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Abstract
In this paper we consider the problem of computing and

removing interreflections in photographs of real scenes. To-
wards this end, we introduce the problem of inverse light
transport—given a photograph of an unknown scene, de-
compose it into a sum of n-bounce images, where each im-
age records the contribution of light that bounces exactly
n times before reaching the camera. We prove the exis-
tence of a set of interreflection cancelation operators that
enable computing each n-bounce image by multiplying the
photograph by a matrix. This matrix is derived from a set
of “impulse images” obtained by probing the scene with a
narrow beam of light. The operators work under unknown
and arbitrary illumination, and exist for scenes that have ar-
bitrary spatially-varying BRDFs. We derive a closed-form
expression for these operators in the Lambertian case and
present experiments with textured and untextured Lamber-
tian scenes that confirm our theory’s predictions.

1 Introduction
Modeling light transport, the propagation of light

through a known 3D environment, is a well-studied prob-
lem in computer graphics. However, the inverse light trans-
port problem—using photos of an unknown environment to
infer how light propagates through it—is wide open.

Modeling inverse light transport enables reasoning about
shadows and interreflections–two major unsolved problems
in computer vision. Aside from the interesting theoreti-
cal questions of what about these effects can be inferred
from photographs, understanding shadows and interreflec-
tions has major practical importance, as they can account
for a significant percentage of light in a photograph. Mod-
eling inverse light transport can greatly expand the appli-
cability of a host of computer vision techniques, i.e., pho-
tometric stereo, shape from shading, BRDF measurement,
etc., that are otherwise limited to convex objects that do not
interreflect light or cast shadows onto themselves.

The intensities recorded in an image are the result of
a complex sequence of reflections and interreflections, as
light emitted from a source will bounce off of the scene’s
surfaces one or more times before it reaches the camera. In
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Figure 1: An n-bounce image In records the light that bounces
exactly n times before reaching the camera.

theory, therefore, every image can be thought of as an infi-
nite sum, I = I1 + I2 + I3 + . . ., where In records the con-
tribution of light that bounces exactly n times before reach-
ing the camera (Figure 1). For instance, I1 is the image we
would capture if it were possible to block all indirect illu-
mination from reaching the camera, while the infinite sum
I2 + I3 + . . . represents the total contribution of indirect
illumination. While we can capture the composite image I
using a camera, the individual “n-bounce” images are not
directly measurable.

In this paper we prove the existence of a set of linear
operators that compute the entire sequence of n-bounce im-
ages in a photograph of an unknown scene captured under
unknown illumination. These operators, which we call in-
terreflection cancellation operators, exist under very gen-
eral conditions—the scene can have arbitrary shape and ar-
bitrary BRDF and be illuminated by an arbitrary illumina-
tion field. Moreover, we show that in the special case of
scenes with Lambertian reflectance, we can compute these
operators by first collecting a sequence of images in which
the scene is “probed” with a narrow beam of light that slides
over the surface. We emphasize that our procedure requires
acquiring multiple images of a scene as a preprocessing step
in order to cancel interreflected light from any new pho-
tograph. The cancellation process is performed simply by
multiplying the new photograph by a matrix derived from
the pre-acquired images.

By removing the effects of interreflections, these opera-
tors can be used to convert photographs into a form more
amenable to processing using existing vision algorithms,
since many techniques do not account for interreflections.

Techniques for simulating interreflections, and other
light transport effects are well-known in the graphics com-



munity (e.g., work on ray tracing [1, 2] and radiosity [1, 3]),
and have been studied in the vision community as well
[4, 5]. However, relatively little is known about the in-
verse problem of modeling the effects of interreflections,
in images of real scenes. A number of authors [6, 7, 8]
have recently proposed methods to capture the forward light
transport function from numerous photographs taken under
different illuminations, implicitly taking into account the
global effects of interreflections, shadows, sub-surface scat-
ting, etc. Yu et al. [9] and Machida et al. [10] describe in-
verse global illumination techniques that model diffuse in-
terreflections to recover diffuse and specular material prop-
erties from photographs. In both methods, the geometry and
lighting distribution is assumed to be known a priori. None
of these methods provides a means, however, for measur-
ing and analyzing the effects of interreflections, in an image
where the scene’s shape and the incoming light’s distribu-
tion are both unknown.

