p.Return(x) = P (fun cont -> cont x)
member p.Let(x, f) = f x
member p.Delay(f) = f ()

let cps = new CPSBuilder()

It contains two methods for invoking the workflow with a continuation. The functionRunWait
invokes the workflow with a continuation that sets an event. It waits for the continuation to be called.
This allows using the workflow in a multi-threaded context. The functionRunCont just applies the
workflow to a continuation that is passed in.

3



RAP Upadhyay and Bjørner

Figure 2: Delay-bandwidth numbers sampled from Buildling 99, Microsoft, Redmond

3 The delay-bandwidth product

Figure 1: Network round trip delays

The capacity of a network is characterized by the so-
called delay-bandwidth product. This product, which
is the time for a round-trip multiplied by the number
of bytes sent per time unit, indicates how a sender or
receiver should scale their send and receive buffers.
This situation is illustrated in Figure 1, where data is
transmitted from a sender on the left to a receiver on
the right. The sender (and receiver) should maintain
a buffer of size at leastdelay × bandwidth in order
to allow the transmission control protocol (TCP) to
utilize the available bandwidth maximally while also
re-sending data until acknowledgment is received.

Figure 2 shows a number of delays and band-
widths and their products for samples taken from
Buildling 99, Microsoft, Redmond. Observe how the
delay-bandwidth product compares between Dallas and SouthAfrica: the higher bandwidth to Dallas
compensates for the lower delay, resulting in a similar product.

3.1 Modeling the effect of system delays

An application utilizes the available network resources optimally if it is able to fill up the send and receive
buffers on both parties. Modern implementations of the TCP/IP stack will automatically tune these
buffers to fit the effective delay-bandwidth product, but leaving it up to applications to take advantage of
this. The operating system utilityFileCopyEx does scale the number of bytes copied during round-trips
over SMB, but this only has an effect for large files. Whenevercopying over files and directories whose
size is smaller than the network buffers, this advantage goes away. To summarize, we have the two cases:

4



RAP Upadhyay and Bjørner

• Chatty communication: small files but round-trip intensive. The application will be responsible
for filling up the send/receive buffers.

• Transfers of large files: Existing file copy functions,FileCopyEx, scales the send/receive buffer
internally according to network resources.

Based on these observations we assign aweight to each file copy activity. The weight is set to the
number of bytes in the file. Assuming the underlying protocolcan fill up the send-buffer with enough
bytes copied in parallel, the job of the thread-pool is to spawn precisely a number of threads that is
sufficient for filling up the send-buffer. This gives as estimate, the number of threads that can be spawned
for concurrent copy tasks, as:

network buffer = delay × bandwidth × congestion (1)

file data = min(network buffer ,max (packet size,file size)) (2)

#threads ≤
network buffer

file data
(3)

But this estimate is not accurate. It does not take into account the time it takes to retrieve data from
disk. If we assume that each thread incurs an additional diskseek based on the data they access, the seek
time may dominate the equation if we allocate too many threads.

Specifically, we can also provide a rough bound on the number of threads by the ratio of the delay
with the disk seek time.

#threads ≤
delay

seek time
(4)

We will be using the two bounds from (3) and (4) in the following when controlling the number of
spawned threads. However, these inequations can be improved further by considering these possibilities
together as follows.

We know that the seek time on the disk depends on the number of threads trying to simultaneously
read from the disk and the sizes of the files the threads are reading. The average disk seek time is 12ms
for a 5,400 rpm disk while the network latency in a closely knit LAN might be as low as 1ms. Also,
a number of active threads which might result in frequent thrashing of the disk, thereby increasing the
effective seek time. Figure 3 illustrates this situation. The throughput is measured on writing files of
size 1, 2 and 4 MB, using between 1 and 31 threads. The throughput clearly decreases as the number of
threads competing to write to the same disk increase.

