
Troubleshooting Wireless Mesh Networks
Lili Qiu Paramvir Bahl Ananth Rao Lidong Zhou

lili@cs.utexas.edu bahl@microsoft.com ananthar@cs.berkeley.edu lidongz@microsoft.com
Univ. of Texas at Austin Microsoft Research UC Berkeley Microsoft Research

ABSTRACT
Effective network troubleshooting is critical for maintaining effi-
cient and reliable network operation. Troubleshooting is especially
challenging in multi-hop wireless networks because the behavior of
such networks depends on complicated interactions between many
factors such as RF noise, signal propagation, node interference,
and traffic flows. In this paper we propose a new direction for re-
search on fault diagnosis in wireless mesh networks. Specifically,
we present a diagnostic system that employs trace-driven simula-
tions to detect faults and perform root cause analysis. We apply
this approach to diagnose performance problems caused by packet
dropping, link congestion, external noise, and MAC misbehavior.
In a 25 node mesh network, we are able to diagnose over 10 si-
multaneous faults of multiple types with more than 80% coverage.
This demonstrates the promise of our approach.

1. INTRODUCTION
There is widespread grassroots interest in community and rural-

area wireless mesh networks. Mesh networks grow organically as
users buy and install equipment, but they often lack centralized net-
work management. Therefore, self-management and self-healing
capabilities are key to the long-term survival of these networks. It
is this vision that inspires us to research network troubleshooting
in multihop wireless networks.

Troubleshooting a network, may it be wired or wireless, is a
difficult problem. This is because a network is a complex sys-
tem with many inter-dependent factors that affect its behavior. The
factors include networking protocols, traffic flows, hardware, soft-
ware, different faults, and most importantly the interactions be-
tween them. Troubleshooting a multihop wireless network is even
more difficult due to unreliable physical medium, fluctuating envi-
ronmental conditions, complicated wireless interference, and lim-
ited network resources. We know of no heuristic or theoretical tech-
nique that captures these interactions and explains the behavior of
such networks.

To address these challenges, we propose a novel troubleshoot-
ing framework that integrates a network simulator into the man-
agement system for detecting and diagnosing faults occurring in an
operational network. We collect traces, post-process them to re-
move inconsistency, and then use them to recreate in the simulator
the events that took place inside the real network. Note that while
simulation has been applied to network management, such as per-
formance tuning and what-if analysis for route simulation, to our
knowledge there is no previous work that uses simulation to detect
and identify network faults.

For our system to work, we must solve two problems: (i) ac-
curately reproduce inside the simulator what just happened in the
operational network; and (ii) use the simulator to perform fault de-
tection and diagnoses.

We address the first problem by taking an existing network simu-
lator (e.g., Qualnet [16], a commercially available packet-level net-
work simulator) and identify the traces to drive it with. (Note: al-
though we use Qualnet in our study, our technique is equally appli-
cable to other network simulators, such as NS-2, OPNET etc.). We
concentrate on physical and link layer traces, including received
signal strength, and packet transmission and retransmission counts.

We replace the lower two networking layers in the simulator with
these traces to remove the dependency on generic theoretical mod-
els that do not capture the nuances of the hardware, software, and
radio frequency (RF) environment.

We address the second problem with a new fault diagnosis scheme
that works as follows: the performance data emitted by the trace-
driven simulator is considered to be the expected baseline (“nor-
mal”) behavior of the network and any significant deviation indi-
cates a potential fault. When a network problem is reported/suspected,
we selectively inject a set of possible faults into the simulator and
observe their effect. The fault diagnosis problem is therefore re-
duced to efficiently searching for the set of faults which, when in-
jected into the simulator, produce network performance that matches
the observed performance. This approach is significantly different
from the traditional signature based fault detection schemes.

Our system has the following three benefits. First, it is flexi-
ble. Since the simulator is customizable, we can apply our fault
detection and diagnosis methodology to a large class of networks
operating under different environments. Second, it is robust. It can
capture complicated interactions within the network and between
the network and the environment, as well as among the different
faults. This allows us to systematically diagnose a wide range and
combination of faults. Third, it is extensible. New faults are han-
dled independently of the other faults as the interaction between the
faults is captured implicitly by the simulator.

We have applied our system to detect and diagnose performance
problems that arise from the following four faults:

• Packet dropping. This may be intentional or may occur be-
cause of hardware and/or software failure in the networked
nodes. We care about persistent packet dropping.

• Link congestion. If the performance degradation is because
of too much traffic on the link, we want to be able to identify
this.

• External noise sources. RF devices may disrupt on-going
network communications. We concern ourselves with noise
sources that cause sustained and/or frequent performance degra-
dation.

• MAC misbehavior. This may occur because of hardware or
firmware bugs in the network adapter. Alternatively, it may
be due to malicious behavior where a node deliberately tries
to use more than its share of the wireless medium.

The above faults are more difficult to detect than fail-stop errors
(e.g., a node turns itself off due to power or battery outage), and
they have relatively long lasting impact on performance. Moreover,
while we focus on multihop wireless networks, our techniques may
be applicable for wireless LANs, as well.

We demonstrate our system’s ability to detect random packet
dropping and link congestion in a small multihop IEEE 802.11a
network. We demonstrate detection of external noise and MAC
misbehavior via simulations because injecting these faults into the
testbed in a controllable manner is difficult. In a 25 node multi-
hop network, we find that our troubleshooting system can diagnose
over 10 simultaneous faults of multiple types with more than 80%
coverage and very few false positives.

To summarize, the primary contribution of our paper is to show
that a trace-driven simulator can be used as an analytical tool in
a network management system for detecting, isolating, and diag-
nosing faults in an operational multihop wireless network. In the
context of this system, we make the following three contributions:

• We identify traces that allow a simulator to mimic the multi-
hop wireless network being diagnosed.

• We present a generic technique to eliminate erroneous trace
data.

• We describe an efficient search algorithm and demonstrate
its effectiveness in diagnosing multiple network faults.

The rest of this paper is organized as follows. We describe the
motivation for this research and give a high-level description of our
system in Section 2. We discuss system design rationale in Sec-
tion 3. We show the feasibility of using a simulator as a diagnostic
tool in Section 4. In Section 5, we present fault diagnosis. In Sec-
tion 6, we describe the prototype of our network monitoring and
management system. We evaluate the overhead and effectiveness
of our approach in Section 7, and discuss its limitations and fu-
ture research challenges in Section 8. We survey related work in
Section 9, and conclude in Section 10.

2. SYSTEM OVERVIEW
Our management system consists of two distinct software mod-

ules. Anagent that runs on every node, gathers information from
various protocol layers and the wireless network card. It reports this
information to a management server, calledmanager. The manager
analyzes the data and takes appropriate actions. The manager may
run on a single node (centralized architecture), or may run on a set
of nodes (decentralized architecture) [17].

Our troubleshooting involves three steps: data collection, data
cleaning, and root cause analysis. During the data collection step,
agents continuously collecting and transmitting their (local) view of
the network’s behavior to the manager(s). Examples of the infor-
mation sent include traffic statistics, received packet signal strength
on various links, and re-transmission counts on each link.