Although the focus of our work is cancelling interreflec-
tions, it is closely related to the shape-from-interreflections,
problem. This problem has received very limited attention,
focusing on the case of Lambertian scenes [11, 12] and
of color bleeding effects between two differently-colored
facets [13, 14, 15, 16]. Closest to our analysis is the inspir-
ing work of Nayar et al. [11], who demonstrated an iterative
photometric stereo algorithm that accounts for interreflec-
tions. Our analysis differs in a number of interesting ways
from that work. Whereas [11] assumed uniform directional
lighting, we place no restriction on the illumination field.
Moreover, in contrast to the iterative approach in [11] for
estimating the light transport equations and analyzing inter-
reflections, we derive closed-form expressions for the inter-
reflection cancellation operators, that need be applied only
once to an image. On the other hand, a disadvantage of our
approach compared to Nayar’s is that we require many more
input images to model the transport process.

Our approach is based on two key insights. The first one,
already known in the graphics literature, is that the forward
propagation of light can be described using linear equations.
We use this fact to show that the mapping from an arbitrary
input image to each n-bounce component can be expressed
as a matrix multiplication. The second is that in the case of
a Lambertian scene, we can compute this matrix from a set
of images in which an individual scene point is illuminated
by a narrow beam of light. Intuitively, each such image
can be thought of as a “impulse response” that tells us how
light that hits a single scene point contributes to the indirect
illumination of the rest of the scene.

We start by proving the existence of linear cancellation
operators that compute the n-bounce images under very
general conditions (Section 2). For the case of Lambertian
scenes and a fixed camera viewpoint, we then show how to
construct these operators from a set of input images (Sec-
tion 3). Section 4 presents experimental results.

2 Inverting Light Transport
The appearance of a scene can be described as a light

field Lout(ωy
x), representing radiance as a function of out-

going ray ωy
x [17, 18, 19]. While various ray representa-

tions are possible, we specify a ray ωy
x by its 3D point of

origin x and direction from x to another point y. We re-
strict x to lie on scene surfaces. Since the set of rays that
touch the scene is 4D (assuming the scene is composed of
a finite set of 2D surfaces), we may speak of a light field as
being a 4D function. To simplify our analysis, we consider
light of a single wavelength.1 Scene illumination may also
be described by a light field Lin(ωx

x′) describing the light
emitted from source points x′ to surface points x. We use
the terms outgoing light field and incident light field to refer
to Lout and Lin, respectively.

An outgoing light field Lout is formed by light from one
or more emitters that hits objects in the scene and gets re-
flected. Some of this reflected light hits other objects, which
in turn hits other objects, and the process continues until an
equilibrium is reached. We can therefore think of Lout as
being composed of two components: light that has bounced
a single time off of a scene point (direct illumination), and
light that has bounced two or more times (indirect illumina-
tion), i.e.,

Lout(ωy
x) = L1

out(ω
y
x) + L2,3,...

out (ωy
x) . (1)

The first component, L1
out(ωy

x), is determined by the BRDF
of x and the emitters that illuminate x. The second com-
ponent depends on interreflected light that hits x from other
points in the scene. Eq. (1) can be expressed as an integral
equation, known as the light transport equation or the ren-
dering equation [20, 3] in the computer graphics literature:

Lout(ωy
x) = L1

out(ω
y
x) +

∫
x′

A(ωy
x , ωx

x′)Lout(ωx
x′)dx′ .

(2)
The function A(ωy

x , ωx
x′) defines the proportion of irradi-

ance from point x′ to x that gets transported as radiance
towards y. As such, it is a function of the scene’s BRDF,
the relative visibility of x and x′ and of light attenuation
effects [20, 3].2 When x = x′, A(ωy

x , ωx
x′) is 0.

If we assume that the scene is composed of a collection
of small planar facets and if we discretize the space of rays,
Eq. (2) can be expressed in a discrete form [3, 11] as

Lout[i] = L1
out[i] +

∑
j

A[i, j]Lout[j] , (3)

where Lout is a discrete light field represented by a set
of sampled rays, L1

out is the corresponding 1-bounce light
field, and A[i, i] = 0. Rewriting Eq. (3) as a matrix equation
yields

Lout = L1
out + ALout . (4)

1Color may be treated by considering each wavelength separately.
2Formally, Eq. (2) interprets the light reflected by x from external light

sources as if it came directly from x, i.e., x is treated as an emitter.



Eq. (4) defines, in a discrete form, how light is transported
through a scene. A direct solution is obtained by solving
Eq. (4) for Lout, obtaining [20, 3]

Lout = (I− A)−1L1
out . (5)

This equation, well known in the graphics community,
shows that the global effects of light transport can be mod-
eled by a linear operator (I − A)−1 that maps a light field
containing only direct illumination to a light field that takes
into account both direct and indirect illumination.

