1

Optimistic concurrency control (OCC) is a technique to gpaltransactions that access shared data to determine
which transactions commit or abort [14]. Instead of delgytertain operations that might lead to an incorrect
execution, OCC allows a transaction to execute its operatas soon as it issues them. After the transaction

Scaling Optimistic Concurrency Control by Approximately
Partitioning the Certifier and Log

Philip A. Bernstein Sudipto Das
Microsoft Research Microsoft Research
Redmond, WA, USA Redmond, WA, USA
phil.bernstein@microsoft.com sudipto.das@microsoft.com
Abstract

In optimistic concurrency control, a certifier algorithmamesses a log of transaction operations to de-
termine whether each transaction satisfies a given isaldgoel and therefore should commit or abort.
This logging and certification of transactions is often samfial and can become a bottleneck. To im-
prove transaction throughput, it is beneficial to paralkgior scale out the certifier and the log. One
common technique for such parallelization is to partitibe tlatabase. If the database is perfectly parti-
tioned such that transactions only access data from a sipgiétion, then both the log and the certifier
can be parallelized such that each partition has its own padelent log and certifier. However, for many
applications, partitioning is only approximate, i.e., @tisaction can access multiple partitions. Paral-
lelization using such approximate partitioning requirgsshronization between the certifiers and logs
to ensure correctness. In this paper, we present the dedigrparallel certifier and a partitioned log
that uses minimal synchronization to obtain the benefitsaddlfelization using approximate partition-
ing. Our parallel certifier algorithm dynamically assignerestraints to each certifier. Certifiers enforce
constraints using only atomic writes and reads on sharedatsdes, thus avoiding expensive synchro-
nization primitives such as locks. Our partitioned log uadightweight causal messaging protocol to
ensure that transactions accessing the same partition appehe same relative order in all logs where
they both appear. We describe the techniques applied to stneadb certifier algorithm and log protocol,
making them applicable to a variety of systems. We also sbambbth techniques can be used in Hyder,
a scale-out log-structured indexed record manager.

Introduction

finishes, OCC determines whether the transaction commigbaonts. Acertifier is the component that makes

this determination. Itis a sequential algorithm that apedydescriptions of the transaction one-by-one in a given
total order. Each transaction description, calledrdantion is a record that describes the operations that the

Copyright 0000 IEEE. Personal use of this material is petadit However, permission to reprint/republish this maikfor

advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

transaction performed on shared data, such as read and @nigeway to determine the total order of intentions
is to store them in #0g. In that case, the certifier analyzes intentions in the dittky appear in the log.

A certifier algorithm has throughput limits imposed by thalerlying hardware [7]. This limits the scala-
bility of a system that uses it. To improve the throughpuis worthwhile to parallelize the algorithm. One way
to do this is to split the set of transactions into partitisush that for every pair of transactions from differ-
ent partitions, there are no conflicts between them. Thewrdhtier can run independently on each partition.
However, it is often infeasible to partition transactionghis way. In that case, the certifier algorithm needs to
handle transactions that span more than one partition. pétger presents such an algorithm.

The log also has throughput limits imposed by the hardwareusTa second opportunity for improving
throughput is to partition the log, such that each partitiocludes updates that apply to a distinct database
partition. This enables the log to be distributed over ir@lent storage devices to provide higher aggregate
throughput of read and append operations to the log. Howdwvée partitioning is imperfect, some transac-
tions need to appear in two or more partitions. In this case,ldg partitioning must ensure that conflicting
transactions appear in the same relative order in all logsrevthey both appear. This paper presents a way of
generating a log partitioning that satisfies this property.

