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   Abstract—Air- and bone-conductive integrated 
microphones have been introduced by the authors [5,4] for 
speech enhancement in noisy environments. In this paper, we 
present a novel technique, called direct filtering, to combine 
the two channels from the air- and bone-conductive 
microphone for speech enhancement. Compared to the 
previous technique, the advantage of the direct filtering  is 
that it does not require any training, and it is speaker 
independent. Experiments show that this technique 
effectively removes noises and significantly improves speech 
recognition accuracy even in highly non-stationary noisy 
environments. 
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I. INTRODUCTION 
 
How to handle non-stationary noises has been one of the 
most difficult problems in both automatic speech 
recognition and audio enhancement. In the previous work 
[5,4], we introduced air- and bone-conductive  integrated 
microphones and showed that such devices can be used to 
reliably determine whether the speaker is talking or not, 
and furthermore, the two channels can be combined to 
remove overlapping noises. We use “WITTY”, which 
stands for “Who Is Talking To You”, as our acronym for 
the air- and bone-conductive microphones. A WITTY 
microphone contains two sensors: a regular close-talk 
microphone and a bone-conductive microphone. The 
close-talk microphone contains wideband speech but is 
noise sensitive. The bone-conductive microphone is noise 
resistant but is narrow band.  The previous work [5,4] used 
a channel mapping technique for speech enhancement. It 
works by training a piecewise linear mapping from the 
bone signal to the close-talk signal. One drawback of this 
approach is that it requires training for each speaker. In 
this paper, we present a new technique which does not 
require any training. We call this technique direct filtering.  
The basic idea is to directly design a filter which performs 
distortion correction on the bone signal and optimally 

combines the bone signal and the close-talk signal to 
remove the noises. 
 

II. RELATED WORK 
 
Graciarena et. al. [1] combined the standard and throat 
microphones in the noisy environment. They trained a 
mapping from the concatenated features of both 
microphone signals in a noisy environment to the clean 
speech. Compared to their system, our algorithm does not 
need any training, and it is not environment dependent. In 
addition, our algorithm produces audible speech signals so 
that the output can be used for perception as well as 
speech recognition.  
 
Strand et. al. [3] designed an ear plug to capture the 
vibrations in the ear canal, and used the signals for speech 
recognition with MLLR adaptation. Heracleous et. al. [2] 
used a stethoscope device to capture the bone vibrations of 
the head and use that for non-audible murmur recognition. 
Like Strand et. al. [3], they only used the bone signals for 
speech recognition with MLLR adaptation.  
 
 
 

III. AIR- AND BONE-CONDUCTIVE 
INTEGRATED MICROPHONES 

 
For a detailed description of the Air- and bone-conductive 
integrated microphones (WITTY microphones), the reader 
is referred to [5].  Figure 1 shows a prototype of this 
device. It contains two output channels: close-talk 
microphone and bone sensor. The bone sensor has the 
interesting property that it is insensitive to ambient noise 
but it only captures the low frequency portion of the 
speech signals. We would like to combine the bone signals 
with the close-talk signals to remove environment noise. 
The previously designed channel mapping technique [5,4] 
has the drawback that it requires training for each speaker, 
and it is speaker dependent.  In the following, we describe 



a new algorithm, called direct filtering, which does not 
have such limitations. 
 
 

          
Figure 1. A WITTY microphone prototype 

 
 

IV. DIRECT FILTERING 
 
Let )(ty and )(tb  denote the close-talk and bone 

signals, respectively. Let )(tx denote the clean speech 
which is to be estimated. The following is the 
mathematical model of the direct filtering: 
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where v  is the noise in the close talk channel which 
contains the environment noise such as background 
speech, w is the noise in the bone channel which contains 
the sensor noise and much attenuated environment noise, 
and h is the impulse response  of the bone sensor. In the 
frequency domain, equation (1) becomes 
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where k is the frequency band. We assume )(kVt and 

)(kWt are zero-mean Gaussian random variables: 

),0(~)( 2
vt NkV σ , ),0(~)( 2

wt NkW σ . 
 
To estimate H reliably, we use multiple frames of 
observation data. Let T  be the number of frames used for 

estimating H . The maximum likelihood estimation is 
given by minimizing 
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Notice that tX is complex variable, and ℜ is a real 

function of the real part and imaginary part of tX . 

Therefore the partial derivatives of ℜ  with respect to the 
real part and imaginary part of ℜ are zero at the optimum. 

It is easy to show that this leads to 0=
∂
∂ℜ

tX
, where ℜ  is 

regarded as a function of two variables: tX  and *
tX , and 

the partial derivative is with respect to the first variable. 
From (3), we have 
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By setting 0=
∂
∂ℜ

tX
, we have 
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Substituting (5) into (3), we have  
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By setting 0=
∂
∂ℜ
H

 (again, ℜ  is regarded as a function 

of two variables: H  and *H ), we obtain 
0)( 2*2*2* =−− wv abHHa σσ                                (7) 

where 
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The roots of Equation (7) are: 
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Notice that there are two possible solutions for H . In our 
implementation, we select the one resulting in the smaller 
value of ℜ . 