2.1 Cancelling Interreflections
Consider the following operator:

C1 def= I − A . (6)

From Eq. (5), it follows that

L1
out = C1Lout . (7)

It is therefore possible to cancel the effects of interreflec-
tions in a light field by multiplying with a matrix C1. We
call C1 an interreflection cancellation operator. Hence C1

exists for general BRDFs, and is linear. Note that this result
is a trivial consequence of the rendering equation—while
we do not believe the cancellation operator has been ex-
ploited previously in computer vision, its existence is im-
plicit in the derivations of forward light transport [20, 3, 11].

Even though Eq. (7) provides an existence proof of an
interreflection cancellation operator, C1 is defined in terms
of shape and BRDF quantities (contained in the entries of
A) instead of image quantities. We now provide an inter-
pretation in terms of image quantities, as follows.

Consider emitting unit radiance along ray i towards the
scene (e.g., using a laser beam or a projector). The resulting
light field, which we denote ti, captures the full transport of
light in response to an impulse illumination. We call ti an
Impulse Scatter Function (ISF) .3 Now concatenate all the
ISFs into an ISF matrix T:

T def= [t1 t2 . . . tm] . (8)

Because T is made up of ISFs , it is possible in principle to
measure T in the laboratory using controlled illumination.
Although capturing a full dense set of ISFs would be ex-
tremely time- and storage-intensive, previous authors have
explored the problem of capturing two-dimensional forms
of T [6, 7, 8].

Because light is linear, any light field Lout can be de-
scribed as a linear combination of ISFs , enabling applica-
tions such as synthetic relighting of scenes [6]. In particular,
we can express any outgoing light field as a function of the
illumination Lin by

Lout = TLin . (9)
3It has also been referred to as the impulse response in [7].

Applying the cancellation operator to an ISF yields

t1
i

def= C1ti , (10)

where t1
i is the component of ti due to 1-bounce reflection.

By defining T1 = [t1
1 t1

2 . . . t1
m] we get the matrix equation

T1 = C1T (11)

and therefore
C1 = T1T−1 . (12)

Eq. (12) provides an alternative definition of the cancella-
tion operator C1 in terms of image quantities. Intuitively,
applying C1 to a light field Lout has the effect of first
computing the scene illumination field (Lin = T−1Lout)
and then re-rendering the scene with a 1-bounce model
(L1

out = T1Lin).
Note that while T is measurable, T1 is generally not.

Hence, the derivations in this section provide only an ex-
istence proof for C1. Also note that Eq. (12) is valid only
when T is invertible. C1 is well-defined even when T is
not invertible, however, since Eqs. (6) and (7) always hold.

2.2 N-bounce Light Fields
Suppose we wanted to compute the contribution of light

due to the second bounce of reflection. More precisely, sup-
pose light from the light source first hits a point p, then
bounces to point q, and then is reflected toward the cam-
era (see image I2 of Figure 1). How can we measure the
contribution of this light to the image intensity at q’s pro-
jection? While this problem has a straightforward solution
when the scene’s shape, BRDF, and illumination are known
[1], we are not aware of any solutions to this problem for
unknown shapes and illuminations. Beyond removing inter-
reflections, C1 offers a simple way of solving this problem.

In particular, given a light field Lout of the scene, the
portion of light due purely to interreflections is given by
Lout − C1Lout. Since the direct illumination has been
removed, we can treat the indirect illumination coming
from each visible point p as if it were coming directly
from a light source located at p. Hence, the light field
C1(Lout −C1Lout) is the component of Lout that is due to
the second bounce of light. More generally, the nth-order
interreflection cancellation operator and the n-bounce light
field are given by

Cn def= C1(I − C1)
n−1

and
Ln

out
def= CnLout ,

where Ln
out defines a light field due to the nth bounce of

light. This light has hit exactly n scene points between the
light source and the camera. We can therefore “unroll” the
individual steps of light transport as it propagates through



the scene by expressing the outgoing light field Lout as a
sum of individual n-bounce light fields:

Lout =
∞∑

n=1

Ln
out.

3 The Lambertian Case
While the results in Section 2 place no restriction on the

BRDF or range of camera viewpoints, they provide only
an existence proof of inverse light transport operators. We
now turn to the problem of computing Ci. To this end, we
show that if the scene is Lambertian, we can compute these
operators from images taken at a single viewpoint.