It is possible that the data the manager receives from the var-
ious agents results in an inconsistent view of the network. Such
inconsistencies could be the result of topological and environmen-
tal changes, measurement errors, or misbehaving nodes. TheData
Cleaning module of the manager resolves inconsistencies before
engaging the analysis model.

interference
injection

network
topology

wireless
network

simulation

fault
directory

+/-
topology
updates

link load

link RSS

link loss rates
& throughput

error

error

{Link,Node,Fault}

link loss
rates &

throughput

N
E
T
W
O
R
K

R
E
P
O
R
T
S

Figure 1: Root cause analysis module

After the inconsistencies have been resolved, the cleaned trace
data is fed into the root-cause analysis module which contains a
modified network simulator (see Figure 1). The analysis module
drives the simulator with the cleaned trace data and establishes the

expected normal performance for the given network configuration
and traffic patterns. Faults are detected when the expected perfor-
mance does not match the observed performance. Root cause for
the discrepancy is determined by efficiently searching for the set
of faults that results in the best match between the simulated and
observed network performance.

3. DESIGN RATIONALE
A wireless network is a complex system with many inter-dependent

factors that affect its behavior. We know of no heuristic or theo-
retical technique that captures these interactions and explains the
behavior of such networks. In contrast, a high quality simulator
provides valuable insights on what is happening inside the network.

As an example, consider a 7 * 3 grid topology network shown
in Figure 2. Assume there are 5 long-lived flowsF1, F2, F3, F4

and F5 in the network, each with the same amount of traffic to
communicate. All adjacent nodes can hear one another and the
interference range is twice the communication range. F1 interferes
with F2, and similarly F5 interferes with F4. However, neither F1
nor F5 interferes with F3. Table 1 shows the throughput of the
flows when each flow sends CBR traffic at a rate of 11 Mbps. As
we can see, the flowF3 receives much higher throughput than the
flowsF2 andF4.

A simple heuristic may lead the manager to conclude that flow
F3 is unduly getting a larger share of the bandwidth, whereas an
on-line trace-driven simulation will conclude that this is normal be-
havior. This is because the simulation takes into account the traffic
flows and link quality, and based on the reported noise level it de-
termines that flowsF1 andF5 are interfering with flowsF2 and
F4, therefore allowingF3 a open channel more often. Thus, the
fact thatF3 is getting a greater share of the bandwidth will not be
flagged as a fault by the simulator.

Figure 2: The flow F3 gets a much higher share of the band-
width than the flows F2 and F4, even though all the flows have
the same application-level sending rate. A simple heuristic may
conclude that nodes D and R are misbehaving, whereas simu-
lation can correctly determine the observed throughput is ex-
pected.

Consequently, a good simulator is able to advise the manager on
what constitutes normal behavior. When the observed behavior is
different from what is determined to be normal, the manager can
invoke the fault search algorithms to determine the reasons for the
deviation.

In addition, while it might be possible to apply traditional signature-
based or rule-based fault diagnosis approach to a particular type
of network under a specific environment and configuration, simple
signatures or rules do not capture the intrinsic complexity of fault
diagnosis in general settings. In contrast, a simulator is customiz-
able and with appropriate parameter settings, it can be applied to a
large class of networks under different environments. Fault diag-
nosis built on top of such a simulator inherits its generality.

Finally, recent advances in simulators for multihop wireless net-
works, as evidenced in products such as Qualnet, have made the use
of a simulator for real-time on-line analysis a reality. For example,
Qualnet [16] can simulate 250 nodes in less than real-time on 3.2

F1 F2 F3 F4 F5

2.50 Mbps 0.23 Mbps 2.09 Mbps 0.17 Mbps 2.55 Mbps

Table 1: Throughput of 5 competing flows in Figure 2

GHz Pentium IV processor with 2 GB of RAM. Such simulation
speed is sufficient for the size of a network, up to a few hundred
nodes, we intend to manage.

4. SIMULATOR ACCURACY
We now turn our attention to the following question: “Can we

build a fault diagnosis system using on-line simulations as the core
tool?” The answer to the question cuts to the heart of our work.
The viability of our system hinges on the accuracy with which the
simulator can reproduce observed network behavior. To answer
this question, we quantify the challenge in matching the behavior
of the network link layer and RF propagation. We then evaluate the
accuracy of trace-driven simulation.

4.1 Physical Layer Discrepancies
Factors such as variability of hardware performance, RF envi-

ronmental conditions, and presence of obstacles make it difficult
for simulators to model wireless networks accurately [9]. We fur-
ther confirm this using measurement. Our results in [15] show that
the theoretical model does not estimate the RSS accurately, because
it fails to take into account obstacle and multipath. Accurate mod-
eling and prediction of wireless conditions is a hard problem to
solve in its full generality, but by replacing theoretical models with
data obtained from the network we are able to significantly improve
network performance estimation as we will show later.

4.2 Baseline Comparison
Next we compare the performance of a real network to that of

a simulator for a few simple baseline cases. We design a set of
experiments to quantify the accuracy of simulating the overhead
of the protocol stack as well as the effect of RF interference. The
experiments are for the following scenarios:

1. A single one-hop UDP flow (1-hop flow)

2. Two UDP flows within communication range (2 flows - CR)

3. Two UDP flows within interference range (2 flows - IR)

4. One UDP flow with 2 hops where the source and destination
are within communication range. We enforce the 2-hop route
using static routing. (2-hop flow -CR)

5. One UDP flow with 2 hops where the source and destination
are within interference range but not within communication
range. (2-hop flow -IR)

All the throughput measurements are done using Netgear WAG511
cards and Figure 3 summarizes the results. Interestingly, in all cases
the throughput from simulations are close to the real measurements.
Case (1) shows that Qualnet simulator models the overheads of
the protocol stack, such as parity bits, MAC-layer back-off, IEEE
802.11 inter-frame spacing and ACK, and headers accurately. The
other scenarios show that the simulator accurately takes into ac-
count contention from flows within the interference and communi-
cation ranges.

In the scenarios above, data are sent on high-quality wireless
links, and almost never gets lost due to low signal strength. In our
next experiment, we study how RSS affects throughput. We vary
the number of walls between the sender and receiver, and plot the
UDP throughput for varying packet sizes in Figure 4.

0

5

10

15

20

25

1-hop flow 2 flows (CR) 2 flows (IR) 2-hop flow
(CR)

2-hop flow
(IR)

U
D

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

simulation real

Figure 3: Estimated throughput from the simulator matches
measured throughput in a real network when the RF condition
of the links is good.

0

5

10

15

20

25

0 500 1000

UDP packet size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

simulation 0 wall 1 wall
2 walls 3 walls 4 walls

Figure 4: Estimated throughput matches with measured
throughput when the RF condition of the links is good, and
deviates when the RF condition of the links is poor (1-hop con-
nection).

When the signal quality is good (e.g., when there are fewer than
4 walls in between), the throughput measured matches closely with
the estimate from the simulator.

When the signal strength is poor, e.g., when 4 or more walls
separate the two laptops, the throughput estimated by the simulator
deviates from real measurements. The deviation occurs because the
simulator does not take into account the following two factors:

• Accurate packet loss as a function of packet-size, RSS, and
ambient noise. This function depends on the signal process-
ing hardware within the wireless card.

