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Abstract

As kidney exchange programs are growing, manipulation by hospitals be-
comes more of an issue. Assuming that hospitals wish to maximize the
number of their own patients who receive a kidney, they may have an incen-
tive to withhold some of their incompatible donor-patient pairs and match
them internally, thus harming social welfare. We study mechanisms for two-
way exchanges that are strategyproof, i.e., make it a dominant strategy for
hospitals to report all their incompatible pairs. We establish lower bounds

IWe have benefited from valuable discussions with Moshe Tennenholtz and David
Parkes. An earlier version of this paper appeared in the Proceedings of the 11th ACM
Conference on Electronic Commerce.

Email addresses: iashlagi@mit.edu (Itai Ashlagi), fischerf@statslab.cam.ac.uk
(Felix Fischer), iankash@microsoft.com (Ian A. Kash), arielpro@cs.cmu.edu (Ariel
D. Procaccia)

1The author thanks the NSF for financial support.
2Support from the Deutsche Forschungsgemeinschaft under grant FI 1664/1-1 is grate-

fully acknowledged.

Preprint submitted to Games and Economic Behavior May 20, 2013



on the welfare loss of strategyproof mechanisms, both deterministic and ran-
domized, and propose a randomized mechanism that guarantees at least half
of the maximum social welfare in the worst case. Simulations using realistic
distributions for blood types and other parameters suggest that in practice
our mechanism performs much closer to optimal.
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1. Introduction

Transplantation of a healthy kidney is the best treatment today for severe
kidney disease. Since humans normally have two kidneys and need only one
to lead a healthy life, many patients have a family member or friend willing
to donate them a kidney. However, not all potential donors are compatible
with their desired recipient. This raises the possibility of kidney exchange, in
which two or more incompatible donor-patient pairs exchange kidneys such
that each patient receives a compatible kidney from the donor of another
patient.3

Incentives of donor-patient pairs and efficiency in kidney exchange pro-
grams have respectively been studied by Roth et al. (2004, 2005) and Roth
et al. (2007a). As kidney exchange programs grow, however, manipulation
by hospitals also becomes an issue. In particular, a hospital may choose to
withhold some of its incompatible donor-patient pairs and match them in-
ternally, in order to maximize the number of its own patients who receive a
kidney. This kind of strategic behavior has a negative effect on social welfare
and runs counter to the whole idea of having a large exchange. It is therefore
an interesting question how hospitals can be incentivized to fully participate
in an exchange by submitting all of their incompatible donor-patient pairs.

This problem can be modeled formally as a matching problem on a graph
in which each vertex corresponds to an incompatible donor-patient pair and
an edge between two such pairs indicates that the donor of each pair is

3These cyclic exchanges can also be combined with chains, starting with a deceased
donor or an “undirected” donor without a particular intended recipient and ending with
a patient who has a high priority on the deceased-donor waiting list or with a donor who
will donate at some point in the future.
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compatible with the recipient of the respective other pair. Moreover disjoint
sets of vertices are controlled by self-interested agents, in the sense that their
existence is private information of the agent controlling them. Agents then
reveal subsets of their vertices, and matches are determined based on the
induced subgraph. An agent can seek to manipulate by hiding some of its
vertices and then proceeding to benefit both from the inter-agent matches
and matches on its hidden and unmatched vertices. We assume that each
agent seeks to maximize the number of its own vertices that end up being
matched.4

The above model was first used by Roth et al. (2007b) and later by Ash-
lagi and Roth (2011) in order to study the incentives of the hospitals in an
exchange. Roth et al. observed that no efficient and strategyproof mecha-
nisms exist for this problem. Ashlagi and Roth showed that no deterministic
strategyproof mechanism can guarantee more than half the size of an efficient
matching, whereas a nearly efficient incentive compatible mechanism exists
in a Bayesian setting. A more detailed discussion of these results can be
found in Section 2.

In this paper we take a prior-free approach to the nonexistence of efficient
and strategyproof mechanisms and relax efficiency rather than strategyproof-
ness. We say that a mechanism is an α-approximation mechanism if the size
of the maximum cardinality matching is always at most α times that of the
matching returned by the mechanism.5 Our goal is to design mechanisms
that are strategyproof and at the same time provide a good approximation
ratio. This approach is interesting for at least two reasons. First, strate-
gyproof mechanisms are more robust in the worst case against information
hospitals might have about each others’ patients. Interestingly, we will see
that their efficiency loss on average (in simulations) is still very small. Sec-
ond, together with the results of Ashlagi and Roth (2011), our results provide
insights into the tradeoff between different degrees of incentive compatibility
on the one hand and social welfare on the other.

4This model more generally applies to settings where information about clients and
potential trades among clients is partitioned among a set of agents. What distinguishes
kidney exchanges from other such settings is the absence of monetary transfers: in most
countries, payments in return for organs are both illegal and considered immoral, so we
are interested in mechanisms without payments.

5Since the social welfare of a matching is exactly twice its cardinality, approximating
the two is equivalent.
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We begin in Section 4 by establishing lower bounds on the approximation
ratio achievable by strategyproof mechanisms. To this end, we refine an ex-
ample used by Roth et al. (2007b) to illustrate that no efficient mechanism
can be strategyproof, and observe that no deterministic strategyproof mech-
anism can provide an approximation ratio better than 2 and no randomized
strategyproof mechanism can provide an approximation ratio better than
8/7.6

In Section 5 we then introduce a mechanism, termed MatchΠ, that is
parameterized by a bipartition Π = (Π1,Π2) of the set of agents. Roughly
speaking, for any given graph, the mechanism returns a matching that has
maximum cardinality among all the matchings that (i) contain no edges be-
tween the vertex sets of two agents on the same side of the bipartition, and
(ii) are a maximum cardinality matching when restricted to the vertex set
of each individual agent. We show that MatchΠ is strategyproof for any
bipartition of the set of agents and can be executed in polynomial time. Un-
fortunately, for any fixed bipartition Π, MatchΠ does not generally provide
a bounded approximation ratio. We observe, however, that MatchΠ yields
a 2-approximation in the two-agent case when used with the obvious bipar-
tition that places the two agents on opposite sides. This mechanism is in
fact the optimal deterministic strategyproof mechanism for two agents, since
the deterministic lower bound of 2 holds even in this case. In Section 6 we
finally construct a randomized mechanism, termed Mix-and-Match, that
first mixes the agents by choosing a random bipartition Π, then matches the
vertices by applying MatchΠ. We show that Mix-and-Match is strate-
gyproof and provides a 2-approximation.