CClloossee--ttaallkk  
MMiicc  

BBoonnee  MMiicc

EEaarr  PPhhoonnee



 
The clean speech is estimated also by minimizing (3) 
except that the summation is over a single frame. The 
solution is therefore the same as equation (5). 
 

V. IMPLEMENTATION 
 
Figure 2 shows the data flow of the direct filtering 
algorithm. Given a speech utterance ( )(),( tbty ), we first 
divide )(ty  and )(tb  into frames and perform short-
window Fourier transform for each frame. We estimate 

vσ and wσ from the initial frames of the utterance. H  is 
estimated from the entire utterance by using equation 9. 
For each frame, the clean speech is estimated by using 
equation (5).  Finally, we use inverse Fourier transform to 
convert back to the wave form. 
 

 
Figure 2. The direct filtering algorithm 

 
 

VI. RESULTS 
 
We have experimented with the direct filtering algorithm 
on both artificial data and real data. For artificial data, we 
recorded speech data for 4 people (2 male and 2 females) 
in a quiet office using the air- and bone-conductive 
integrated microphone (Figure 1). Each person read 42 
utterances of the Walt Street Journal. We then added 
babble noises to the clean speech with various SNR levels. 
Notice that we also added certain amount of noises to the 
bone signal to simulate the leakage of the bone sensor (the 
bone sensor may still pick up a small amount of 
environment noises. We call it leakage).  Table 1. shows 
the word error rates (WER) of both the close-talk signals 
and the enhanced signals under different SNR levels. For 
each SNR level, the word error rate is averaged over the 4 
people. 
 
 
 
 
 

 -5dB 0dB 5dB 10dB 15dB 
Close-

talk 85% 59% 34% 19% 12% 

Enhanced 32% 19% 13% 10% 9% 
Relative 

error 
reduction 

62% 68% 62% 47% 25% 

Table 1. Speech recognition results (WER) of the 
artificial data. 

 
 
Figure 2-5 shows an example. Figure 2 is the clean speech 
from the close-talk microphone. Figure3 is the clean 
speech plus added noise (0dB). Figure 4 is bone signal 
with noise being added. Figure 5 is the enhanced signal. 
By comparing Figure 3 with Figure 5, we can see that 
most of the noises in the low frequency region (toward the 
bottom of the spectrogram) have been removed. 
 

 
Figure 2. Clean speech 

 
 

 
Figure 3. After adding noise 

 
 

 
 

 Figure 4. Bone signal with added noise 



 

 
Figure 5. Enhanced result. 

 
For real data testing, we recorded speech in two different 
environments for three people (one male and two females). 
The first environment is in an office with a different 
person speaking in the background. The second 
environment is in a cafeteria. We recorded 42 utterances 
for each person in each environment.  Figure 6 shows an 
example: the top is the signal from the close-talk 
microphone while the bottom is the signal from the bone 
sensor. Notice that even though the bone sensor is much 
more noise resistant than the close-talk microphone, a 
small amount of environment noise leaking through our 
current bone sensor.  Our current remedy is to use the 
simple spectral subtraction technique on the bone signal 
before applying direct filtering. Figure 7 shows the result 
from the direct filtering algorithm. We can see that the 
noise is reduced significantly for the lower frequency 
portion. The reason that it reduces noises mainly at the 
lower frequency is because the bone signal contains only 
low frequency information (up to 3.5 KHz).  
 
Table 2 shows the speech recognition results for the read 
data. The word error rate is averaged over the three 
people.  We can see that in both environments, we have 
achieved over 30% of relative error reduction.  

 
Figure 6. Spectrograms of the original data.                                               
Top: close-talk signal.   Bottom: bone signal. 

 

 
Figure 7. Result from Direct Filtering. 

 
 

 

 Office with 
background speech Cafeteria 

Original 45% 35% 
Enhancement 28% 24% 

Relative 
Improvement 38% 31% 

Table 1. Speech recognition results (WER) of real 
data. 

 
VII. CONCLUSION AND FUTURE WORK 

 
We have presented a new technique, called direct filtering, 
to combine the two channels of the air- and bone-
conductive integrated microphone for speech 
enhancement. Our experiments show that under even  
highly non-stationary noisy environments, the direct 
filtering effectively reduces environment noises and results 
in cleaner speech for better perception as well as higher 
speech recognition accuracy. 
 
We are currently implementing a real time system. Given 
that the speech detection is much easier thanks to the bone 
sensor [5], we will be able to estimate vσ  and 

wσ dynamically, and H can then be estimated from the 
past frames. 
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