• Accurate auto-rate control. On observing a large number of
packet retransmissions at the MAC layer, many WLAN cards
adjust their sending rate to something that is more appropri-
ate for the conditions. The exact details of the algorithm used
to determine a good sending rate differ from card to card.

Of the two factors mentioned above, the latter can be taken care
of as follows. If auto-rate is in use, we again employ trace-driven
simulation as follows: we monitor the rate at which the wireless
card is operating, and provide it to the simulator (instead of hav-
ing the simulator adapt in its own way). When auto-rate is not
used (e.g., researchers have shown that auto-rate is undesirable
when considering aggregate performance and therefore it should
be turned off), the data rate is known.

The first issue is much harder to address because it may not be
possible to accurately simulate the physical layer. One possible
way to address this issue is through offline analysis. We calibrate
the wireless cards under different scenarios and create a database
to associate environmental factors with expected performance. For
example, we carry out real measurements under different signal

walls loss rate measured throughput simulated throughput difference
4 11.0% 15.52 Mbps 15.94 Mbps 2.63%
5 7.01% 12.56 Mbps 14.01 Mbps 11.54%
6 3.42% 12.97 Mbps 11.55 Mbps -10.95%

Table 2: Estimated and measured throughput match, when we
compensate the loss rates due to poor RF in the real measure-
ments by seeding the corresponding link in a simulator with an
equivalent loss rate.
strengths and noise levels to create a mapping from signal strength
and noise to loss rate. Using such a table in simulations allows
us to distinguish between losses caused by collisions from losses
caused by poor RF conditions. We evaluate the feasibility of this
approach by computing the correlation coefficient between RSS
and loss rates when the sending rate remains the same. We find
the correlation coefficient ranges from -0.95 to -0.8. The high cor-
relation suggests that it is feasible to estimate loss caused by poor
RF conditions.

Based on this idea, in our experiment we collect another set of
traces in which we slowly send out packets so that most losses are
caused by poor signal (instead of congestion). We also place packet
sniffer near both the sender and receiver, and derive the loss rate
from the packet-level trace. Then we take into account the loss rate
due to poor signal by seeding the wireless link in a simulator with
a Bernoulli loss rate that matches the loss rate in real traces.

We find that after considering the impact of poor signal, the
throughput from simulation matches closely with real measure-
ments as shown in Table 2. Note that the loss rate and measured
throughput do not monotonically decrease with the signal strength
due to the effect of auto-rate, i.e., when the data rate decreases as
a result of poor signal strength, the loss rate improves. (The driver
of the wireless cards we use does not allow us to disable auto-rate.)
Note that even though the match is not perfect, we do not expect
this to be a problem in practice because several routing protocols
try to avoid the use of poor quality links by employing some appro-
priate routing metrics (e.g., ETX [8]).

4.3 Remarks
In this section, we have shown that even though simulating a

wireless network accurately is a hard problem, for the purpose of
fault diagnosis, we can use trace-based simulations to reproduce
what happened in the real network, after the fact. To substantiate
this claim, we look at several simple scenarios and show that the
throughput obtained from the simulator matches reality after taking
into account information from real traces.

5. FAULT ISOLATION AND DIAGNOSIS
We now present our simulation-based diagnosis approach. Our

high-level idea is to re-create the environment that resembles the
real network inside a simulator. To find the root cause, wesearch
over a fault space to determine which fault or set of faults can re-
produce performance similar to what has been observed in the real
network.

In Section 5.1 we extend the trace-driven simulation ideas pre-
sented in Section 4 to reproduce network topology and traffic pat-
tern observed in the real network.

Using trace-driven simulation as a building block, we then de-
velop a diagnosis algorithm to find root-causes for faults. The al-
gorithm first establishes the expected performance (e.g., loss rate
and throughput) under a given set of faults. Then based on the
difference between the expected and observed performance, it ef-
ficiently searches over the fault space to re-produce the observed
symptoms. This algorithm can not only diagnose multiple faults
of the same type, but also perform well in the presence of multiple
types of faults.

Finally we address the issue of how to diagnose faults when the
trace data used to drive simulation contains errors. This is a practi-
cal problem since data in the real world is never perfect for a variety
of reasons, such as measurement errors, nodes supplying false in-
formation, and software/hardware errors. To this end, we develop a
technique to effectively eliminate erroneous data from the trace so
that we can use good quality trace data to drive simulation-based
fault diagnosis.

5.1 Trace-Driven Simulation
Taking advantage of trace data enables us to accurately capture

the current environment and examine the effects of a given set of
faults in the current network.

5.1.1 Trace Data Collection
We collect the following sets of data as input to a simulator for

fault diagnosis:

• Network topology: Each node reports its neighbors. To be
efficient, only changes in the set of neighbors are reported.

• Traffic statistics: Each node maintains counters for the vol-
ume of traffic sent to and received from its immediate neigh-
bors. This data drives traffic simulation described in Sec-
tion 5.1.2.

• Physical medium: Each node reports its noise level and the
signal strength of the wireless links from its neighbors.

• Network performance: To detect anomalies, we compare the
observed network performance with the expected performance
from simulation. Network performance includes both link
performance and end-to-end performance, both of which can
be measured through a variety of metrics, such as packet loss
rate, delay, and throughput. In this work, we focus on link
level performance.

Data collection consists of two steps: collecting raw performance
data at a local node and distributing the data to collection points for
analysis. For local data collection, we can use a variety of tools,
such as SNMP [6], packet sniffers (e.g., Airopeek [4]), WRAPI [20],
and Native 802.11 [12].

Distributing the data to a manager introduces overhead. In Sec-
tion 7.1, we quantify this overhead, and show it is low and has little
impact on the data traffic in the network. Moreover, it is possible
to further reduce the overhead using compression, delta encoding,
multicast, and adaptive changes of the time scale and spatial scope
of distribution.

5.1.2 Simulation Methodology
We classify the characteristics of the network that need to be

matched in the simulator into the following three categories: (i)
traffic load, (ii) wireless signal, and (iii) faults. Below we describe
how to simulate each of these components.

Traffic Load Simulation: A key step in replicating the real net-
work inside a simulator is to re-create the same traffic pattern. One
approach is to simulate end-to-end application demands. However,
there can be potentiallyN ∗ N demands for anN -node network.
Moreover, given the heterogeneity of application demands and the
use of different transport protocols, such as TCP, UDP, and RTP, it
is challenging to obtain end-to-end demands.

For scalability and to avoid the need for obtaining end-to-end
demands and routing information, we use link-based traffic simula-
tion. Our high-level idea is to adjust application-level sending rate
at each link to match the observed link-level traffic counts. Do-
ing this abstracts away higher layers such as the transport and the

application layer, and allows us to concentrate only on packet size
and traffic rate. However, matching the sending rate on a per-link
basis in the simulator is non-trivial because we can only adjust the
application-level sending rate, and have to obey the medium ac-
cess control (MAC) protocol. This implies that we cannot directly
control sending rate on a link. For example, when we set the appli-
cation sending rate of a link to be 1 Mbps, the actual sending rate
(on the air) can be lower due to back-off at the MAC layer, or higher
due to MAC level retransmission. The issue is further complicated
by interference, which introduces inter-dependency between send-
ing rates on different links.