An average-case analysis of Mix-and-Match, using simulations with
realistic values for parameters like the structure and frequency of blood types,
is given in Section 7. These simulations suggest a practical performance that
is much closer to optimal than the theoretical worst-case bounds. Section 8
concludes with a discussion of our results and possible directions for future
work.

6The preliminary version of this paper incorrectly stated the bound as 4/3. Ashlagi
and Roth (2011) show this result in a slightly different setting.
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2. Related Work

Most closely related to our work is that of Roth et al. (2007b), Ashlagi
and Roth (2011), and Toulis and Parkes (2011), who consider mechanisms
for multi-hospital kidney exchange. Following the negative result of Roth
et al. (2007b), Ashlagi and Roth (2011) and Toulis and Parkes (2011) studied
mechanisms in the Bayesian setting.

Ashlagi and Roth (2011) show that under reasonable prior information,
there exists an individually rational mechanism that is ε-Bayesian incentive
compatible and almost efficient. Their analytical results are obtained for
large markets and require a regularity condition that roughly means that
hospitals are not too big. The mechanism of Ashlagi and Roth (2011) finds
a maximum set of donor-patient pairs for each hospital that it can match
internally, and finds a maximum matching in the graph that guarantees that
this set of pairs will be matched (not necessarily to each other). This is
made possible by the large market assumption and perfect-matching results
for Erdös-Rényi graphs. Using the prior information about the population
(blood types and tissue-type compatibilities) the authors further identify a
set of nodes that should be given an “extra” chance in the match in order
to achieve Bayesian incentive compatibility. In their work they consider also
3-way exchanges. Toulis and Parkes (2011) establish similar results in the
Bayesian setting assuming that each hospital is sufficiently large.7

By contrast, our mechanism is strategyproof and does not require any
assumptions about the structure of the market. Nevertheless, to comple-
ment results about the Bayesian setting and make use of information about
the population, we also study the performance of our mechanism on inputs
drawn from the distribution used by Ashlagi and Roth. On a technical level,
our mechanism ensures that the outcome contains a maximum cardinality
internal matching (though not a specific one) for each hospital, and imposes
some restrictions on exchanges across hospitals. Mechanisms currently in use
also give a somewhat higher priority to exchanges among donors and patients
of the same hospital. This is done mainly to minimize geographical distance
between donors and recipients, and is usually not enough to incentivize hos-
pitals to fully reveal their information to the mechanism (also see Ashlagi
and Roth, 2011).

7Both Ashlagi and Roth and Toulis and Parkes use realistic values for parameters like
the structure and frequency of blood types.
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While it is possible to exchange kidneys among more than two donor-
patient pairs at a time, finding an efficient set of exchanges becomes compu-
tationally hard in this case. In this paper, we therefore restrict our attention
to two-way exchanges. We note, however, that there exist algorithms that
allow multi-way exchanges and have good performance in practice (Abraham
et al., 2007; Biró et al., 2009).

Kidney exchange has also been studied in dynamic environments where
patients arrive and depart, but not from the perspective of incentives. Ünver
(2010) provides an elegant characterization of optimality under the assump-
tion that there are no tissue-type incompatibilities. Awasthi and Sandholm
(2009) and Dickerson et al. (2012) design and analyze stochastic optimization
algorithms for a dynamic environment.

Finally, our work is part of a line of research that seeks to approximate
optimal outcomes in mechanism design settings without monetary transfers,
which was initiated by Procaccia and Tennenholtz (2009). This approach
is particularly intriguing in the context of problems that are computation-
ally feasible: while there is no need to approximate the optimal solution for
strictly computational reasons, there might be a need for that to maintain
strategyproofness (when the optimal solution is not strategyproof).

3. Preliminaries

Let N = {1, . . . , n} be a set of agents. For each i ∈ N , let Vi be a set of
private vertices of agent i. Let G = (V,E) with V =

⋃
i∈N Vi be an undirected

labeled graph, that is, each vertex is labeled by its agent. We slightly abuse
terminology by simply referring to such labeled graphs as “graphs.”

A matching M ⊆ E on G is a subset of edges such that each vertex is
incident to at most one edge of M . For i, j ∈ N we denote

Mij = {(u, v) ∈M : u ∈ Vi ∧ v ∈ Vj}.

Given i ∈ N , we refer to edges in Mii as internal edges and to edges in Mij,
where j ∈ N \ {i}, as external edges.

Given a graph G and a matching M on G, the utility of agent i for this
matching is

ui(M) = |{u ∈ Vi : ∃v ∈ V s.t. (u, v) ∈M}|,

that is, it is equal to the number of vertices of Vi that are matched under M .
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We now turn to the definition of a mechanism, without being too formal.
For a fixed number n of agents, a deterministic mechanism is a function
that maps any (labeled) graph for n agents to a matching of this graph. A
randomized mechanism maps any graph to a probability distribution over
matchings, that is, it can select a matching randomly. For conciseness, we
treat deterministic mechanisms as a special case of randomized mechanisms
in the rest of this section.

For a randomized mechanism f and a (possibly random) graph G, define

ui(f(G)) = EM∼f(G)[ui(M)],

where the expectation is taken over the distribution on matchings returned
by the mechanism. In other words, the utility of an agent simply equals the
expected number of its vertices being matched.

We are concerned with situations where an agent “hides” a subset of its
vertices and then internally matches them among themselves or with vertices
not matched by the mechanism. To make this formal we need some notation.
We however feel that the idea is rather intuitive, and will avoid the rather
cumbersome formalism in the rest of the paper. For any subset V ′ ⊆ V ,
let G[V ′] be the subgraph of G induced by V ′. For a graph G, an agent
i ∈ N , and a matching M , let Xi(M) be the set of vertices in Vi that are not
matched in M ; if M is chosen randomly, then Xi(M) is a random variable.
Furthermore, let f ∗ be a mechanism that maps each graph G to a maximum
cardinality matching of G. We say that a mechanism f is strategyproof if for
every graph G = (V,E) with V =

⋃
i∈N Vi, for every i ∈ N , and for every

V ′i ⊆ Vi it holds that

ui(f(G)) ≥ ui(f(G[V \ V ′i ])) + ui(f
∗(G[V ′i ∪Xi(f(G[V \ V ′i ]))])).

In words, a mechanism is strategyproof if an agent can never benefit by
hiding some of its vertices. The agent’s utility after hiding a subset V ′i of
its vertices equals the (expected) number of its vertices that the mechanism
matches given the subgraph induced by all vertices but those in V ′i , plus
the (expected) number of vertices in a maximum cardinality matching of the
subgraph induced by V ′i and the vertices not matched by the mechanism. In
our model, individual rationality requires that an agent cannot benefit from
the special case when V ′i = Vi, and is therefore implied by strategyproofness.