The goal of these these two techniques—parallelizing #&ieerdnd partitioning a log—is to increase trans-
action throughput. Our motivation for designing these méghes is to increase the throughput of our Hyder
system, a database architecture that scales out withditigrang [8]. In Hyder, the logs the database, which
is represented as a multi-version binary search tree. Eaohdctiorl” executes on a snapshot of the database
and generates an intention record that contdilsswriteset and, depending on the isolation level, its reads
The intention is stored in the log. A certification algorithoalledmeld[9], reads intentions from the log and
sequentially processes them in log order to determine whetlransaction committed or aborted. If a transac-
tion commits, meld does one more step beyond OCC certifitatiamely, it merges the transaction’s updates
into the server’s locally-cached copy of the database. eSaticservers receive the same log, meld makes the
same commit and abort decisions for every transaction. eftwe, for any two servers, their locally-cached
copies of the database are identical for any data that isgstarboth of them. Since there is no synchronization
between the servers apart from appending to and readingtfrerahared log, the system scales out. That is,
throughput increases as more servers are added, untilghedowork, or meld algorithm is saturated. Often,
the meld algorithm is the bottleneck. This was demonstrat¢l] by experiments with a distributed implemen-
tation of Hyder on a cluster of enterprise-grade commodityexs. It is therefore important to parallelize meld
to increase transaction throughput. Bernstein et al. [8tdiees two approaches that use pipeline parallelism
to speed up meld; it introduces two preliminary stages thdtice the work done by the final sequential meld
algorithm. In this paper, we leverage database partit@ptorparallelize the meld algorithm itself.

Organization: We formally define the problem in Section 2 and then presenaltforithms for parallel certifi-
cation (Section 3) and log partitioning (Section 4). In 8atb, we revisit the question of how to apply these
parallel solutions to Hyder. Section 6 summarizes relateckvand Section 7 is the conclusion.

2 Problem Definition

The certifier's analysis relies on the notion of conflictiqgeations. Two operatiornflictif the relative order
in which they execute affects the value of a shared data itetheovalue returned by one of them. The most
common examples of conflicting operations are read and wyltere a write operation on a data item conflicts
with a read or write operation on the same data item. Two &etiens conflict if one transaction has an operation
that conflicts with at least one operation of the other treisa.

To determine whether a transactidncommits or aborts, a certifier analyzes whether any’sfoperations
conflict with operations issued by other concurrent tratisas that it previously analyzed. For example, if
two transactions executed concurrently and have confliciiccesses to the same data, such as independent

writes of a data itemx or concurrent reads and writes ©f then the algorithm might conclude that one of the
transactions must abort. Different certifiers use diffemeifes to reach their decision. However, all certifiers
have one property in common: their decision depends in petti@ relative order of conflicting transactions.

We define adatabase partitioningo be a set of partition names, such{dy, P, ...}, and an assignment
of every data item in the database to one of the partitionsatalzhse partitioning igerfectwith respect to a
set of transaction§” = {T,T5,...} if every transaction iff’ reads and writes data in at most one partition.
That is, the database partitioning induces a transactiditipaing. If a database is perfectly partitioned, then it
is trivial to parallelize the certifier and partition the logor each partitionP;, create a separate Idg and an
independent executiof; of the certifier algorithm. All transactions that accéssppend their intentions tb;,
andC; takesl; as its input. Since transactions in different logs do nofladnthere is no need for shared data
or synchronization between the logs or between executibtieaertifier on different partitions.

A perfect partitioning is not possible in many practicatiations, so this simple parallelization approach is
not robust. Instead, suppose we can define a databaseopantitithat isapproximatewith respect to a set of
transactiond’, meaning that most transactionsZirread and write data in at most one partition. That is, some
transactions il access data in two or more partitions (so the partitionimptgperfect), but most do not.

In an approximate partitioning, the transactions that ssoaly one partition can be processed in the same
way as a perfect partitioning. However, transactions tleaess two or more partitions make it problematic
to partition the certifier. The problem is that such multrtion transactions might conflict with transactions
that are being analyzed by different executions of thefaarthlgorithm, which creates dependencies between
these executions. For example, suppose data itearsly are assigned to different partitiody and P, and
suppose transactidfi writesx andy. ThenT; must be evaluated by to determine whether it conflicts with
concurrent transactions that accessethd byC, to determine whether it conflicts with concurrent transatdi
that accessegl. These evaluations are not independent. For examplg, determines thal; must abort, then
that information is needed hLy,, sinceC, no longer has the option to comni}. When multiple transactions
access different combinations of partitions, such scesaan become quite complex.