To address this issue, we use the followingiterative search to
determine the sending rate at each link. There are at least two
search strategies: (i) multiplicative increase and multiplicative de-
crease, and (ii) additive increase and additive decrease. As shown
in Figure 5, each link individually tries to reduce the difference
between the current sending rate in the simulator and the actual
sending rate in the real network. The process iterates until ei-
ther the rate becomes close enough to the target rate (denoted as
targetMacSent) or the maximum number of iterations is reached.
We introduce a parameterα, whereα ≤ 1, to dampen oscillation.
In our evaluation, we useα = 0.5 for i ≤ 20, and 1

i
for i > 20.

This satisfies
P

i
αi → ∞, andαi → 0 as i → ∞, and en-

sures convergence. Our evaluation uses multiplicative increase and
multiplicative decrease, and we plan to compare it with additive
increase and additive decrease in the future.

while (not converged andi < maxIterations)
i = i + 1;
if (option == multiplicative)

foreach link(j)
prevRatio = targetMacSent(j)/simMacSent(j);
currRatio = (1 − α) + α ∗ prevRatio;
simAppSent(j) = prevAppSent(j) ∗ currRatio;

else // additive
foreach link(j)

diff = targetMacSent(j) − prevMacSent(j);
simAppSent(j) = prevAppSent(j) + α ∗ diff ;

run simulation usingsimAppSent as input
determinesimMacSent for all links from simulation results
converged = isConverge(simMacSent, targetMacSent)

Figure 5: Searching for the application-level sending rate using
either multiplicative increase, multiplicative decrease or addi-
tive increase additive decrease.

Wireless Signal: Signal strength has a very important impact
on wireless network performance. As discussed in Section 4, due
to variations across different wireless cards and environments, it
is hard to come up with a general propagation model to capture
all the factors. To address this issue, we drive simulation using
the real measurement of signal strength and noise, which can be
easily obtained using newer generation wireless cards (e.g., Native
WiFi [12] cards).

Fault Injection: To examine the impact of faults on the network,
we implement the ability to inject different types of faults into the
simulator, namely (i) packet dropping at hosts, (ii) external noise
sources, and (iii) MAC misbehavior [14].

• Packet dropping at hosts: a misbehaving node drops some
traffic from one or more neighbors. This can occur due to
hardware/software errors, buffer overflow, and/or malicious
drops. The ability to detect such end-host packet dropping is
useful, since it allows us to differentiate losses caused by end
hosts from losses caused by the network.

• External noise sources: we support the ability to inject exter-
nal noise sources in the network.

• MAC misbehavior: a faulty node does not follow the MAC
etiquette and obtains an unfair share of the channel band-
width. For example, in IEEE 802.11 [14], a faulty node
can choose a smaller contention window (CW) to send traffic
more aggressively [10].

In addition, we also generate link congestion by putting a high
load on the network. Unlike the other types of faults, link con-
gestion is implicitly captured by the traffic statistics gathered from
each node. Therefore trace-driven simulation can directly assess
the impact of link congestion. For the other three types of faults,
we apply the algorithm described in Section 5.2 to diagnose them.

5.2 Fault Diagnosis Algorithm
We now describe an algorithm to systematically diagnose root

causes for failures and performance problems.
General approach:Applying simulations to fault diagnosis en-

ables us to reduce the original diagnosis problem to the problem of
searching for a set of faults such that their injection results in an ex-
pected performance that matches well with observed performance.
More formally, given a network settings,NS , our goal is to find
FaultSet such thatSimPerf (NS ,FaultSet) ≈ ObservedPerf ,
where the performance is a function value, which can be quan-
tified using different metrics. It is clear that the search space is
high-dimensional due to many combinations of faults. To make the
search efficient, we take advantage of the fact that different types of
faults often change one or few metrics. For example, packet drop-
ping at hosts only affects link loss rate, but not the other metrics.
Therefore we can use the metrics in which the observed and ex-
pected performance have significant difference to guide our search.
Below we introduce our algorithm.

Initial diagnosis: We start by considering a simple case where
all faults are of the same type, and the faults do not have strong
interactions. We will later extend the algorithm to handle more
general cases, where we have multiple types of faults, or faults that
interact with each other.

For ease of description, we use the following three types of faults
as examples: packet dropping at hosts, external noise, and MAC
misbehavior, but the same methodology can be extended to handle
other types of faults once the symptoms of the fault are identified.

As shown in Figure 6, we use trace-driven simulation, fed with
current network settings, to establish the expected performance.
Based on the difference between the expected performance and ob-
served performance, we first determine the type of faults using a
decision tree as shown in Figure 7. Due to many factors, sim-
ulated performance is unlikely to be identical with the observed
performance even in the absence of faults. Therefore we conclude
that there are anomalies only when the difference exceeds a thresh-
old. The fault classification scheme takes advantage of the fact that
different faults exhibit different behaviors. While their behaviors
are not completely non-overlapping (e.g., both noise sources and
packet dropping at hosts increase loss rates; lowering CW increases
the traffic and hence increases noise caused by interference), we
can categorize the faults by checking the differentiating component
first. For example, external noise sources increase noise experi-
enced by its neighboring nodes, but do not increase the sending
rates of any node, and therefore can be differentiated from MAC
misbehavior and packet dropping at hosts.

After the fault type is determined, we then locate the faults by
finding the set of nodes and links that have large differences be-
tween the observed and expected performance. The fault type de-
termines what metric is used to quantify the performance differ-
ence. For instance, we identify packet dropping by finding links
with large difference between the expected and observed loss rates.
We determine the magnitude of the fault using a functiong(), which

maps the impact of a fault into its magnitude. For example, under
the end-host packet dropping,g() function is the identity function,
since the difference in a link’s loss rate can be directly mapped to
a change in dropping rate on a link (fault’s magnitude); under the
external noise fault,g() is a propagation function of a noise signal.

1) LetNS denote the network settings
(i.e., signal strength, traffic statistics, network topology)

Let RealPerf denote the real network performance
2) FaultSet = {}
3) PredictSimPerf by running simulation with input(NS , FaultSet)
4) if |Diff (SimPerf , RealPerf)| > threshold

determine the fault typeft using the decision tree shown in Fig. 7
for each link or nodei

if (|Diffft (SimPerf (i), RealPerf (i))| > threshold)
addfault(ft, i) with

magnitude(i) = g(Diffft (SimPerf (i), RealPerf (i))

Figure 6: Initial diagnosis: one pass diagnosis algorithm

If SimSent-RealSent >

ThreshSentDiff

If SimNoise-RealNoise >

ThreshNoiseDiff

If SimLoss-RealLoss >

ThreshLossDiff

Too low CW

External noise

Packet dropping Normal

Y

Y

Y

N

N

N

Figure 7: An algorithm to determine the type of faults

The algorithm: In general, we may have multiple faults inter-
acting with each other. Such interactions may make the above one
pass diagnosis insufficient. To address these challenges, we de-
velop an iterative diagnosis algorithm, as shown in Figure 8, to find
root causes.