Hence, the ideal number of threads would be that when the amount of data being sent over the
network does not have to wait at all in the Sender’s TCP buffer. In other words, lets(n) be the seek
time used byn threads to retrievefile data i from files1, . . . , n, then|s(n) − delay| should be kept at a
minimum too. Combining this with the condition that the amount of data being sent should at any time
be close to thedelay × bandwidth product, we have the following condition to give us the idealnumber
of threads:

min
n

(

|

n
∑

i=1

file datai − delay × bandwidth | + λ|s(n) − delay |

)

(5)

where:

5



RAP Upadhyay and Bjørner

Figure 3: Throughput by number of threads writing to disk

n is the number of threads
{file data} is the ordered set of all file data (defined above)

s(n) can be set toseek time × n +
∑

n

i=1

file data
i

disk transfer rate

λ is a Lagrangian multiplier

However, the expression suffers from various implementation related drawbacks. Foremost, the de-
termination of exactly how theseek time depends on its parameters that can only be roughly estimated.
Hence, arriving at a value of the multiplierλ is practically difficult.

3.2 Measuring system delays

We here summarize how our prototype implementation measures system delays.

3.2.1 Measuring bandwidth

We measure bandwidth simply by maintaining a wall-clock of the time copying started. We also maintain
the total number of bytes copied. This number is updated every time a file copy completes, and the
bandwidth is set to the total number of bytes divided by valueof the wall-clock.

3.2.2 Measuring delay

Delay is estimated by sampling some of the file system calls made by RoboClone. While SMB2 may
use a different number of round-trips for some of the calls, the average number of round-trips will be
constant. We have found it useful to use the following calls for estimating the round-trip time:

• FindFirstFile, used to start enumerating the contents of a directory. Thiscalls requires at least
2 round-trips over SMB.

• FindNextFile continues directory enumeration. It requires either no or at least one round-trip.
It could be the case that the call requires no round-trip. This is the case when the result is already
cached on the caller. The latency will then be below a millisecond. On the other hand, when the
result is not cached, the round-trip latency will be noticeable.

• GetFileInformationByHandle retrieves file information given a file handle. It requires at
least one round-trip.

6



RAP Upadhyay and Bjørner

3.2.3 Measuring disk seek time

Magnetic disk technology has not changed much in the last fewdecades. Standard manufacturing char-
acteristics of disks remain yielding disks operating at 5400-10K RPM (revolutions per minute). This
translates to a maximal seek time in the area of 5-10ms. Our approach is therefore currently to fix the
seek time on all systems to 10ms. The physics of solid state disks are of course completely different, and
they are not covered by this rough model.

3.3 Real TCP scaling

Applications that interact with a disk and network will be subjected to how these layers perform their
own tuning. There are several proposed and adapted extensions and algorithms for TCP:

• TCP implementations typically use Nagle’s algorithm [16],which provides congestion control for
TCP connections. If existing requests have not yet been acknowledged, the algorithm buffers up
small outgoing packets on the sender’s side. Applications can set theTCP NODELAY bit on packets
to force transmission.

• TCP window scaling [12] algorithm allows senders and receivers automatically scaling their send/re-
ceive buffer based on observed network delay and bandwidth.The Windows TCP stack did not
implement such tuning until Vista. In contrast, in Vista,the TCP/IP stack contains an auto-tuning
mechanism that dynamically changes the advertised receivewindow based on the characteristics
of the path over which the connection is made. Auto-tuning helps improve TCP throughput over
high bandwidth-latency paths by not artificially limiting the throughput [9]. In pre-Vista operat-
ing systems, network administrators have to set a registry key calledTCPWindowSize to manually
configure the receive and send buffers [7].

• Slow start, congestion avoidance, fast retransmit, and fast recovery algorithms [3]; and initial
window size choices [2] exemplify some of the algorithms implemented by TCP stacks to utilize
network resources optimally in a setting where network resources change dynamically.