We are interested in mechanisms that, while being strategyproof, produce
matchings that maximize social welfare, i.e., the sum of agent utilities. For
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v1 v2 v3 v4 v5 v6 v7

(a) Graph G. Vertices of V1 are shown in white,
vertices of V2 in gray.

v1 v2 v3 v4 v5 v6 v7

(b) Graph G′ obtained from G when agent 1 hides
the vertices v5 and v6. The hidden vertices are
not part of the graph, but are shown to give the
complete picture.

v1 v2 v3 v4 v5 v6 v7

(c) Graph G′′ obtained from G when agent 2 hides
vertices v2 and v3.

Figure 1: Construction used in the proof of Theorem 4.1.

any matching M ,
∑

i∈N ui(M) = 2|M |, so what we are looking for are match-
ings that are as large as possible. We say that a randomized mechanism f
provides an α-approximation if for every graph G,

|f ∗(G)|
E[|f(G)|]

≤ α, (1)

where once again f ∗(G) is a maximum cardinality matching of G. For deter-
ministic mechanisms, the expectation in (1) can simply be dropped.

4. Lower Bounds

It may not be immediately apparent that the optimal mechanism is not
strategyproof. Given a graph, the optimal mechanism simply returns a max-
imum cardinality matching (while employing a consistent tie-breaking rule
to decide between different maximum cardinality matchings).

To see how this can fail to be strategyproof, consider graph G in Fig-
ure 1(a). This graph has an odd number of vertices, so every matching
leaves some vertex unmatched. However, each agent has a pair of vertices
such that removing these vertices from the graph results in a graph with a
unique maximum cardinality matching in which all of that agent’s vertices
are matched (Figures 1(b) and 1(c)). Thus, one of the agents must have an
unmatched vertex in G, and this agent can hide two of his vertices to increase
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his utility. This simple example, which is due to Roth et al. (2007b), can be
used to derive lower bounds that will later turn out to be, at least in one
case, tight (see also Ashlagi and Roth, 2011, for similar bounds in a slightly
different setting).

Theorem 4.1. If there are at least two agents,

1. no deterministic strategyproof mechanism can provide an α-
approximation for α < 2, and

2. no randomized strategyproof mechanism can provide an α-
approximation for α < 8/7.

Proof. For the first part of the theorem, we consider the case where N =
{1, 2}; the proof can easily be extended to the case where n > 2 by adding
agents with vertices that are not incident to any edges. Let f be a deter-
ministic mechanism, and consider graph G given in Figure 1(a). Since G
has an odd number of vertices, it does not have a perfect matching, and
so f(G) must leave some v ∈ V1 or some v ∈ V2 unmatched. Thus, either
u1(f(G)) ≤ 3 or u2(f(G)) ≤ 2.

We first deal with the case where u1(f(G)) ≤ 3. Consider the graph G′

that is obtained when agent 1 hides vertices v5 and v6 (see Figure 1(b)). The
unique maximum cardinality matching of this graph is {(v1, v2), (v3, v4)}, a
matching of cardinality 2. However, agent 1 could internally match the pair
(v5, v6) and obtain a utility of 4, contradicting strategyproofness. Therefore,
f(G′) must have cardinality at most 1, meaning that its approximation ratio
on G′ cannot be smaller than 2.

The case where u2(f(G)) ≤ 2 can be handled similarly. Consider the
graph G′′ obtained when agent 2 hides vertices v2 and v3 (see Figure 1(c)).
Once again there is a unique maximum matching of cardinality 2, but f
cannot return this matching since it would yield a utility of 3 to agent 2,
in contradiction to strategyproofness. As before the mechanism is forced to
select a matching of cardinality at most 1.

The second part of the theorem can be derived using the same construc-
tion. Let f be a randomized strategyproof mechanism. Since G does not have
a perfect matching, it must be that u1(f(G)) + u2(f(G)) ≤ 6. Therefore,
either u1(f(G)) ≤ 7/2 or u2(f(G)) ≤ 5/2.

We now proceed as before. If u1(f(G)) ≤ 7/2, we consider graph G′; by
strategyproofness f can only match both of agent 1’s pairs with probability
at most 3/4, for a maximum of 7/4 pairs in expectation, but the optimum is
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2. If u2(f(G)) ≤ 5/2, we use graph G′′ to show that f can only match 7/4
pairs in expectation, while the optimum is 2.

5. Deterministic Mechanisms

Let us now focus on deterministic mechanisms. We begin by designing
a deterministic mechanism that is strategyproof for any number of agents,
but may not provide a bounded approximation ratio. We then leverage this
mechanism to obtain an optimal deterministic strategyproof mechanism for
two agents. The more powerful application of our deterministic mechanism
will only appear in the next section, when we discuss randomized mecha-
nisms.

Let us first address the issue of designing strategyproof deterministic
mechanisms without worrying, for now, about approximate optimality or
computational tractability. Consider the following mechanism for two agents.
Given a graph G, the mechanism computes the set of all matchings on G that
have maximum cardinality on V1 and V2, and among these selects a matching
with maximum overall cardinality. Since every matching that this mechanism
considers has maximum cardinality on V1 and V2, it clearly is individually
rational. We will show momentarily that it is also strategyproof.

But let us first consider what this mechanism does when applied to the
graph of Figure 1(a). Any matching that is a maximum cardinality matching
on V2 would have to match (v2, v3), and there are two maximum cardinality
matchings on V1: one can either match (v4, v5) or (v5, v6). If we match (v5, v6),
no additional edges can be added. Hence, the unique matching of cardinality
3 that maximizes the number of internal edges is {(v2, v3), (v4, v5), (v6, v7)}.
The only unmatched vertex in this matching is v1. With the proof of The-
orem 4.1 in mind, let us verify that agent 1 cannot benefit by hiding v5

and v6. Given graph G′ in Figure 1(b), the mechanism would simply return
the matching (v2, v3), since this is the unique matching that is a maximum
cardinality matching on V2.

The two-agent mechanism suggested above seems promising from the per-
spective of strategyproofness. Let us extend it to an n-agent mechanism in
the natural way, and consider the mechanism that selects a matching of max-
imum cardinality among the matchings that have maximum cardinality on
each Vi, i = 1, . . . , n. In addition, let us break ties serially : among all the
matchings that meet the above criteria, we select a matching that maximizes
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v1

v2 v3 v4 v5 v6 v7 v8 v9

v10

(a) The original graph G, where the vertices of V1 are
white, the vertices of V2 are gray, and the vertices of V3

are black.

v1

v2 v3 v4 v5 v6 v7 v8 v9

v10

(b) The graph G′, agent 2 hides vertices v5 and v6.