The algorithm consists of two stages: (i) initial diagnosis stage,
and (ii) iterative refinements. During the initial diagnosis stage, we
apply the one-pass diagnosis algorithm described above to come up
with the initial set of faults; then during the second stage, we itera-
tively refine the fault set by (i) adjusting the magnitude of the faults
that have been already inserted into the fault set, and (ii) adding a
new fault to the set if necessary. We iterate the process until the
change in fault set is negligible (i.e., the fault types and locations
do not change, and the magnitudes of the faults change very little).

We use an iterative approach to search for the magnitudes of the
faults. At a high level, the approach is similar to the link-based
simulation, described in Section 5.1.2, where we use the difference
between the target and current values as a feedback to progres-
sively move towards the target. During each iteration, we first esti-
mate the expected network performance under the existing fault set.
Then we compute the difference between simulated network per-
formance (under the existing fault set) and real performance. Next
we translate the difference in performance into change in faults’
magnitudes using the functiong(). After updating the faults with
new magnitudes, we remove the faults whose magnitudes are too
small.

In addition to searching for the correct magnitudes of the faults,
we also iteratively refine the fault set by finding new faults that can
best explain the difference between expected and observed perfor-
mance. To control false positives, during each iteration we only
add the fault that can explain the largest mismatch.

5.3 Handling Imperfect Data

1) LetNS denote the network settings
(i.e., signal strength, traffic statistics, and network topology)

Let RealPerf denote the real network performance
2) FaultSet = {}
3) PredictSimPerf by running simulation with input(NS , FaultSet)
4) if |Diff (SimPerf , RealPerf)| > threshold

go to 5)
else

go to 7)
5) Initial diagnosis:

initialize FaultSet by applying the algorithm in Fig. 6
6) while (not converged)

a) adjusting fault magnitude
for each fault typeft in FaultSet (according to decision tree in Fig. 7)

for each faulti in (FaultSet, ft)
magnitude(i)− = g(Diffft (SimPerf (i), RealPerf (i)))
if (|magnitude(i)| < threshold)

delete the fault (ft, i)
b) adding new candidate faults if necessary

foreach fault typeft (in the order of decision tree in Fig. 7)
i) find a faulti s.t. it is not inFaultSet

and has the largest|Diffft (SimPerf (i), RealPerf (i))|
ii) if (|Diffft (SimPerf (i), RealPerf (i))| > threshold)

add (ft, i) to FaultSet with
magnitude(i) = g(Diffft (SimPerf (i), RealPerf (i))

c) simulate
7) ReportFaultSet

Figure 8: A complete diagnosis algorithm for possibly multiple
fault types

In the previous sections, we describe how to diagnose faults by
using trace data to drive online simulation. In practice, the raw trace
data collected may contain errors for various reasons as mentioned
earlier. Therefore we need to clean the raw data before feeding it
to a simulator for fault diagnosis.

To facilitate the data cleaning process, we introduceneighbor
monitoring, in which each node reports performance and traffic
statistics not only for its incoming/outgoing links, but also for other
links within its communication range. Such information is avail-
able when a node is in the promiscuous mode, which is achievable
using Native 802.11 [12].

Due to neighborhood monitoring, multiple reports from differ-
ent nodes are likely to be submitted for each link. The redundant
reports can be used to detect inconsistency. Assuming that the num-
ber of misbehaving nodes is small, our scheme identifies the mis-
behaving nodes as the minimum set of nodes that can explain the
discrepancy in the reports. Based on the insight, we develop the
following scheme.

For a link from nodei to nodej, a senderi reports the number
of packets sent and the number of MAC-level acknowledgements
received for a directed linkl as(sent i(l), ack i(l)); a receiverj re-
ports the number of packets received on the link asrecv j(l); in ad-
dition, a sender or receiver’s immediate neighbork also reports the
number of packets and MAC-level acknowledgement it observes
sent or received on the link as (sentk(l), recvk(l), ackk(l)). An
inconsistency in the reports is defined as one of the following cases,
wheret is a given threshold used to mask the discrepancies caused
by nodes unsynchronously sending their reports.

1. The number of packets received on a link, as reported by the
destination, is noticeably larger than the number of packets
sent on the same link, as reported by the source. That is,
recv j(l) − sent i(l) > t.

2. The number of MAC-level acknowledgments on a link, as
reported by the source, does not match the number of packets
received on that link, as reported by the destination. That is,
| ack i(l) − recv j(l) |> t.

3. The number of packets received on a link, as reported by the
destination’s neighbor, is noticeably larger than the number

of packets sent on the same link, as reported by the source.
That is,recvk(l) − sent i(l) > t.

4. The number of packets sent on a link, as reported by the
source’s neighbor, is noticeably larger than the number of
packets sent on the same link, as reported by the source. That
is, sentk(l) − sent i(l) > t.

Note that, without inconsistent reports, the above constraints can-
not be violated as a result of lossy links.

We then construct aninconsistency graph as follows. For each
pair of nodes whose reports are identified as inconsistent, we add
them to the inconsistency graph, if they are not already in the graph;
we add an edge between the two nodes to reflect the inconsistency.
Based on the assumption that most nodes send reliable reports, our
goal is to find the smallest set of nodes that can explain all the in-
consistency observed. This can be achieved by finding the smallest
set of vertices that covers the graph, where the identified vertices
represent the misbehaving nodes.

This is essentially the minimum vertex cover problem, which is
known to be NP-hard. We apply a greedy algorithm, which itera-
tively picks and removes the node with the highest degree and its
incident edges from the current inconsistency graph until no edges
are left.

History of traffic reports can be used to further improve the accu-
racy of inconsistency detection. For example, we can continuously
update the inconsistency graph with new reports without deleting
previous information, and then apply the same greedy algorithm to
identify misbehaving nodes.

6. SYSTEM IMPLEMENTATION
We have implemented a prototype of network monitoring and

management module on the Windows XP platform. Our prototype
consists of two separate components:agents and managers. An
agent runs on every wireless node, and reports local information
periodically or on-demand. A manager collects relevant informa-
tion from agents and analyzes the information.

The two design principles we follow are: simplicity and exten-
sibility. The information gathered and propagated for monitoring
and management is cast into performance counters supported on
Windows. Performance counters are essentially (name, value) pairs
grouped by categories. This framework is easily extensible. We
support both read-only and writable performance counters. The
latter offer a way for an authorized manager to change the values
and influence the behavior of a node in order to fix problems or
initiate experiments remotely.

Each manager is also equipped with a graphical user interface
(GUI) to allow an administrator to visualize the network as well as
to issue management requests.

The manager is also connected to the back-end simulator. The
information collected is processed and then converted into a script
that drives the simulation producing fault diagnosis results. The ca-
pability of the network monitoring and management depends heav-
ily on the information available for collection. We have seen wel-
coming trends in both wireless NICs and the standardization efforts
to expose performance data and control at the physical and MAC
layers, e.g., Native 802.11 NICs [12].

7. EVALUATION
In this section, we present evaluation results. We begin by quan-

tifying the network overhead introduced by data collection and show
its impact on the overall performance. Next, we evaluate the ef-
fectiveness of our diagnosis techniques and inconsistency detec-
tion scheme. We use simulations in some of our evaluation be-

cause this enables us to inject different types of faults in a con-
trolled and repeatable manner. When evaluating in simulation, we
diagnose traces collected from simulation runs that have injected
faults. Finally we report our experience of applying the approach
to a small-scale testbed. Even though the results from the testbed
are limited by our inability to inject some types of faults (external
noise and MAC misbehavior) in a controlled fashion, they demon-
strate the feasibility of on-line simulations in a real system. Unless
stated differently, the results from simulations are based on IEEE
802.11b and DSR routing protocol. The testbed uses IEEE 802.11a
(to avoid interference with IEEE 802.11b infrastructure wireless
network) and DSR-like routing protocol.