3.3.1 Is the quest attainable?

Since automatic window tuning was only made available in Vista, it was not possible to provide truly
automatic adaptive programming layers on Windows platforms. Other obstacles remain in different
low-level layers. For example, data sent over RPC are fragmented into buffers of a machine- and
implementation- dependent maximal size. While the RPC standard allows implementations to nego-
tiate a fragment size based on mutual capabilities [20], themaximal size is typically chosen relative to
how much kernel memory is statically allocated to RPC buffers. In Windows 2000 and later operating
systems, one can observe by sniffing the network traffic that RPC buffers are at most 5840 bytes [8]. As
theTCP NODELAY bit gets set on every such fragment, it inherently limits what applications can leave to
synchronous RPC traffic to tune. Microsoft’s implementation of RPC (known as MS-RPC) also offers
asynchronous pipes. The asynchronous pipes are not limitedby fixed buffer size constraints.

4 A Weighted Thread-pool

Section 2 described a continuation based workflow, and Section 3 described the delay-bandwidth product
and how it affects how many threads should be spawned in parallel in order to take advantage of the
available network resources. We here put these together in aweighted thread-pool, which dynamically
adjusts the number of allocated threads according to which network and disk resources are used.

7



RAP Upadhyay and Bjørner

4.1 Parameters

We use a class of parameters to encapsulate the delay-bandwidth product as it gets converted into an
upper bound on the admissible weights.

Listing 4.1 Delay-bandwidth parameters

type Parameters(b, d, seek, congestion, threads) =
class
let mutable delay = d
let mutable bandwidth = b
member p.update d bw =

delay <- d; bandwidth <- bw
member p.max_weight with get () =

uint64(bandwidth * delay * congestion / 1000.0)
member p.max_threads with get () =

min threads (max 1. (delay/seek) |> int)
end

The parameters maintained are

• delay - the round-trip delay in milliseconds.

• bandwidth - an estimate of the network bandwidth in bytes per second.

• seek - estimated disk seek time.

• congestion - a congestion factor. The congestion factor indicates to which extent we let Robo-
Clone over-commit the send-buffer with data. Over-committing the send-buffer causes potentially
threads to block during network communication, but also allows us to scale the network commu-
nication upwards should the available network bandwidth fluctuate.

• threads - the maximal number of threads we are willing to spawn withinan application. It can
be set based on processor capabilities.

From these parameters, we can compute the maximal number of bytes RoboClone is allowed to push
over the network at any given time. It is calculated as the delay-bandwidth product multiplied by the
congestion ratio. Since the delay was given in millisecondsand the bandwidth used bytes per second, the
calculation includes a division by 1000. Similarly, the maximal number of threads that can be spawned
is bounded by the ration of the delay and seek time.

4.2 ThreadPool utilities

The weighted thread-pool maintains two counters:num threads, which counts the number of threads
currently spawned, andtotal weight, which carries the current sum of weights that are assigned.We also
summarize utilities that update these counters and check for whether a new weight (and possibly also a
new thread) can be added. For examplecan fork checks whether a thread may be spawned to run a task
with a given weight. It callscheck weight1, which checks if the given weight plus the current total
weight does not exceed the maximal weight. It also checks if the current number of running threads, plus
one, does not exceed the maximal number of threads. Thefork utility encapsulates spawning threads.
It increments the current weight, and current number of threads (can fork holds). It then creates a
background thread. Background threads do not prevent an application from shutting down.

The queue class is defined in Appendix A.

8



RAP Upadhyay and Bjørner

Listing 4.2 Weighted thread-pool utilities

type WeightedThreadPool(param : Parameters) =
class
let token = ref 0
let lock fn = lock token fn
let task_queue = new queue<(uint64 * (unit -> unit))>()
let mutable num_threads = 0
let mutable total_weight = 0UL
let inc_thread () = num_threads <- num_threads + 1
let dec_thread () = num_threads <- num_threads - 1
let check_weight1 w = w + total_weight <= param.max_weight

|| total_weight = 0
let check_weight (weight, task) = check_weight1 weight
let can_fork w = check_weight1 w &&

num_threads < param.max_threads
let inc_weight w = total_weight <- total_weight + w
let dec_weight w = total_weight <- total_weight - w
let fork weight fn =

inc_weight weight;
inc_thread();
let thread = new Thread(ThreadStart(fn))
thread.IsBackground <- true;
thread.Start()

4.3 Thread-pool core

The core of the thread-pool is given in listing 4.3, and we will here describe the main methods. The main
method for activating a giventask with aweight is to call therun method.