A transaction that accesses two or more partitions also snageoblematic to partition the log, because its
intentions need to be ordered in the logs relative to all adinfy transactions. Continuing with the example
of transactiorl’; above, should its intention be logged b, Lo, or some other log? Wherever it is logged, it
must be ordered relative to all other transactions that bandicting accesses toandy before it is fed to the
OCC algorithm. The problem we address is how to paralleligecertifier and partition the log relative to an
approximate database partitioning. Our solution takegpanoximate database partitioning, an OCC algorithm,
and an algorithm to atomically append entries to the log pistirit has three components:

1. Given an approximate database partitionihg- { P, P, ..., P, }, we define an additiondbgical parti-
tion Py. Each transaction that accesses only one partition isress$ig the partition that it accesses. Each
transaction that accesses two or more partitions is agsignie master logical partitioff,.

2. We parallelize the certifier algorithm into+ 1 parallel executiongCy, C1,Cs, ..., C,}, one for each
partition, including the logical partition. Each singlesfition transaction is processed by the certifier
execution assigned to its partition. Each multi-partitiamsaction is processed by the logical partition’s
execution of the certifier algorithm. We define synchroniratonstraints between the logical partition’s
certifier execution and the partition-specific certifier@xens so they reach consistent decisions.

3. We partition the log intox + 1 distinct logs{ Lo, L1, Lo, ..., L, }, one associated with each partition
and one associated with the logical partition. We show hogytechronize the logs so that the set of all
intentions across all logs is partially ordered and eveiygfaconflicting transactions appears in the same
relative order in all logs where they both appear. Our sofuis a low-overhead sequencing scheme based
on vector clocks.

Our solution works with any approximate database pariitignSince multi-partition transactions are more

s [[[c,
Scheduler Multi-partition | | Single-partition || Single-partition Single-partition
certifier certifier (P,) certifier (P,) certifier (P,)

LastAssignedLSNMap LastProcessed

L: La: La:
| LSN(Cy) = [0] I I LSN(C,) = [0] | ’LSN(C;)=[01 | LSN(C,) = [0]

cl 0 o e 0
C, 0
« oo Q Q, Q, Q,
[0
LastLSNAssignedToC,Map

Partition _LastLSNAssignedToC,
P 0
D

0
e oo
P, 0

Figure 1: Design overview of parallel certification showthg different certifiers and the data structures used.

expensive than single-partition transactions, the fewdtirpartition transactions that are induced by the data-
base partitioning, the better. The synchronization peréa between parallel executions of the certifier algo-
rithm is external to the certifier algorithm. Therefore, satution works with any certifier algorithm. The same
is true for the synchronization performed between parkilgs.

3 Parallel Certification

We now explain the design of a parallel certifier assumingglsitotally-ordered log. In this section, we use the
term certifier to refer to a certifier execution. A certifiendse parallelized using multiple threads within a single
process, multiple processes co-located on the same madhninailtiple processes distributed across different
machines; our discussion encompasses all such scenagoors4, entitled “Partitioned Log,” explains how
the parallel certification of this section can use a pariéiblog.

3.1 Design

We dedicate one certifi€r; to process intentions from single-partition transactiongartition P;, and dedicate
one certifierC to process intentions from multi-partition transactioAsingle schedulef processes intentions
in log order, assigning each intention to one of the certifigdhe certifiers can process non-conflicting intentions
in parallel. However, they must process conflicting intemsi in log order.

Our design uses constraints that capture the log oslpasses these constraints to eagh The certifiers
validate the constraints using atomic reads and writes aredhvariables, so the synchronization is efficient.
Figure 1 illustrates the design of a parallel certifier shmgthe different variables and data structures maintained
by eachC;, and the data structures used by S to determine synchrimmzainstraints passed to eaCh

In what follows, for succinctness we frequently use the widrahsaction” to mean the intention produced
by the transaction. Each intention in the log has a uniquatioe, called its log sequence number, or LSN,
which reflects the relative order of intentions in the logafis, intention Int precedes intention Iptin the log
if and only if the LSN of Inf is less than the LSN of Ipt