7.1 Data Collection Overhead
We evaluate the overhead of collecting traces, which will be used

as inputs to diagnose faults in a network. We show that the data col-
lection overhead is low and has little effect on application traffic in
the network. Therefore it is feasible to use trace-driven simulation
for fault diagnosis. We refer the readers to our technical report [15]
for the detailed results.

7.2 Evaluation of Fault Diagnosis through Sim-
ulations

In this section, we evaluate our fault diagnosis approach through
simulations in Qualnet.

Our general methodology of using simulation to evaluate fault
diagnosis is as follows. We artificially inject a set of faults into a
network, and obtain the traces of network topology and link load
under faults. We then feed these traces into the fault diagnosis
module to derive expected network performance (under normal net-
work condition), which includes sending rate, noise, and loss rate
as shown in Figure 7. Based on the difference between expected
and actual performance, we infer the root cause. We quantify the
diagnosis accuracy by comparing the inferred fault set with the fault
set originally injected.

We use both grid topologies and random topologies for our eval-
uation. In a grid topology, only nodes horizontally or vertically ad-
jacent can directly communicate with each other, whereas in ran-
dom topologies, nodes are randomly placed in a region. We ran-
domly select a varying number of nodes to exhibit one or more
faults of the following types: packet dropping at hosts, external
noise, and MAC misbehavior. To challenge our diagnosis scheme,
we put a high load on the network by randomly picking 25 pairs
of nodes to send one-way constant bit rate (CBR) traffic at a rate
of 1 Mbps. Under such load, there is significant congestion loss,
which makes it harder to identify losses caused by packet dropping
at end-hosts. Correct identification of dropping links also implies
reasonable assessment of congestion loss.

For a given number of faults and its composition, we conduct
three random runs, with different traffic patterns and fault locations.
We evaluate how accurate our fault diagnosis algorithm, described
in Section 5.2, can locate the faults. The time that the diagnosis
process takes depends on the size of topologies, the number of
faults, and duration of the faulty traces. For example, diagnosing
faults in 25-node topologies takes several minutes. Such diagno-
sis time scale is acceptable for diagnosing long-term performance
problems. Moreover, the efficiency can be significantly improved
through code optimization and caching previous simulation results.

We usecoverage and false positive to quantify the accuracy of
fault detection, where coverage represents the percentage of faulty
locations that are correctly identified, and false positive is the num-
ber of (non-faulty) locations incorrectly identified as faulty divided
by the total number of true faults. We consider a fault is correctly
identified when both its type and its location are correct. For packet
dropping and external noise sources, we also compare the inferred

faults’ magnitudes with their true magnitudes.
Detecting packet dropping at hosts:First we evaluate the abil-

ity to detect packet dropping. We select a varying number of nodes
to intentionally drop packets, where the dropping rate is chosen ran-
domly between 0 and 100%. The number of such packet-dropping
nodes is varied from 1 to 6.

We apply the diagnosis algorithm, which first uses trace-driven
simulation to estimate the expected performance (i.e., noise level,
throughput, and loss rates) in the current network. Since we ob-
serve a significant difference in loss rates, but not in the other two
metrics, we suspect that there is packet dropping on these links. We
locate such links by finding links whose loss rates are significantly
higher than their expected loss rates. We use 15% as a threshold
so that links whose difference between expected and observed loss
rates exceed 15% are considered as packet dropping links. (Our
empirical results suggest that 15% difference gives good balance
between coverage and false positive in our evaluation, though a
small change in threshold does not significantly change the diagno-
sis results.) We then inject packet dropping faults at such links with
the dropping rates being the measured loss rate minus the simulated
loss rate. We find that the injected faults reduce the difference be-
tween the simulated and observed performance.

Figure 9 shows the results for a 5×5 grid topology. Note that
some of the faulty links do not carry enough traffic to meaning-
fully compute loss rates. In our evaluation, we use 250 packets
as a threshold so that only for the links that send over 250 pack-
ets, loss rates are computed. We consider a faulty link sending
less than a threshold number of packets as ano-effect fault since
it drops only a small number of packets.1 As Figure 9 shows the
coverage (i.e., the fraction of detected faults and no effect faults)
is over 80%, except in one case the coverage is lower, where one
of the two faults is not identified. The false positive (not shown)
is 0 except for two cases in which one link is misidentified as
faulty. Moreover the accuracy does not degrade with the increas-
ing number of faults. We also compare the difference between the
inferred and true dropping rates. The inference error, computed as
P

i
|infer i−truei|/

P

i
truei, is within 25%. This error is related

to the threshold used to determine if the iteration has converged. In
our simulations, we consider an iteration converges when changes
in loss rates are all within 15%. We can further reduce the inference
error by using a smaller threshold at a cost of longer running time.
Also, in many cases it suffices to know where packet dropping oc-
curs without knowing precise dropping rates.

0%

20%

40%

60%

80%

100%

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

fault=1 fault=2 fault=3 fault=4 fault=5 fault=6

C
o
v
e
ra
g
e

detected faults no effect faults

Figure 9: Accuracy of detecting packet dropping in a 5×5 grid
topology

Detecting external noise sources:Next we evaluate the accu-
racy of detecting external noise sources. We randomly select a

1These faulty links may have impact on route selection. That is,
due to its high dropping rate, it is not selected to route much traffic.
In this paper, we focus on diagnosing faults on data paths. As part
of our future work, we plan to investigate how to diagnose faults on
control paths.

varying number of nodes to generate ambient noise at 1.1e-8 mW.
We again use the trace-driven simulation to estimate the expected
performance under the current traffic and network topology when
there is no noise source. Note that simulation is necessary to de-
termine the expected noise level, because the noise experienced by
a node consists of both ambient noise and noise due to interfering
traffic; accurate simulation of network traffic is needed to determine
the amount of noise contributed by interfering traffic. The diagno-
sis algorithm detects a significant difference (e.g., over 5e-9mW) in
noise level at some nodes, and conjectures that these nodes gener-
ate extra noise. It then injects noise at these nodes with magnitude
derived from the difference between expected and observed noise
level to the simulator. After noise injection, it sees a close match
between the observed and expected performance, and hence con-
cludes that the network has the above faults.

Figure 10 shows the accuracy of detecting noise generating sources
in a 5×5 grid topology. As we can see, in all cases noise sources
are correctly identified with at most one false positive link. We also
compare the inferred magnitudes of noises with their true mag-
nitudes, and find the inference error, computed as

P

i
|infer i −

truei|/
P

i
truei, is within 2%.