A defining property of Lambertian scenes is that each
point radiates light equally in a hemisphere of directions.
We may therefore reduce the 4D outgoing light field to a
2D set of outgoing beams, one for each point on the sur-
face. A second property of Lambertian scenes is that if we
illuminate a point from two different directions, the pattern
of outgoing radiance (and hence interreflections) is the same
up to a scale factor. We may therefore reduce the 4D inci-
dent light field Lin to a 2D subset.

Because the incident and outgoing light fields are both
2D for the Lambertian case, we can capture an ISF matrix
by scanning a narrow beam of light over the surface and
capturing an image from a fixed camera for each position
of the beam. Each ISF ti is constructed by concatenating
the pixels from the i-th image into a vector and normalizing
to obtain a unit-length vector (thereby eliminating the scale
dependence on incoming beam direction).

We now assume without loss of generality that there is a
one-to-one correspondence between m scene points, m im-
age pixels, and m incident light beams, i.e., incident beam
i hits scene point i which is imaged at pixel i.4

We assume that only points which reflect light (i.e., have
positive albedo) are included among the m scene points.
Finally, to simplify presentation, we assume that all points
that contribute reflected light to the image, direct or indi-
rect, are included among the m points. We relax this last
assumption in Section 3.1.2.

Our formulation of the Lambertian ISF matrix, together
with the interreflection equations, leads to a closed-form
and computable expression for the interreflection operator:

Lambertian Interreflection Cancellation The-
orem: Each view of a Lambertian scene defines a
unique m × m interreflection cancellation opera-
tor, C1, given by the expression

C1 = T1T−1, (13)

where T1 is a diagonal m×m matrix containing
the reciprocals of the diagonal elements of T−1.

4This is achieved by including only beams that fall on visible scene
points and removing pixels that are not illuminated by any beam.

Proof: From Eqs. (6) and (12) we have

C1 = T1T−1 ,

where C1[i, i] = 1, and C1[i, j] = −A[i, j]. Since only
one point pi is illuminated in each ISF and pi appears only
at pixel i, it follows that T1 must be a diagonal matrix.
Since T1 is diagonal and C1 has ones along the diagonal, it
follows that

T1[i, i] =
1

T−1[i, i]
.

QED
This closed-form expression for C1 provides explicit in-

formation about surface reflectance and relative visibility.
Specifically, from [11] we obtain

C1 = I− PK , (14)

where P is a diagonal matrix with P[i, i] specifying the
albedo for point i divided by π, and K is the matrix of dif-
fuse form factors [21]. Moreover, Eq. (14) implies that our
method can handle variation in surface texture.

Since T is formed from impulse images, its diagonal el-
ements correspond to points that were directly illuminated
by the laser. Hence, the diagonal of T dominates the other
elements of the matrix. In practice, we have found that T is
well conditioned and easy to invert.

3.1 Practical Consequences
3.1.1 General 4D incident lighting

A key property of the Lambertian cancellation operator
C1 is that it cancels interreflections for the given viewpoint
under any unknown 4D incident light field. Because the
space of ISFs for the Lambertian case is 2D and not 4D,
it follows that any outgoing light field Lout (under any 4D
incident illumination) can be expressed as a linear combi-
nation of 2D ISFs . The coefficients of this linear combi-
nation determine an equivalent 2D illumination field (along
the m rays defined by the captured ISFs ) that produces a
light field identical to Lout.

It follows that C1 will correctly cancel interreflections
even in very challenging cases, including illumination from
a flashlight or other non-uniform area source; from a video
projector sending an arbitrary image; or from an unknown
surrounding environment. See Section 4 for demonstrations
of some of these effects.

3.1.2 Interactions with occluded points
To facilitate our proof of the interreflection theorem,

we assumed that an ISF was captured for every point that
contributes reflected light to the image (direct or indirect).
Stated more informally, every point that plays a role in the
light transport process must be visible in the image. This
assumption is not as restrictive as it sounds because our
formulation allows for multi-perspective images—for in-
stance, we can create an “image” by choosing, for every
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Figure 2: (a) Light hitting p1 interreflects off of occluded points
that are not within the field of view of the camera (dotted lines),
causing additional light to hit p1 and p2. (b) An alternative ex-
planation is that there are no occluded points, but additional light
flowed from p1 directly to p2, and from external light sources to
p1 (dashed lines).

point on the surface of the object, a ray that ensures the
point is visible.