• run callsrun locked, which is executed within a lock. We here assume for simplicity that the
weight passed torun is below the maximal allowed weight.

• run locked checks if the thread-pool can fork a thread given theweight. If this is the case, then
a thread gets forked with thetask, otherwise the task and weight are en-queued into a queue.

• run task gets invoked within a thread. It executes the task, then callsrun next locked within
a lock.

• run next locked, decrements the weight associated with a task that was just executed. It then
attempts to deque one task to run on the current thread, and ifsuccessful, it also tries to fork
additional threads to run tasks usingfork more tasks.

• fork more tasks attempts to deque tasks from the task queue as long as there are a sufficient
number of spare threads and a sufficient amount of weight credits available.

We therefore see that the weighted thread-pool allows to dynamically adjust the number of threads
that are spawned based on an estimate of the workload and an estimate of which resources are consumed.
The thread-pool abstracts from the fact that it is used for network and disk resources.

9



RAP Upadhyay and Bjørner

Listing 4.3 Weighted thread-pool core

let rec run_locked weight task =
if can_fork weight then

fork (weight, fun () -> run_task weight task)
else

task_queue.Enqueue ((weight, task))

and run_task weight task =
task ();
match lock (fun () -> run_next_locked weight) with
| None -> dec_thread ()
| Some (weight, task) -> run_task weight task

and fork_more_tasks () =
if can_fork 0 then

match task_queue.TakeIf check_weight with
| None -> ()
| Some (weight, task) ->
fork (weight, fun () -> run_task weight task);
fork_more_tasks ()

and run_next_locked weight =
dec_weight weight;
match task_queue.TakeIf check_weight with
| None -> None
| Some (weight’, task) ->

inc_weight weight’;
fork_more_tasks ();
Some (weight’, task)

member this.run weight task =
lock (fun () -> run_locked weight task)

4.4 Parameter updates

The parameters described in listing 4.1 maintain a current estimate of the delay and bandwidth. These
estimates may need to be adjusted during a copy operation, sowhile the runtime that spawns new threads
query the parameters for the maximally allowed weight and maximally allowed number of threads, we
also need to provide feedback into the parameters to adjust the the delay and bandwidth parameters
as they are observed or change. Listing 4.4 contains a methodin theWeightedThreadPool class that
takes the same lock that gets held when the parameters are read, and updates the parameters with updated
delays and bandwidth estimates.

Listing 4.4 Updating weights

member this.update_weight bw delay =
lock ( fun () -> param.update delay bw)

10



RAP Upadhyay and Bjørner

4.5 Task parallelism

Listing 4.5 contains the two methods for spawning thread-pool tasks. The methoddo spawn taks a list
of tasks, which are closures of typeunit -> unit CPS.prim, paired with weights. Each task is run
potentially in parallel.

Listing 4.5 Spawning parallel threads with continuations

member this.do_spawn tasks =
CPS.Primitive (fun cont ->

if tasks = [] then
cont()

else
let count = ref (List.length tasks)
let cont1 () =

if 0 = Interlocked.Decrement count then cont()
List.iter (fun (task, w) ->

this.run w (fun () -> CPS.RunCont (task()) cont1)) tasks
)

member this.run_wait asy = CPS.RunWait asy

5 Applying the thread-pool

We are finally in a position where we can illustrate the use of the weighted thread-pool and encapsulation
in F# workflows.

Listing 5.1 illustrates how the weighted thread-pool can beused in the context of a file copy program.
At the heart of a file copy program as a recursive walk over the directory structure of the source. Files
and directories that are found at the source are copied over to the destination. The structure suggests
that file copying can be easily parallelized: files can be copied independently, and as soon as a parent
directory has been copied, then all sub-directories and files residing under the parent can be copied.

In the context of RoboClone, we found one case that required concurrency control. After each file
copy operation, the attributes, the security settings and the time stamp of the parent directory needs to
be updated. This task can cause a sharing violation if multiple threads attempt to write to the parent
directory at the same time. Hence, a lock had to be placed on the parent directory prior to copying these
settings.