Figure 2: The näıve 3-agent mechanism is not strategyproof.

the utility of agent 1; if there are several such matchings, we choose one that
maximizes the utility of agent 2, and so on.

Interestingly enough, this n-agent mechanism is not strategyproof,
even when n = 3. Consider graph G given in Figure 2(a). Any
matching that has maximum cardinality on V2 must match (v4, v5) and
(v6, v7); by the tie-breaking rule the mechanism then returns the matching
{(v2, v3), (v4, v5), (v6, v7), (v8, v9)}. When agent 2 hides v5 and v6 we obtain
graph G′ given in Figure 2(b). On this graph the mechanism returns a per-
fect matching {(v1, v2), (v3, v4), (v7, v8), (v9, v10)}. After internally matching
(v5, v6) agent 1 gains two additional matched vertices compared to the match-
ing on G. Clearly this example can be modified to work if ties are broken in
a different order.

The deeper reason why the above mechanism fails to be strategyproof is
rather subtle, and has to do with the following observation: if one takes the
union of the matchings generated on the graphs of Figures 2(a) and 2(b),
and contracts each Vi to one vertex, one obtains an odd-length cycle among
V1, V2, and V3, as the matching on G has an edge between V1 and V3, and the
matching on G′ has edges between V1 and V2, and V2 and V3. We proceed
to refine the above mechanism in order to avoid such odd cycles; this turns
out to be sufficient to guarantee strategyproofness. The following is in fact
a family of mechanisms, parameterized by a fixed bipartition Π = (Π1,Π2)
of the set of agents.
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MatchΠ

1. Given a graph G, consider all the matchings that have maximum car-
dinality on each Vi and do not have any edges between Vi and Vj when
i, j ∈ Πl for some l ∈ {1, 2}, i.e., those that maximize the number of
internal edges and do not have any edges between sets on the same side
of the bipartition.

2. Among these matchings select one of maximum cardinality, breaking
ties serially in favor of agents in Π1 and then agents in Π2.

By letting N = {1, 2}, Π1 = {1}, and Π2 = {2}, we obtain the two-agent
mechanism described above. The näıve generalization of this mechanism to
three agents, on the other hand, is not an instance of MatchΠ: for the
example of Figure 2 showing that the mechanism is not strategyproof, the
sets M12, M13, and M23 are all non-empty.

We proceed to show that MatchΠ is strategyproof for any bipartition of
the set of agents. The main idea behind the proof of this theorem is again
rather subtle. It relies on the fact that if one takes the union of the two
matchings produced by the mechanism before and after an agent hides some
of its vertices, then this union cannot contain a cycle that visits the vertex
sets of an odd number of agents. This property holds because the mechanism
does not match vertices of agents on the same side of the bipartition.

Theorem 5.1. For any number of agents, and for any bipartition Π of the
set of agents, MatchΠ is strategyproof.

Proof. Fix some bipartition Π = (Π1,Π2) of N . Consider a graph G, and
let M = MatchΠ(G). Assume that agent i ∈ N hides a subset of vertices,
inducing a subgraph G′, and let M ′ be the matching that results from ap-
plying the mechanism to G′, along with the internal matching of agent 1 on
its hidden and unmatched vertices, that is,

M ′ = MatchΠ(G′) ∪ M̂,

where M̂ is a maximum cardinality matching of agent i on its hidden and
unmatched vertices.

The symmetric difference

M∆M ′ = M ∪M ′ \ (M ∩M ′)
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then consists of vertex-disjoint paths (some of which may be cycles) with
alternating edges of M and M ′. For example, consider the two-agent version
of MatchΠ applied to graphs G and G′ given in Figures 1(a) and Figure 1(b).
It holds that

M = MatchΠ(G) = {(v2, v3), (v4, v5), (v6, v7)},

whereas, say, M ′ = {(v2, v3), (v5, v6)}. Then, M∆M ′ is the single path
{(v4, v5), (v5, v6), (v6, v7)} where the first and last edge are in M and the
middle edge is in M ′.

In order to simplify notation, we henceforth assume that M∆M ′ consists
of just one path. This assumption is made without loss of generality, because
we show that each such path satisfies one of the following properties: either
M matches at least as many vertices of Vi as M ′ for every i ∈ N , or one
can derive a contradiction to the way M or M ′ were selected by switching
between some (or all) of their edges on the path. Since the contradiction can
be derived for each path separately, it follows that the first property holds
on every path, that is, the overall utility of agent i for M is at least as large
as its utility for M ′.

If the path in M∆M ′ is a cycle, then this cycle must be of even length,
because otherwise there would be a vertex that is incident to two edges of
the same matching. It follows that both M and M ′ match all the vertices on
the cycle, hence agent i is indifferent between the two matchings. We may
therefore assume that M∆M ′ is not a cycle.

It will prove useful to arbitrarily fix a direction over the (undirected) edges
of the single path in M∆M ′. Since the path is not a cycle, this direction
pinpoints two specific vertices as the start and the end of the path. We
further say that the (directed) edge (u, v) enters Vj if u /∈ Vj and v ∈ Vj, and
exits Vj if u ∈ Vj and v /∈ Vj.

We consider two cases.
Case 1: |Mii| > |M ′

ii|. We claim that∑
j∈N\{i}

|Mij| ≥
∑

j∈N\{i}

|M ′
ij| − 2. (2)

Since both M and M ′ are maximum cardinality matchings on Vj for all
j 6= i, it must hold that every subpath of M∆M ′ on Vj has even length (see
Figure 3); otherwise we would have, say, more edges of M than M ′ on the
subpath, and by switching from M ′ to M on the subpath we would be able
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v1 v2 v3 v4 v5 v6 v7 v8

v9

v10v11v12v13v14

M ′ M M ′ M M ′ M M ′

M

M ′
MM ′MM ′

V2 V1 V3

Figure 3: Illustration of Case 1 of the proof of Theorem 5.1, with i = 1 as the manipulator,
and Π = ({1}, {2, 3}). M∆M ′ is shown as a single directed path with alternating edges
of M and M ′. It holds that 3 = |M11| > |M ′

11| = 2. Every subpath inside V2 and V3 has
even length (those from v1 to v3 and from v8 to v10), but subpaths inside V1 may not have
(like that from v4 and v7). The subpath of M∆M ′ \ (M11 ∪M ′

11) from v1 to v4 enters V1

but does not exit it, while the subpath from v13 to v14 exits V1 but does not enter it. This
example satisfies (2) with equality.

to increase the size of M ′ on Vj. This implies that for any j ∈ N \ {i}, any
subpath entering Vj with an edge of M ′ must exit Vj with an edge of M , and
any subpath entering Vj with and edge of M must exit Vj with an edge of
M ′.