In practice, it may be difficult to capture an ISF for every
point, and it is convenient to work with single-perspective
images that contain occlusions. It is therefore important
to consider what happens in the case of interactions with
occluded points, i.e., points that are not represented in the
columns of T. Fortunately, the cancellation theorem also
applies to such cases because of the following observation.
Suppose that light along a beam from a visible point pi

bounces off of k invisible points before hitting the first vis-
ible point pj (Figure 2a). We can construct a different in-
terpretation of the same image that does not involve invis-
ible points by treating all of this light as if it went directly
from pi to pj , i.e., the k bounces are collapsed into a sin-
gle bounce (Figure 2b). It is easy to see that the transport
equation, Eq. (3), still applies—there is just more light flow-
ing between pi and pj . The collapsed rays have the effect
of (1) increasing A[i, j] to take into account the additional
light that flows “directly” from pi to pj and (2) increasing
the apparent amount of “direct” illumination L1

out[i] and,
hence, t1

i .
It follows that C1 applies as before, with the modifica-

tion that light which pi sends to itself via any number of
intermediate bounces off of invisible surfaces is treated as
direct illumination and therefore not cancelled. Similarly,
C2 will not cancel light that pi sends to pj through any
number of intermediate bounces off of invisible surfaces.

4 Experimental Results
In order to confirm our theoretical results, we performed

experiments with both real and synthetic scenes. Our em-
phasis was on computing cancellation operators and n-
bounce images, and comparing them to ground-truth from
simulations.

Our experimental system consisted of a Canon EOS-
20D digital SLR camera, a 50mW collimated green laser
source, and a computer-controlled pan-tilt unit for direct-
ing the laser’s beam. To minimize laser speckle, we used
a Canon wide-aperture, fixed focal length (85mm) lens and
acquired images using the widest possible aperture, F1.2.

Beam position

Image for 

beam position

Pixel
i

i

i

1 2 3 4 1

2

3

4

T

Figure 3: Graphical representation of the ISF matrix for the syn-
thetic “M” scene. The image captured at the i-th beam position
becomes the i-th column of the ISF matrix T. The pixel receiv-
ing direct illumination (position i) is mapped to element T(i, i).
Because the scene contains four facets, T has 42 = 16 “blocks:”
the block shown in gray, for instance, describes the appearance of
points on facet 2 when the beam is illuminating a point on facet 4.

Figure 4: Left-top: image of the “M” scene. Spots in top-left
image indicate the pixels receiving direct illumination as the beam
panned from left to right. Left-middle: One of the captured im-
ages, corresponding to the 4th position of the laser beam. The 4th
column of the ISF was created by collecting the pixels indicated
by the spots at top-left and assembling them into a column vector.
Left-bottom: image of the scene corresponding to another beam
position. Right: The complete ISF matrix.

To exploit the extreme dynamic range offered by the laser
(over 145dB), we acquired HDR images with exposures
that spanned almost the entire range of available shutter
speeds—from 1/15s to 1/8000s with an additional image
with an aperture of F16 and a speed of 1/8000. All images
were linearized with Mitsunaga et al’s radiometric calibra-
tion procedure [22]. We used only the green channel by
demosaicing the raw CCD data.

To capture a scene’s ISF , we moved the laser beam to
a predetermined set of m directions and captured a high-
dynamic range image for each direction. Since our analysis
assumes a known one-to-one correspondence between the
m illuminated scene points and the pixels they project to,
we first determined the pixel that received direct illumina-
tion. To do this, we found the centroid of the laser spot in
the shortest-exposure image for each beam direction.These
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Figure 5: Inverse light transport computed from the ISF matrix T for the “M” scene. Top row shows typical light paths, middle row shows
simulation results, and bottom row shows results from real-world data. From left to right: the ISF matrix, direct illumination (1-bounce),
the 2-, 3- and 4-bounce interreflection components of the ISF , and total indirect illumination. Images are log-scaled for display purposes.
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Figure 6: Inverse light transport applied to images I captured
under unknown illumination conditions. I is decomposed into
direct illumination I1 and subsequent n-bounce images In, as
shown. Observe that the interreflections have the effect of increas-
ing brightness in concave (but not convex) junctions of the “M”.
Image intensities are scaled linearly, as indicated.

centroids were used to sample all m input images. Hence,
each image provided m intensities, corresponding to a col-
umn of the m × m ISF matrix.