0%

20%

40%

60%

80%

100%

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

fault=1 fault=2 fault=3 fault=4 fault=5 fault=6

D
e
te
c
ti
o
n
 a
c
c
u
ra
c
y

detected faults false positive

Figure 10: Accuracy of detecting external noise sources in a
5×5 grid topology

Detecting MAC misbehavior: Now we evaluate the accuracy
of detecting MAC misbehavior. In our evaluation, we consider
one implementation of MAC misbehavior. But since our diag-
nosis scheme is to detect unusually aggressive senders, it is gen-
eral enough to detect other implementations of MAC misbehav-
ior that exhibit similar symptoms. In our implementation, a faulty
node alters its minimum and maximum MAC contention window
in 802.11 (CWMin and CWMax) to be only half of the normal val-
ues. The faulty node continues to obey the CW updating rules (i.e.,
when transmission is successful, CW = CWMin, and when a node
has to retransmit, CW = min((CW+1)*2-1, CWMax)). However
since its CWMin and CWMax are both half of the normal, its CW
is usually around half of the other nodes’. As a result, it transmits
more aggressively than the other nodes. As one would expect, the
advantage of using a lower CW is significant when network load is
high. Hence we evaluate our detection scheme under a high load.

In our diagnosis, we use the trace-driven simulation to estimate
the expected performance under the current traffic and network
topology, and detect a significant discrepancy in throughput (e.g.,
the ratio between observed and expected throughput exceeds 1.25)
on certain links. Therefore we suspect the corresponding senders
have altered their CW. After injecting the CW faults at the sus-
pected senders, we see a close match between the simulated and
observed performance. Figure 11 shows the diagnosis accuracy in
a 5×5 topology. We observe the coverage is mostly around 70%
or higher. The false positive (not shown) is zero in most cases; the
only case in which it is non-zero is when there is only one link
misidentified as faulty.

Detecting mixtures of all three fault types:Finally we evaluate

0%

20%

40%

60%

80%

100%

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

fault=1 fault=2 fault=3 fault=4 fault=5 fault=6

C
o
v
e
ra
g
e

Figure 11: Accuracy of detecting MAC misbehavior in a 5×5
grid topology

Topology # Faults 4 6 8 10 12 14
Coverage 100% 100% 75% 90% 75% 93%25-node random

False positive 25% 0 0 0 0 7%
Coverage 100% 83% 100% 70% 67% 71%7×7 grid

False positive 0 0 0 0 8% 0

Table 3: Accuracy of detecting combinations of packet drop-
ping, MAC-misbehavior, and external noises in other topologies

the diagnosis algorithm under mixtures of all three fault types as
follows. As in the previous evaluation, we choose pairs of nodes
adjacent to each other with one node randomly dropping one of
its neighbors’ traffic and the other node using an unusually small
CW. In addition, we randomly select two nodes to generate external
noise. Figure 12 summarizes the accuracy of fault diagnosis in
a 5×5 topology. As it shows, the coverage is above 80%. The
false positive (not shown) is close to 0. The accuracy remains high
even when the number of faults in the network exceeds 10. The
inference errors in links’ dropping rate and noise level are within
15% and 3%, respectively.

0%

20%

40%

60%

80%

100%

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

ru
n
1

ru
n
2

ru
n
3

fault=1 fault=2 fault=3 fault=4 fault=5 fault=6

C
o
v
e
ra
g
e

detected faults no effect faults

Figure 12: Accuracy of detecting combinations of packet drop-
ping, MAC misbehavior, and external noises in a 5×5 grid
topology

To test sensitivity of our results to the network size and type of
topology, we then evaluate the accuracy of the diagnosis algorithm
using a 7×7 grid topology and 25-node random topologies. In both
cases, we randomly choose 25 pairs of nodes to send CBR traffic at
1 Mbps rate. Table 3 summarizes results of one random run. As it
shows, we can identify most faults with few false positives.

Summary: To summarize, we have evaluated the fault diagnosis
approach using a variety of scenarios, and shown it yields fairly
accurate results.

7.3 Data Cleaning
To deal with data imperfectness, we process the raw data by ap-

plying the inconsistency detection scheme described in Section 5.3
before feeding them to the diagnosis module. We evaluate the ef-
fectiveness of this scheme using different network topologies, traf-
fic patterns, and degrees of inconsistency. We again use coverage
and false positive to quantify the accuracy, where coverage denotes

the fraction of misbehaving nodes that are correctly identified, and
false positive denotes the ratio between the number of nodes that
are incorrectly identified as misbehaving and the number of true
misbehaving nodes. We summarize our evaluation results as fol-
low. Refer to our technical report [15] for the detailed results.

• The accuracy of detecting misbehaving nodes is high, with
coverage above 80% and false positive below 15%. This is
true even when 40% nodes in the system are misbehaving.

• The minimum node degree in a network topology is impor-
tant to detection accuracy. As a result, topologies with high
node density have high detection accuracy.

• Incorporating history information further improves the de-
tection accuracy.

7.4 Evaluation of Fault Diagnosis in a Testbed
In this section, we evaluate our approach using experiments in

a testbed. Our testbed consists of 4 laptops, each equipped with
a Netgear WAG511 card operating in 802.11a mode. The laptops
are located in the same office with good received signal strength.
The traffic statistics on all links are periodically collected using the
monitor tool, described in Section 6. We randomly pick a node to
drop packets from one of its neighbors, and see if we can detect
it. To resolve inconsistencies in traffic reports if any, we also run
Airopeek [4] on another laptop. (Ideally we would like to have
nodes monitor traffic in the promiscuous mode, e.g., using Native
802.11 [12], but since we currently do not have such cards, we use
Airopeek to resolve inconsistencies.)

First, we run experiments under low traffic load, where each
node sends CBR traffic at a rate varying from 1 Mbps to 4 Mbps
to another node. We find the collected reports are consistent with
what has been observed from Airopeek. Then we feed the traces to
the simulator (also running in the 802.11a mode), and apply the di-
agnosis algorithm in Figure 8. Since one node is instructed to drop
one of its neighbor’s traffic at a rate varying from 20% to 50%,
the diagnosis algorithm detects that there is a significant discrep-
ancy between the expected and observed loss rates on one link, and
correctly locates the dropping link.

Next we re-run the experiments under a high network load, where
each node sends 8-Mbps CBR traffic. In this case, we observe that
the traffic reports often deviate from the numbers seen in Airopeek.
The deviation is caused by the fact that the NDIS driver for the NIC
sometimes indicates sending success without actually attempting
to send the packet to the air [13]. The new generation of wireless
cards, such as Native 802.11 [12], will expose more detailed infor-
mation about the packets, and enable more accurate accounting of
traffic statistics. The inaccurate traffic reports observed in the cur-
rent experiments also highlight the importance of cleaning the data
before using them for diagnosis. In our experiment, we clean the
data using Airopeek’s reports, which capture almost all the packets
in the air, and feed the cleaned data to the simulator to estimate the
expected performance. Applying the same diagnosis scheme, we
derive the expected congestion loss, based on which we correctly
identify the dropping link.

8. DISCUSSION
To the best of our knowledge, ours is the first system that ap-

plies a network simulator to troubleshooting an operational multi-
hop wireless network. The results are promising.

Our diagnosis system is not limited to the four types of faults
discussed in this paper. Other faults such as routing misbehavior
may also be diagnosed. Since routing misbehavior has been the
subject of much previous workwe focus on diagnosing faults on

the data path, which have not received much attention. In general,
the fault to be diagnosed determines the traces to collect and the
level of simulation.