The next part of the proof is crucial, and uses the main idea behind
mechanism MatchΠ. We argue that it also holds that when the path exits
Vi with an edge of M ′ it can only enter Vi again, the first time after exiting,
with an edge of M . Assume without loss of generality that i ∈ Π1. By the
above argument the subpath that exits Vi immediately enters Vj1 , for some
j1 ∈ Π2, with an edge of M ′, and therefore next exits it with an edge of M ,
thus entering Vj2 for some j2 ∈ Π1. If j2 6= i, and the subpath exits Vj2 , then
it does so with an edge of M ′, and by the same arguments returns to the
vertex set of an agent in Π1 with an edge of M . If eventually the subpath
enters Vi again, it must be with an edge of M . Analogously, if the subpath
exits Vi with an edge of M , it can only enter Vi with an edge of M ′. See
Figure 3 for an illustration.

Now consider (M∆M ′)\(Mii∪M ′
ii), which again is a collection of vertex-

disjoint subpaths. Some start and end in Vi, and it follows by the discussion
above that such subpaths have exactly one edge in Mij and one edge in M ′

ik,
for k, j ∈ N \ {i}. There can only be one subpath that starts in Vi but does
not end in Vi, and at most one subpath that ends in Vi but does not start in
Vi. Equation (2) directly follows.
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We now have that

ui(M) = 2|Mii|+
∑

j∈N\{i}

|Mij|

≥ 2(|M ′
ii|+ 1) +

( ∑
j∈N\{i}

|M ′
ij| − 2

)
= ui(M

′),

where the inequality follows from the fact that |Mii| > |M ′
ii| and from (2).

Case 2: |M ′
ii| = |Mii|. Note that it holds that |Mjj| = |M ′

jj| for all j ∈ N ,
that is, M∆M ′ has to be of even length inside every Vj. This includes Mii

and M ′
ii, because the total number of internal edges for i is even. If some

subpath of i’s internal edges has odd length with more edges from M there
must be another subpath with more internal edges from M ′. Swapping the
edges of M for those of M ′ in the second subpath results in a matching
M ′′ such that |M ′′

ii| > |Mii|, contradicting the construction of M to have
maximum cardinality on each Vi. It follows that |M | ≥ |M ′|, since M is a
maximum cardinality matching under the constraint that it has maximum
cardinality inside each Vi.

We claim that if |M | > |M ′| then
∑

j |Mij| ≥
∑

j |M ′
ij|. Together with

the assumption that |M ′
ii| = |Mii| this implies that agent i cannot benefit.

Indeed, in this case M∆M ′ is a path of odd length that starts and ends with
an edge of M . Recall that every subpath of M∆M ′ consisting of i’s internal
edges has even length. This means that when the path enters Vi with an edge
of M ′ it cannot end inside Vi, as otherwise it would end with an edge of M ′.
In other words, every time the path enters Vi with an edge of M ′ it must exit
Vi with an edge of M . Similarly, every time the path exits Vi with an edge
of M ′ it must have entered Vi with an edge of M , otherwise the path must
start in Vi with an edge of M ′. This proves our claim, so we can assume that
|M | = |M ′|.

Suppose that |M | = |M ′|. Therefore M∆M ′ has even length, and more-
over we know it has even length inside each Vk. Note that all the vertices on
the path are matched under both M and M ′, except for the start and the
end vertices. Hence, if agent i gains from the manipulation, it must be the
case (when fixing a specific direction on the edges) that the start vertex is a
vertex of Vi and the first edge is an edge of M ′, whereas the end vertex is in
Vj, for some j ∈ N \ {i}, and the last edge is an edge of M .

Now, if tie-breaking favors i over j, then by switching the edges of M with
those of M ′ we get a matching of equal size that has maximum cardinality
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v1 v2 v3 v4 v5 v6 v7
M ′ M M ′ M M ′ M

M ′′ M ′′ M ′′

Figure 4: An illustration of the last argument in Case 2 of the proof of Theorem 5.1 with
i = 3 and j = 2. The vertices of V1 are white, the vertices of V2 are gray, and the vertices of
V3 are black. By switching from M ′ to M ′′ we increase the utility of agent 2 and decrease
the utility of agent 3, thereby obtaining a legal matching that contradicts the choice of
M ′.

on each Vk and is better for i, in contradiction to the tie-breaking rule. We
will therefore assume that tie-breaking favors j over i. Consider the subpath
ρ of M∆M ′ that starts with the last edge that exits Vi and ends with the
last edge in M∆M ′. We argue that ρ must start with an edge of M ′. To see
why, note that M∆M ′ starts in Vi with an edge of M ′. Since the subpaths
of M∆M ′ in Vi have even length, it exits with an edge of M ′. By the same
argument as in Case 1, the bipartition ensures that, if M∆M ′ re-enters Vi,
it does so with an edge from M . Since all subpaths of M∆M ′ in Vi are of
even length, the path always exits Vi with an edge of M ′.

By replacing all the edges of M ′ with the edges of M on ρ, we obtain a
matching M ′′ that is identical to M ′ inside Vi, has maximum cardinality on
Vk for each k ∈ N , is as large as M ′ overall, and satisfies uj(M

′′) = uj(M
′)+1,

ui(M
′′) = ui(M

′) − 1, and uk(M ′′) = uk(M ′) for all k ∈ N \ {i, j}. This is
a contradiction, since M ′′ should have been chosen over M ′ due to the way
the mechanism breaks ties. See Figure 4 for an illustration.

We next show that MatchΠ can be executed in polynomial time by a
reduction to the maximum weighted matching problem (for a polynomial
time algorithm for the latter see Gabow, 1990).

Theorem 5.2. MatchΠ can be executed in polynomial time.

Proof. Assume without loss of generality that |E| > 1, and let εi = 1/|E|i+1.
We assign weights to edges as follows. An (internal) edge (u, v) such that
u, v ∈ Vi for some i ∈ N receives weight |E| + 3. An (external) edge (u, v)
such that u ∈ Vi and v ∈ Vj with i ∈ Π1 and j ∈ Π2 receives weight
1 + εi + εj/|E|n+1. An (external) edge (u, v) such that u ∈ Vi and v ∈ Vj
with i 6= j but i, j ∈ Π1 or i, j ∈ Π2 receives weight 0.