6 Experience

We conducted several experiments with various incarnations of the RoboClone prototype. We used a
pair of machines, one in Redmond, Washington, USA, and the other in Warshaw, Poland. The observed
delay varied between 200ms and 250ms. Our main working set consisted of a few thousand files files
taken from a standard Windows Server 2008 installation. It comprised a mixed set of directories and files
of various sizes (from 20KB and up to 10MB). Preliminary results were encouraging. The prototype
implementation offered speedups over RoboCopy ranging from 2x (for a mix of larger files) to 7x (for a
mix of smaller files).

11



RAP Upadhyay and Bjørner

Listing 5.1 Parallel walk

type files = | File of string | Dir of string * (files list)

let acc_file acc f =
match f with | File n -> acc n | _ -> ()

let file_walk acc name dir_list =
List.iter (acc_file acc) dir_list

let acc_dir acc f =
match f with | Dir (n,fs) -> acc n fs | _ -> ()

let dir_walk acc name dir_list =
List.iter (acc_dir acc) dir_list

let copy name = ...

let walk_main name dir_list =
let p = Parameters(...) in
let pool = new WeightedThreadPool(p) in
let rec walk name dir_list =

CPS.cps {
let tasks = ref []
do copy name
do dir_walk (acc_d tasks) name dir_list
do file_walk (acc_f tasks) name dir_list
do! pool.do_spawn !tasks
return ()
}

and walk_file file =
(fun () -> CPS.cps {return copy file}, sz file)

and acc_f list file =
list := (walk_file file)::!list

and walk_dir dir dir_list =
(fun () -> walk dir dir_list, sz dir)

and acc_d list dir dir_list =
list := (walk_dir dir dir_list)::!list

pool.run_wait (walk name dir_list)

7 RDC - Remote Differential Compression

In addition to experimenting with a parallelism, we also added the remote differential compression proto-
col (RDC) to RoboClone. The RDC protocol allows compressingfiles over low-bandwidth networks. It
does so by using a previous incarnation of a similar file to negotiate which file data needs to be retrieved
from a remote server.

RDC - Remote Differential Compression is a protocol used forcompressing files over the network
by negotiating which file data to send by using checksums froma file. The MS-RDC DLL is distributed
with Windows Vista [5]. One of the features of MS-RDC is the ability to identify similar files with the
purpose of aiding the remote differential compression.

12



RAP Upadhyay and Bjørner

8 Conclusions

Our grand goal is to make it easier to write systems software that utilizes resources in ways that adapt
to their availability. It is much easier to write such software using standard sequential programming
paradigms, but these paradigms do not directly work well when the application needs to be optimized
for network and disk utilization. One can of course write software from scratch to use asynchronous
I/O, whenever possible, but even in the context of an application that uses asynchronous I/O there will
inevitably be blocking system calls. Opening a file, is one such, or more subtly, page faults may appear
under global locks. We here proposed an approach based on weighted thread-pools, encapsulated in F#
workflows, to optimize an core network application: a file copy program. Our experimental evaluation
shows that such an approach offers a realistic run-time layer for our application domain.

References

[1] Acme Labs. thttpd - tiny/turbo/throttling HTTP server.http://www.acme.com/software/thttpd/.

[2] M. Allman, S. Floyd, and S. Partridge. Increasing TCP’s Initial Window. http://tools.ietf.org/html/rfc3390.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control, 1999. http://tools.ietf.org/html/rfc2581.

[4] Koen Claessen. A poor man’s concurrency monad.J. Funct. Program., 9(3):313–323, 1999.

[5] Microsoft Corporation. Remote Differential Compression. http://msdn.microsoft.com/en-
us/library/aa373254VS.85.aspx.

[6] Microsoft Corporation. RoboCopy. http://www.microsoft.com/downloads/details.aspx? familyid=9d467a69-
57ff-4ae7-96ee-b18c4790cffd&displaylang=en.