Computing k-bounce operators in 1D As the first exper-
iment, we simulated a scene containing a Lambertian sur-
face shaped like the letter “M.” To build its ISF matrix, we
simulated an incident beam that moves from left to right
(Figure 3). For each position of the beam, we rendered
an image by forward-tracing the light as it bounces from
facet to facet, for up to 7 bounces. These images formed
the individual columns of the ISF matrix. At the same time,
our renderer computed the contribution of individual light
bounces in order to obtain the “ground truth” n-bounce im-
ages for the scene.

The top row of Figure 5 shows the result of decomposing
the simulated ISF matrix into direct, 2- through 4-bounce,
and indirect illumination components. To assess this de-
composition qualitatively, consider how light will propagate
after it hits a specific facet. Suppose, for instance, that we il-
luminate a point on the scene’s first facet (red column of the
ISF matrix in Figure 5). Since only one point receives di-
rect illumination, cancelling the interreflections in that col-
umn should produce an image with a single non-zero value
located at the point’s projection. The actual cancellation
result, indicated by the red column in C1T, matches this
prediction. Now, light reflected from facet 1 can only illu-
minate facets 2 and 4. This implies that the 2-bounce im-
age should contain non-zero responses only for points on



those two facets. Again, application of the 2-bounce op-
erator, C2T, yields the predicted result. More generally,
light that reaches a facet after n bounces cannot illuminate
that facet in the (n + 1)−th bounce. We therefore expect
to see alternating intensity patterns in the 4 × 4 blocks of
CnT as n ranges from 2 to 4. The computed n-bounce ma-
trices confirm this behavior. These cancellation results are
almost identical to the ground truth rendered n-bounce im-
ages, with squared distances between corresponding (nor-
malized) columns that range from 3.45e-34 for the 1-bounce
image to 8.59e-13 for the 3rd bounce.

We repeated the same experiment in our laboratory with
a real scene whose shape closely matched the scene in our
simulations (Figure 4). The result of decomposing the cap-
tured ISF matrix is shown in the bottom row of Figure 5.
The computed n-bounce matrices are in very good agree-
ment with our simulation results. The main exceptions
are near-diagonal elements in the 2-bounce matrix, C2T.
These artifacts are due to lens flare in the neighborhood of
the directly-illuminated pixel. Lens flare increases the in-
tensity at neighboring pixels in a way that cannot be ex-
plained by interreflections and, as a result, the intensities
due to flare cannot be cancelled by C2.

Inverting light transport in 1D A key feature of our theory
is that it can predict the contribution of the n-th light bounce
in images taken under unknown and completely arbitrary
illumination. Figure 6 shows the results of an experiment
that tests this predictive power. We took two photos of the
“M” scene while illuminating it with a flashlight and with
room lighting. The resulting images are quite complex, ex-
hibiting a variety of soft and sharp shadows. Despite these
complexities, the computed n-bounce images successfully
isolate the contribution of direct illumination, whose direc-
tion of incidence can be easily deduced from the location
of the sharp shadows. Moreover, the higher-order operators
allow us to track the propagation of light through the scene
even up to the 5th bounce.

Inverting light transport in 2D To test our theory further,
we computed n-bounce operators for the 2D scene config-
uration shown in Figure 7. The scene consisted of three
interior faces of a box. We chose laser beam directions
that allowed us to sample points on all three faces of the
scene. Figure 8 shows the scene’s ISF matrix. Each col-
umn in this matrix represents the intensity of a 2D set of
image pixels, in scanline order. The figure also shows the
computed decomposition of the matrix into direct, indirect,
2-bounce, 3-bounce and 4-bounce of reflections. Figure 9
shows results from inverting the light transport process in
images of the scene taken under three different illumination
conditions. While ground truth information for this scene
was not available, the alternating intensity patterns visible
in the computed n-bounce images are consistent with the
expected behavior, in which light that illuminates a specific
face after n bounces cannot illuminate it in the next bounce.

Figure 7: The 2D scene and its ISF matrix T. One column
of the ISF matrix represents the resampled image captured
at a corresponding laser point.

5 Conclusions
This paper addressed the problem of computing and re-

moving interreflections in photographs of real scenes. We
proved the existence of operators that cancel interreflections
in photographs when the geometry, surface reflectance, and
illumination are all unknown and unconstrained. For the
case of Lambertian scenes we demonstrated that such oper-
ators can be computed, and verified the correctness and via-
bility of the theory on both synthetic and real-world scenes.
Problems for future work include devising more efficient
methods for capturing ISF matrices and estimating cancel-
lation operators for non-Lambertian scenes.
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