Every certifierC;(Vi € [0,n]) maintains a variabléastProcessedLSN(;) that stores the LSN of the last
transaction processed loy;. After C; processes a transactidi, it sets LastProcessedLS®Y(equal toT}'s
LSN; C; performs this update irrespective of whettigrcommitted or aborted. Every other certifi@j(V;j #)
can atomically read LastProcessedL8WN(but cannot update it. In our algorithm, each LastProcesSH{C;),

i € [1,n], is read only byC, and LastProcessedLSfY) is read by allC;, i € [1,n]. EachC; (i € [0,n]) also
has an associated producer-consumer qugwehereS enqueues the transactioffsneeds to process (i.&,is
the producer fof);). EachC; dequeues the next transaction frGpwhen it completes processing its previous
transaction (i.e.(; is the consumer fof);). The schedulef maintains a local structuréastAssignedLSN-
Map, that maps each;, i € [1,n]), to the LSN of the last single-partition transaction it gasd toC;. S

maintains another local structureastLSNAssignedTa’yMap, that stores a map of each partitiéh to the
LSN of the last multi-partition transaction that it assigrnie Cy and that accessefd.

Each certifiel; needs to behave as if it were processing all single-partdied multi-partition transactions
that acces$; in log order. This requires that certifiers satisfy the faflog synchronization constraint:

Parallel Certification Constraint: Before certifying a transactiof that accessed partitioR;, all
transactions that precedein the log and accessdg must have been certified.

This condition is trivially satisfied by a sequential ceetifi Threads in a parallel certifier must synchronize
to ensure that the condition holds. For each transactip’ determines which certifier€’; will processT.
S uses its two local data structures, LastAssignedLSNMapLastl SNAssignedTOyMap, to determine and
provide each suct’; with the synchronization constraints it must satisfy befdy can procesg’. Note that this
constraint is conservative since this strict ordering geasial only for conflicting transactions. However, in the
absence of finer-grained tracking of conflicts, this coresarg constraint guarantees correctness.

3.2 Synchronizing the Certifier Threads

Let T; denote the transaction thétis currently processing. We now describe h8wenerates the synchroniza-
tion constraints fofl;. OnceS determines the constraints, it enqueues the transactwitharconstraints to the
gueue corresponding to the certifier.

Single-partition transactions: If T; accessed a single partitid®}, thenT; is assigned to the single-partition
certifier C;. C; must synchronize witli’y before processing; to ensure that the parallel certification constraint
is satisfied. Lefl}, be the last transaction thatassigned ta@’y, that is, LastLSNAssignedT{gMap(F;) = k.

S passes the synchronization constraint LastProcessedly3N(% to C; along withT;. The constraint tells
C; that it can proces§; only after Cy has finished processinf,. WhenC; starts processing;’s intention,

it accesses the variable LastProcessedIC3IN(If the constraint is satisfied,; can start processing;. If the
constraint is not satisfied, thér either polls the variable LastProcessedL&N(until the constraint is satisfied
or uses an event mechanism to be notified when LastProceSkigdy)> k.

Multi-partition transactions: If T; accessed multiple partitions?;;, P;o, ...}, thenS assignsT; to Cy. Cy
must synchronize with the certifief€;1, Ci2, . . .} of all partitions{ P;1, Py, . . .} accessed by;. Let T}, be the
last transaction assigned & € {P;1, Pjo, ...}, thatis, LastAssignedLSNMa@() = ;. S passes the following
synchronization constraint Gy:

Avj.P,e{Py1,P,s,...y LAStProcessedLSN';) > kj,

The constraint tell§), that it can process; only after allC; in {C;1, Cjo, . . .} have finished processing their cor-
respondingdl;'s, which are the last transactions that precégand accessed a partition thiataccessed. When
Cy starts processing;’s intention, it reads the variables LastProcessedICGIN(j : P; € {P;1, Pi2, .. .}. Ifthe
constraint is satisfied,, can start processirifj. Otherwise(, either polls the variables LastProcessedLSN(
Vj : P; € {Py,P,...} until the constraint is satisfied or uses an event mecharospe notified when the
constraint is satified.