[7] Microsoft Corporation. TCP Receive Window Size and Window Scaling. http://msdn.microsoft.com/en-
us/library/ms819736.aspx.

[8] Microsoft Corporation. Windows 2000 startup and logon traffic analysis. http://technet.microsoft.com/en-
us/library/bb742590.aspx.

[9] Microsoft Corporation. Windows Vista Developer Story.Network Infrastructure: Overview.
http://msdn.microsoft.com/en-us/library/bb756985.aspx.

[10] Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and Peter Pepper. Opal: Design and
implementation of an algebraic programming language. In J¨urg Gutknecht, editor,Programming Languages
and System Architectures, volume 782 ofLecture Notes in Computer Science, pages 228–244. Springer, 1994.

[11] Duane Wessels.Squid: The Definite Guide. O’Reilly and Associates, January 2004.

[12] Van Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance, 1992.
http://www.ietf.org/rfc/rfc1323.txt.

[13] Peng Li and Steve Zdancewic. Combining events and threads for scalable network services implementation
and evaluation of monadic, application-level concurrencyprimitives. In Jeanne Ferrante and Kathryn S.
McKinley, editors,PLDI, pages 189–199. ACM, 2007.

[14] Eugenio Moggi. Notions of computation and monads.Inf. Comput., 93(1):55–92, 1991.

[15] Peter D. Mosses. VDM Semantics of Programming Languages: Combinators and Monads. In Cliff B. Jones,
Zhiming Liu, and Jim Woodcock, editors,Formal Methods and Hybrid Real-Time Systems, volume 4700 of
Lecture Notes in Computer Science, pages 483–503. Springer, 2007.

[16] John Nagle. Congestion Control in IP/TCP Internetworks, 1984. http://rfc.net/rfc896.html.

[17] Douglas C. Schmidt and James C. Hu. Developing flexible and high-performance web servers with frame-
works and patterns.ACM Comput. Surv., 32(1es):39, 2000.

[18] SMB2, 2008. url:http://msdn2.microsoft.com/en-us/library/cc246482.aspx.

[19] Don Syme, Adam Granicz, and Antonio Cisternino.Expert F#. Apress, 2008.

[20] The Open Group. DCE 1.1: Remote Procedure Call. http://www.opengroup.org/.

[21] Philip Wadler. Comprehending monads.Mathematical Structures in Computer Science, 2(4):461–493, 1992.

13



RAP Upadhyay and Bjørner

[22] Chris Waterson. An ocaml-based network services platform. In CUFP ’07: Proceedings of the 4th ACM
SIGPLAN workshop on Commercial users of functional programming, pages 1–2, New York, NY, USA,
2007. ACM.

A The queue class

Listing A.1 A queue implementation

let match_list f list =
match list with [] -> None | x::xs -> f x xs

type ’a queue() = class
let mutable xs : ’a list = []
let mutable rxs : ’a list = []
let norm() = if xs = [] then (xs <- List.rev rxs; rxs <- [])
let matchl f = norm(); match_list f xs
member q.IsEmpty() = xs = [] && rxs = []
member q.Enqueue(x) = rxs <- x :: rxs
member q.ToList() = List.append xs (List.rev rxs)
member q.Take() = matchl (fun y ys -> xs <- ys; Some y)
member q.Size() = norm(); List.length xs
member q.TopPeek () = matchl (fun y ys -> Some y)
member q.TakeIf pred =
norm();
match xs with
| y::ys when pred y -> xs <- ys; Some y
| _ -> None

end

14


	Introduction
	Workflows
	RoboCopy
	Parallelism and Concurrency

	F# workflows
	The delay-bandwidth product
	Modeling the effect of system delays
	Measuring system delays
	Measuring bandwidth
	Measuring delay
	Measuring disk seek time

	Real TCP scaling
	Is the quest attainable?


	A Weighted Thread-pool
	Parameters
	ThreadPool utilities
	Thread-pool core
	Parameter updates
	Task parallelism

	Applying the thread-pool
	Experience
	RDC - Remote Differential Compression
	Conclusions
	The queue class