The sum of the weights of all external edges is at most |E|(1 + 1/|E|2 +
1/|E|n+3) < |E| + 3, which is less than the weight of a single internal edge.
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Thus a maximum weight matching of this graph maximizes the number of
internal edges. All edges between sets on the same side of the bipartition
have weight zero, so no such edges will be included.

To complete the proof we need to verify that the maximum weight match-
ing has maximum cardinality among those with a maximum number of in-
ternal edges and no edges across the bipartition, and that ties are broken
appropriately. Each edge across the bipartition has weight at least 1 and at
most 1 + 1/|E|2 + 1/|E|n+3. Thus, given two matchings M and M ′ satisfying
the above constraints such that |M | > |M ′|, the difference in their weights is
at least

1− |M ′|(1/|E|2 + 1/|E|n+3) ≥ 1− |E|(1/|E|2 + 1/|E|n+3)

= 1− 1/|E| − 1/|E|n+2 > 0.

The maximum weight matching thus has maximum cardinality subject to the
constraints. For tie-breaking, observe that εi ≥ |E|εj if i < j, meaning that
among agents on the same side of the bipartition those with smaller indices
have higher priority. The factor of 1/|E|n+1 finally ensures that agents in Π1

have priority over agents in Π2.

Recall that by Theorem 4.1 no deterministic strategyproof mechanism can
have an approximation ratio smaller than 2, even when there are only two
agents. We will see momentarily that MatchΠ provides an approximation
ratio of 2 when N = {1, 2} and Π = ({1}, {2}), i.e., it is the best possible
deterministic strategyproof mechanism for the case of two agents. Indeed,
consider a graph G, let M∗ be an optimal matching of G, and M the matching
returned by Match({1},{2}). M is inclusion-maximal. Therefore, for every
(u, v) ∈ M∗, either u is matched by M or v is matched by M . We conclude
that |M | ≥ |M∗|/2. Strategyproofness is obtained from Theorem 5.1.

Corollary 5.3. Let N = {1, 2}. Then, Match({1},{2}) is strategyproof and
provides a 2-approximation.

Unfortunately, when n ≥ 3, MatchΠ does not provide a finite approx-
imation ratio for any fixed bipartition. To see this, let Π = (Π1,Π2) be
a bipartition of the set of agents. Then there must be two distinct agents
i, j ∈ N such that i, j ∈ Πl for some l ∈ {1, 2}. Now consider a graph
where the only edge is an external edge between Vi and Vj; given this graph
MatchΠ returns an empty matching, whereas the optimum is a matching of
cardinality 1.
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6. Randomized Mechanisms

We have seen above that MatchΠ does not provide a bounded approxi-
mation ratio for any fixed bipartition Π. The natural next step is to choose
the bipartition uniformly at random. This leads to the eponymous Mix-
and-Match mechanism.

Mix-and-Match

1. Mix: Construct a random bipartition Π = (Π1,Π2) of the agents by
independently flipping a fair coin for each agent to determine whether
the agent is in Π1 or in Π2.

2. Match: Apply MatchΠ to the given graph, where Π is the bipartition
constructed in Step 1.

It immediately follows from Theorem 5.1 that Mix-and-Match is strat-
egyproof, and in fact in a stronger sense than the one defined in Section 3,
namely universal strategyproofness. A randomized mechanism is called uni-
versally strategyproof if agents cannot gain by lying regardless of the random
choices made by the mechanism, i.e., if the mechanism is a distribution over
strategyproof deterministic mechanisms.

A näıve analysis of Mix-and-Match would yield a rather unimpressive
approximation ratio. Indeed, the reason why Match({1},{2}) does not provide
a better approximation ratio than two is that it may have to sacrifice two
external edges for one internal edge. The fact that Mix-and-Match will not
be able to match many of the edges in the graph because they are not between
the two elements of the constructed bipartition would seem to cause the
approximation ratio to deteriorate further. Fortunately, these two problems
effectively cancel out: sacrificing two external edges for an internal edge is
less of a problem when each of those external edges is allowed to be part
of the matching for only half of the bipartitions. Formally, we prove the
following result.

Theorem 6.1. For any number of agents, Mix-and-Match is (universally)
strategyproof and provides a 2-approximation.

Proof. We prove the theorem by taking a maximum cardinality matching M∗

and constructing a matching M ′ that, when restricted to a random biparti-
tion Π (by removing edges between agents on the same side of the biparti-
tion), has at least half the size of M∗ in expectation. We then show that the
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matching produced by MatchΠ is always at least as large as M ′ restricted
to Π.

Consider a graph G, and let M∗ be a maximum cardinality matching of
G. For each i ∈ N , let M∗∗

i be a maximum cardinality matching on Vi, and
let M∗∗ =

⋃
i∈N M

∗∗
i .

We construct a matching M ′ as follows. Consider the symmetric dif-
ference M∗∆M∗∗ which, as in Theorem 5.1, consists of a set of paths with
alternating edges of M∗ and M∗∗. For each alternating path in the symmet-
ric difference, if there are more internal edges among the edges from M∗∗, we
add these edges to M ′. Otherwise, we add the edges from M∗ to M ′ (note
that this is where external edges can be added to M ′).

Since M∗∗ has maximum cardinality on each Vj and M ′ has at least as
many internal edges from each path as M∗∗, M ′ has maximum cardinality
on each Vj. Furthermore, since M∗ is a maximum cardinality matching, each
path has either the same number of edges from M∗ and M∗∗ or one extra
edge from M∗. In any given path, all external edges are from M∗, so if the
edges from M∗∗ on the path are chosen to be in M ′ then the number of
internal edges gained relative to M∗ is at least the number of external edges
lost minus one. In the worst case M ′ has two fewer external edges for each
extra internal edge relative to M∗. Thus M ′ satisfies∑

i∈N

(|M ′
ii| − |M∗

ii|) ≥
1

2

∑
i∈N

∑
j>i

(|M∗
ij| − |M ′

ij|),

where we sum over j > i so as not to count the same edges twice. Rearrang-
ing, we get∑

i∈N

|M ′
ii|+

1

2

∑
i∈N

∑
j>i

|M ′
ij| ≥

∑
i∈N

|M∗
ii|+

1

2

∑
i∈N

∑
j>i

|M∗
ij|. (3)

Now let MΠ be the matching produced by MatchΠ for the fixed bi-
partition Π. Since MΠ has maximum cardinality under the constraints, we
have

|MΠ| =
∑
i∈N

|MΠ
ii |+

∑
i∈Π1

∑
j∈Π2

|MΠ
ij | ≥

∑
i∈N

|M ′
ii|+

∑
i∈Π1

∑
j∈Π2

|M ′
ij|.