Notice that for allj such thatP; € {P;1, Pjs, ...}, the value of the variable LastProcessedLSN(ncreases
monotonically over time. Thus, once the constraint LastPseedLSN(;)> k; becomes true, it will be true
forever. Therefore(y can read each variable LastProcessedl(SN(ndependently, with no synchronization.
For example, it does not need to read all of the variablesArasessedLSN{;) within a critical section.

s C, c c, G

| [0 [0] [0 [0] |<:I LastProcessedLSN
LastAssigned
LSNMa
P e) @ Synchronization const traint
[To] LastiSNAssignedTo| = @ /@
<® Clegetal [B (ol @) s udates oclsrucures
Time
LastLSNAssigned I @ frassgnedto G
ToCyMap 111 C, reads
FTo] LastProcessedLSN(C,) = [0]
P
BT S oL
@ C, starts processing Ty
LastProcesse ALSN(C,)
updated

Figure 2: An example of the parallel certifier processinggls+partition transaction that accessed partifibn

3.3 An Example

Consider a database with three partitioRs P, P3. Let Cy,Cs, C3 be the parallel certifiers assigned to
Py, Py, P; respectively, and le€, be the certifier responsible for multi-partition transaet. In this exam-
ple, we consider the following sequence of transactions:

Tl[Pﬂ’ 2[P1]’T?£P2}, 4[P3]’ Ts[Pl,Pz}’ 6[P2]7T7[P3}’T8[P1,P3}’ g[Pz]

A transaction is represented in the foﬂi’ﬁp i} wherei is the transaction’s unique identifier aj¥g] is the set
of partitions thatl; accesses. In this example, we use the transaction’s igentdlso as its LSN. That is, we
assumel’; appears in positiof in the log,T5 in position2, and so on.

S processes the transactions (i.e., intentions) in log ofetwreach transaction, it determines which certifiers
will process the intention and determines the synchroioizatonstraint it needs to pass to the certifiers to
enforce the parallel certification constraint. The seqaaidigures 2— 8 illustrate the parallel certifier in action
while it is processing the above sequence of transactibiosying how the certifiers synchronize. In each figure,
we emphasize the transaction(s) at the tail of the log beioggssed bys; time progresses from top to bottom.
The LastProcessedLSN at the top of the figure shows the \elsalalue for each certifier before it has started
processing the recently-arrived transactions, i.e., #ieeg after processing the transactions from the previous
figure in the sequence. The vertical arrows beside eacltaklitie shows the processing time of each intention
at a certifier. The values updated as a result of processiimgeartion are highlighted in red. To avoid cluttering
the figure, we show minimal information about the previoass$actions.

Figure 2 shows a single-partition transactibpaccessing?. The numberg1—6) identify points in the
execution. At(0), S determines the synchronization constraint it must pas€stonamely, thatC, must
have at least finished processing the last multi-partitiandaction that accessd#l. S reads this value in
LastLSNAssignedT6y,Map(F.). SinceS has not processed any multi-partition transaction betgreéhe con-
straint is LastProcessedLS8Y{)> 0. At (), S updates LastAssignedLSNMap)= 1 to reflect its assignment
of T} to Cy. At (2), S assignsT; to C,, and then moves to the next transaction in the log.@AtCs reads
LastProcessedLSKY) as0 and hence determines(ai that the constraint is satisfied. Thereforesat, starts
processindl}. After C; completes processirify, at(6) it updates LastProcessedLSM| to 1.

Figure 3 shows the processing of the next three singletjpartiransactions-+,, T3, Ty—using steps sim-
ilar to those in Figure 2. As shown in Figure 4, whenever fmdesithe certifiers process the transactions in
parallel. In the state shown in Figure 3,@tC, is still processingdly, at(3) Co completed processing; and
updated its variable LastProcessedLEN] to 3, and at4) C'; completed processirifj, and updated its variable
LastProcessedLSKY§) to 4.