We focus on faults resulting from misbehaving but non-malicious
nodes. Malicious faults are generally hard to detect as they can be
disguised as benign faults. It would be interesting to study how se-
curity mechanisms (e.g., cryptographic schemes for authentication
and integrity) and counter-measures such as secure traceroute can
be incorporated into our system.

Our current system works with a fairly complete knowledge of
the RF condition, traffic statistics, and link performance. Obtaining
such complete information is sometimes difficult. It would be use-
ful to investigate techniques that can work with incomplete data,
i.e. data obtained from a subset of the network. This would im-
prove the scalability of the troubleshooting system.

Finally, there is room for improvement in our core system as
well. Our system depends on the accuracy and efficiency of the
simulator, the quality of the trace data, and the fault search algo-
rithm. Improvement in any one of these will result in better di-
agnosis. For example, our system could benefit from fast network
simulation techniques developed by other researchers recently. Fur-
ther, while we use network simulator to perform what-if analysis,
we could potentially replace network simulator with a scalable and
accurate network model if one is available. This may significantly
speed up fault diagnosis. Moreover, it would be useful to under-
stand the effects of heterogeneous devices and how they affect data
collection, aggregation, and simulation. In addition, Bayesian in-
ference techniques could be helpful for diagnosing faults that ex-
hibit similar faulty behavior.

We are continuing our research and are in the process of enhanc-
ing the system to take corrective actions once the faults have been
detected and diagnosed. We are also extending our implementa-
tion to manage a 50 node multihop wireless testbed. We intend to
evaluate its performance when some of these nodes are mobile.

9. RELATED WORK
Many researchers have worked on problems that are related to

network management in wireless networks. We broadly classify
their work into three areas: (1) protocols for network management;
(2) mechanisms for detecting and correcting routing and MAC mis-
behavior, and (3) general fault management.

In the area of network management protocols, Chenet al. [7]
present Ad Hoc Network Management Protocol (ANMP), which
uses hierarchical clustering to reduce the number of message ex-
changes between the manager and agents. Shen et al. [17] describe
a distributed network management architecture with SNMP agents
residing on every node. Our work differs from these two pieces
of work in that we do not focus on the protocol for distributing
management information, but instead on algorithms for identifying
and diagnosing faults. Consequently, our work is complimentary
to both [7] and [17].

A seminal piece of work in the area of detecting routing misbe-
havior is by Marti, Giullu, Lai, and Baker [11]. The authors ad-
dress network unreliability problems stemming from selfish intent
of individual nodes. The authors propose awatchdog andpathrater
agent framework for mitigating routing misbehavior and improving
reliability.

Different from a simple watch-dog mechanism, which considers
end points as misbehaving when its adjacent links incur high loss
rate, our diagnostic methodology takes into account current net-
work configuration and traffic patterns to determine if the observed
high loss rates are expected, and determines the root causes for the
loss (e.g., whether it is due to RF interference, or congestion, or
misbehaving nodes). In addition, we use multiple neighbors and

take historical evidence into account to derive more accurate link
loss rates.

In the area of wireless network fault management, there exist a
number of commercial products in the market, such as AirWave
[5], AirDefense [3], IBM’s Wireless Security Auditor (WSA) [21],
Computer Associate’s UniCenter [1], Symbol’s Wireless Network
Management System (WNMS) [18], and Wibhu’s SpectraMon [19].
Due to the proprietary nature of the products, their technical details
are not available. Recently, Adya et al. [2] present architecture
and techniques for diagnosing faults in IEEE 802.11 infrastructure
networks. Our work differs from the above work in that the latter
target wireless infrastructure networks, whereas multihop wireless
networks are significantly different.

10. CONCLUSION
Troubleshooting a multihop wireless network is challenging due

to the unpredictable physical medium, the distributed nature of the
network, the complex interactions between various protocols, envi-
ronmental factors, and potentially multiple faults. To address these
challenges, we propose online trace-driven simulation as a trou-
bleshooting tool.

We evaluate our system in different scenarios and show that it
can detect and diagnose over 10 simultaneous faults of different
types in a 25-node multihop wireless network. This result suggests
that our approach is promising. An important property of our sys-
tem is that it is flexible and can be extended to diagnose additional
faults. We hope that this paper will inspire other researchers to fur-
ther investigate trace-driven simulation as a tool to diagnose and
manage complex wireless and wireline networks.

11. REFERENCES
[1] The future of wireless enterprise management. http://www3.ca.com/.
[2] A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and techniques for

diagnosing faults in IEEE 802.11 infrastructure networks. InIn Proc. of ACM
MOBICOM, Sept. 2004.

[3] AirDefense: Wireless LAN security and operational support.
http://www.airdefense.net/.

[4] Wildpackets Airopeek. http://www.wildpackets.com/products/airopeek.
[5] Airwave, a wireless network management solution. http://www.airwave.com/.
[6] J. Case, M. Fedor, M. Schoffstall, and J. Darvin. A simple network management

protocol (SNMP). InInternet Engineering Task Force, RFC 1098, May 1990.
[7] W. Chen, N. Jain, and S. Singh. ANMP: Ad hoc network management protocol.

In IEEE Journal on Selected Areas in Communications, volume 17 (8), Aug.
1999.

[8] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. InProc. of ACM MOBICOM, Sept. 2003.

[9] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of wireless-network
research. Technical Report TR2003-467, Dartmouth College, Computer
Science, Hanover, NH, Jul. 2003.

[10] P. Kyasanur and N. Vaidya. Detection and handling of MAC layer misbehavior
in wireless networks. InDependable Computing and Communications
Symposium (DCC) at the International Conference on Dependable Systems and
Networks (DSN), pages 173–182, San Francisco, CA, Jun. 2003.

[11] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in
mobile ad hoc networks. InProceedings of ACM MOBICOM, Boston, MA,
Aug. 2000.

[12] Native 802.11 framework for IEEE 802.11 networks. Windows Platform Design
Notes, Mar. 2003.
http://www.microsoft.com/whdc/hwdev/tech/network/802x/Native80211.mspx.

[13] Network devices and protocols: Windows DDK. NDIS library functions.
[14] L. M. S. C. of the IEEE Computer Society. Wireless LAN medium access

control (MAC) and physical layer (PHY) specifications.IEEE Standard 802.11,
1999.

[15] L. Qiu, P. Bahl, A. Rao, and L. Zhou. Fault detection, isolation, anddiagnosis in
multi-hop wireless networks. InMicrosoft Technical Report TR-2004-11, 2004.

[16] The Qualnet simulator from Scalable Networks Inc.
http://www.scalable-networks.com/.

[17] C.-C. Shen, C. Jaikaeo, C. Srisathapornphat, and Z. Huang. The Guerrilla
management architecture for ad hoc networks. InProc. of IEEE MILCOM,
Anaheim, CA, Oct. 2002.

[18] SpectrumSoft: Wireless network management system, Symbol Technolgies Inc.
http://www.symbol.com/.

[19] SpectraMon, Wibhu Technologies Inc. http://www.wibhu.com/.
[20] Wireless research API. http://ramp.ucsd.edu/pawn/wrapi/.
[21] Wireless security auditor (WSA). http://www.research.ibm.com/gsal/wsa/.