Since each pair of agents appears on opposite sides in exactly half of
the bipartitions, the expected size of the matching produced by Mix-and-
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v1 v2 v3 v4

Figure 5: Graph illustrating that Mix-and-Match cannot provide an approximation ratio
smaller than two. V1 is shown in white, V2 is shown in gray. Mix-and-Match returns the
matching (v2, v3).

Match is∑
Π

(
1

2n
· |MΠ|

)
≥
∑
i∈N

|M ′
ii|+

1

2

∑
i∈N

∑
j>i

|M ′
ij|

≥
∑
i∈N

|M∗
ii|+

1

2

∑
i∈N

∑
j>i

|M∗
ij| ≥

1

2
· |M∗|,

where the second inequality follows from (3).

The graph in Figure 5 shows that the analysis of Mix-and-Match is
tight even for n = 2. Still one might hope to do better, given that Theo-
rem 4.1 only provides a randomized lower bound of 8/7, and indeed Cara-
giannis et al. (2011) recently were able to provide an upper bound of 3/2 for
the case where n = 2 using the following mechanism.

Weight-and-Match

1. Given a graph G, assign a weight of 1 to internal edges and a weight
of 1/2 to external edges.

2. Flip a fair coin.

3. If the outcome is heads, return a maximum-cardinality matching among
all maximum-weight matchings.

4. If the outcome is tails, return a minimum-cardinality matching among
all maximum-weight matchings.

Despite the improvement over Mix-and-Match for the case of two
agents, this mechanism still leaves a small gap between the randomized upper
and lower bounds.

7. Average-Case Performance

In the worst case, Mix-and-Match achieves only half of the maximum
social welfare, and in fact no strategyproof mechanism can do much better. It
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is therefore natural to ask how Mix-and-Match performs in practice, where
the occurrence of a worst-case instance may be very unlikely. To answer this
question, we simulate the practical performance of Mix-and-Match using
incompatible donor-patient pairs drawn at random according to realistic pa-
rameters, and compare it to the optimal outcome without manipulation as
well as to the outcome obtained when hospitals match their donor-patient
pairs internally and reveal only the unmatched ones.

The comparison is done for a varying number n of hospitals, each with k
patients.8 For given values of n and k, we generate 400 graphs, each of which
is obtained by generating patients and donors until the desired number nk
of incompatible pairs is reached. Each patient is assigned a blood type and
a number [0, 1] representing the likeliness of a tissue-type incompatibility
with a random donor. Both are drawn from realistic distributions: we use
probabilities of 48%, 34%, 14%, and 4% for blood types O, A, B, and AB;
the probability for tissue-type incompatibility is set to 0.05 with probabil-
ity 70%, to 0.45 with probability 20%, and to 0.9 with probability 10% (cf.
Roth et al., 2007a). For each donor, we draw a blood type and a uniform
random number in [0, 1]. If a patient and its corresponding donor have in-
compatible blood types or if the number of the donor is smaller than that
of the patient (corresponding to a negative outcome of the so-called Panel
Reactive Antibody test), they are added to the pool of incompatible pairs.
Otherwise they are considered compatible and are discarded. Compatibility
between any pair of vertices—each corresponding to an incompatible donor-
patient pair—is determined analogously, resulting in a random graph with
nk vertices. Finally, the vertices are partitioned into n sets, each of which
corresponds to a hospital.

Results for the three outcomes, averaged across all 400 graphs, are shown
in Table 1. Since the performance of Mix-and-Match depends on the
bipartition, it is run 200 times on each graph, each time with a different
random partition. We also repeated the experiment for a harder-to-match
population in which a patient is added only after being incompatible with
between 1 and 4 potential donors, with the number of such donors chosen
uniformly at random. The results for this type of population did not show a
significant difference, and are therefore omitted.

8Values of k were chosen to limit the overall size of the graph nk since each experiment
involves repeatedly solving many graphs.
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n k opt mm selfish 1h-opt se-opt se-mm

2 5 1.88 1.84 1.82 0.01 0.09 0.08
2 10 4.78 4.70 4.59 0.10 0.13 0.13
2 20 12.19 11.92 11.49 0.34 0.21 0.20
2 30 20.81 20.52 19.68 0.42 0.26 0.26
2 50 39.74 38.83 37.34 0.56 0.38 0.37
2 100 91.44 88.99 85.75 0.72 0.51 0.49
2 150 146.51 142.54 138.10 0.78 0.66 0.65
2 200 200.54 194.67 189.04 0.82 0.72 0.69
4 5 4.85 3.65 4.52 0.02 0.15 0.11
4 10 12.32 10.09 11.39 0.16 0.20 0.17
4 15 21.02 17.28 19.39 0.30 0.26 0.22
4 20 30.11 24.98 27.86 0.40 0.36 0.30
4 30 49.64 42.23 45.79 0.58 0.39 0.36
4 50 91.05 79.26 83.48 0.73 0.50 0.45
4 100 201.61 180.46 183.50 0.95 0.80 0.71
4 150 312.45 283.28 283.69 0.89 0.95 0.84

10 5 16.27 12.73 15.35 0.09 0.23 0.19
10 10 41.11 33.17 37.94 0.24 0.33 0.28
10 15 65.05 53.28 60.03 0.40 0.44 0.35
10 20 91.28 76.14 83.77 0.51 0.53 0.44
10 30 146.10 124.90 133.60 0.72 0.63 0.54
20 5 39.31 31.20 37.11 0.06 0.34 0.26
20 10 91.08 74.76 84.46 0.27 0.54 0.43
20 15 146.40 123.74 135.12 0.44 0.68 0.55
20 20 201.65 173.16 185.05 0.54 0.73 0.60
30 5 64.59 52.32 61.03 0.10 0.43 0.34
30 10 145.62 122.82 135.95 0.32 0.66 0.55
30 15 229.16 197.66 212.11 0.46 0.82 0.69

Table 1: Performance of Mix-and-Match, the optimal outcome, and heuristic strategic
behavior.

The columns labeled “opt”, “mm”, and “selfish” respectively report the
number of patients matched for the optimal matching, Mix-and-Match,
and hospitals “selfishly” matching as many patients as possible internally
before submitting the rest to the pool. The next two columns give the per-

22



formance of Mix-and-Match relative to the other two outcomes. While
Mix-and-Match is consistently worse than the optimal outcome, it is also
significantly better than the worst-case bound of 0.5. In general, it is within
a few percent of the optimum for n = 2, and within 15% of the optimum for
larger values of n when k is sufficiently large. Of course, we would not expect
the outcome of a mechanism that simply finds a maximum matching to be as
good as this optimal outcome in practice. The column labeled “1h-opt” lists
the fraction of instances in which a particular hospital would gain in such
a mechanism by withholding a maximum internal matching. Observe that
as the hospital size grows this percentage becomes very high. This suggests
that most hospitals will have an incentive to deviate, leading to an outcome
closer to the “selfish” one.

The last two columns report standard errors of performance across the
400 graphs. As Mix-and-Match uses randomization internally, we also
calculated standard deviations on each graph. We do not give a full table,
but note that standard deviation increase with the size of the pool with
averages of 2.24, 5.88, 8.69, and 9.7 when n is 4 and k is 5, 50, 100, and 150,
respectively. Other choices of n and k that yield the same overall pool size
lead to similar standard deviations.

For n = 2, Mix-and-Match performs better than the selfish outcome
(in fact, it is easy to see that this must be the case), especially when k is
large. This result suggests that strategyproofness may have a positive effect
on social welfare in certain practical settings, and is particularly relevant for
mergers between exchange programs, each of which represents the patients
of a large number of hospitals.

The conclusion in the opposite direction, that strategyproofness is unde-
sirable for settings with more than two hospitals, cannot easily be drawn,
since the selfish outcome is not an equilibrium. To further investigate this
matter we conducted another computational experiment with a small change
to Mix-and-Match, so that it no longer prevents patients of hospitals on
two sides of a bipartition from being matched. While the resulting mechanism
is not strategyproof, it makes manipulation more difficult in practice. We
refer to the mechanism as Max-IR, because it returns a maximum matching
subject to individual rationality.

Results for Max-IR are given in Table 2. The rightmost column shows
the fraction of instances in which a particular hospital would gain by with-
holding a maximum internal matching. This fraction is significantly smaller
compared to the optimal outcome. The third and fourth columns compare
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n k mi/o mi/s 1h-mi

2 5 0.97 1.02 0.00
2 10 0.99 1.03 0.00
2 20 0.98 1.04 0.00
2 30 0.98 1.04 0.00
2 50 0.98 1.04 0.00
2 100 0.97 1.03 0.00
2 150 0.97 1.03 0.00
2 200 0.97 1.03 0.00
4 5 0.97 1.02 0.00
4 10 0.96 1.03 0.04
4 15 0.97 1.05 0.06
4 20 0.96 1.04 0.07
4 30 0.96 1.04 0.10
4 50 0.96 1.04 0.13
4 100 0.95 1.04 0.16
4 150 0.95 1.04 0.15

n k mi/o mi/s 1h-mi

10 5 0.95 1.01 0.01
10 10 0.95 1.03 0.03
10 15 0.95 1.04 0.10
10 20 0.96 1.04 0.12
10 30 0.95 1.05 0.22
20 5 0.96 1.02 0.00
20 10 0.96 1.03 0.03
20 15 0.95 1.04 0.11
20 20 0.95 1.04 0.15
30 5 0.96 1.01 0.00
30 10 0.96 1.03 0.04
30 15 0.96 1.04 0.12

Table 2: Comparison of Max-IR and the optimal outcome.

the performance of Max-IR to the optimal and selfish outcomes. We ob-
serve that the cost of using Max-IR compared to the optimal outcome is
small (always less than 5%), while Max-IR provides more than a 3% im-
provement compared to a situation where hospitals withhold donor-patient
pairs. We emphasize though that we are making the strong assumption that
hospitals report all their donor patient-pairs under Max-IR; this is of course
a plausible assumption to make under Mix-and-Match, which is provably
strategyproof, but it is difficult to predict how hospitals would behave when
faced with the Max-IR mechanism.

8. Discussion and Future Work

We have seen that Mix-and-Match provides near-optimal worst-case
guarantees: the outcome it achieves is always within a factor of two of the
optimal matching, which matches the lower bound for deterministic mecha-
nisms and is close to the lower bound for randomized mechanisms. While a
factor of two might not be acceptable in practice, in particular in the con-
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text of kidney exchanges, simulations suggest a practical performance that is
much closer to optimal and sometimes better than that of mechanisms that
incentivize agents to hide donors and patients and match them internally.
More importantly, what distinguishes Mix-and-Match from mechanisms
that are not strategyproof9 is that it is robust against information asymme-
tries, has zero deliberation cost, and zero ex-post regret. Arguably, all of
these properties are important in the context of kidney exchanges.

An aspect of Mix-and-Match that might be problematic in practice is
that it prevents vertices of agents on the same side of the bipartition to be
matched: it may be hard to convince hospitals that they best serve their
patients by refusing to match them with patients of roughly half of the other
hospitals, despite the fact that this would not have a negative impact on
social welfare, neither in the worst case nor on average assuming there are
sufficiently many patients. One might therefore ask to what extent this char-
acteristic of Mix-and-Match is necessary to guarantee strategyproofness
and large social welfare, or one could more generally try to characterize the
set of strategyproof mechanisms. Our results suggest that there probably
is no simple characterization: quite a few straightforward mechanisms are
instances of MatchΠ, like the one that only allows edges inside hospitals,
but a mechanism that selects two agents and runs the two-agent mechanism
on these agents is not.10

Several gaps still remain between our upper and lower bounds, the most
enigmatic one of which concerns deterministic mechanisms for three or more
agents. While Theorem 4.1 provides a deterministic lower bound of 2, we were
unable to design a deterministic strategyproof mechanism with a constant
approximation ratio, and indeed we conjecture that such a mechanism does
not exist when there are more than two agents. For randomized mechanisms,
there is a gap between the lower bound of 8/7 and the upper bound of 2
provided by Mix-and-Match. For the two-agent case, Caragiannis et al.
(2011) recently provided a strategyproof 3/2-approximate mechanism, but it
is unknown whether this improved upper bound is tight.

An interesting direction for future work would be to incorporate weights

9This includes mechanisms that are not incentive compatible, but also mechanisms
satisfying weaker notions of incentive compatibility like the one proposed by Ashlagi and
Roth (2011).

10While these examples are fairly close to MatchΠ, we are also aware of a (relatively
complex) strategyproof mechanism that works quite differently.
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into the model. In practice, different exchanges involving the same vertex
may be valued differently, either by an agent or by society, or one vertex
may be more important than another. Another direction would be to allow
exchanges of length greater than two. This is important, as the number
of matched vertices can be increased substantially already through three-
way exchanges (Roth et al., 2007a). Finally, one could ask for the stronger
requirement of group-strategyproofness to prevent groups of agents to deviate
in a coordinated fashion, or consider solution concepts like the core to ensure
that no group of agents would want to leave and form a smaller pool.
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