Figure 4 shows the processing of the first multi-partitiomngaction, 75, which accesses partitiong;
and P,. S assignsT; to Cy. At (0), S specifies the required synchronization constraint, whitkuees that

[0] [0] [1] [0] |<: LastProcessedLSN
LastAssigned
LSNMap 7ie o1
E ol o o I @ Synchronization constraint
]

CHEN N o - Time| @) suptates s srucures
LastLSNAssi d7,” [0]

ToC,Map RS _l_ 0] @ ¢, still processing T,

[p, o] [@ LastProcessedLSN(C,)

[P. [0] updated

7] 0 @ B

updated

Figure 3: S processes transactions in log order and updates its lacaltstes. Each certifier processes the
transactions tha$ assigns to it.

s C, C, c, c

3
[0] [0] (3] [4] | <: LastProcessedLSN

LastAssigned

@ Synchronization constraint
LSNMap el
<]2 e l @ S updates local structures
c [3 z —_
< 1P (0]) Cyreads
: Time LastProcessedLSN(C,) = [3]
. P
LastLSNAssigned e 1 C, reads
ToC, Map [Py.P;] ~ LastProcessedLSN(C,) = [0]
o 7! ...101.(2
P[5 LastAssigned | 1 A\ | Certifier constraint s false.
P, |5 e@ LSN(C,) = [2] H C, must wait for C;
) LastAssigned H
2 LSN(C,) = [3] H C, completes T, updates
i LastProcessedLSN(C,)
i ©
- €, notifies C,. Certifier
(% o @ © crsvamicine
\® % @ C, starts processing Ts

Figure 4: For multi-partition transactionS,determines the synchronization constraints and assigrsahsac-
tion to Cy.

Ts is processed aftef;, (the last single-partition transaction accessig and 73 (the last single-partition
transaction accessingy). S reads LastAssignedLSNMap() and LastAssignedLSNMapt) to determine
the LSNs of the last single-partition transactions fgrand P, respectively. The synchronization constraint
shown at(0) corresponds to this requirement, i.e., LastProcessedL8N(2 A LastProcessedLSK§)> 3.

S passes the constraint € along with75. Then, at2), S updates LastLSNAssigned@gMap(P;)= 5 and
LastLSNAssignedT6yMap(P)= 5 to reflect thafl; is the last multi-partition transaction accessifgand P.
Any subsequent single-partition transaction accesBingr P, must now follow the processing @f. At (2) and

(® Cy reads LastProcessedLSN() and LastProcessedLS8Y() respectively to evaluate the constraint. At this
point in time,C is still processingl, and hence i) the constraint evaluates to false. Therefore, even though
(5 has finished processirifi;, Cy waits for C; to finish processing’. This occurs at5), where it updates
LastProcessedLSKY) to 2. Now, at’) C; notifiesC, about this update. SG, checks its constraint again and
sees that it is satisfied. Therefore(atit starts processings.

Figure 5 shows processing of the next transacfipna single-partition transaction that accessesSince
both 75 and Ty accessP,, Cs can procesdy only after Cy has finished processings. Similar to other
single-partition transactions; constructs this constraint by looking up LastLSNAssigr&dMap(P,) which
is 5. Therefore, af0) S passes the constraint LastProcessedl(3N¢ 5 to C along withTg, and atl) sets
LastLSNAssignedToyMap(P2)= 6. At (2) C5 reads LastProcessedLSM()= 0. So its evaluation of the con-
straint at3) yields false.C|, finishes processings at(4) and sets LastProcessedLSN|= 5. At (5), Cy notifies
(5, that it updated LastProcessedL$J, soC> checks the constraint again and finds it true. Therefor@) at
it starts processin@s.

While (5 is waiting for Cy, other certifiers can process subsequent transactiong i€dhstraints allow

s C, C c, c

3
[0] [2] 3] (4] |<:I LastProcessedLSN
LastAssigned @
Synchronization constraint
LSNMap iPa)
1 [0]
¢ I2 il @ s updates local structures
c, |6 2 [o] —_
c, |4 72] . C, reads
2 T3 101 T Time LastProcessedLSN(C,) = [0]
LastLSNAssigned 7."’ 0] 4 Certifier constraint is false.
ToC,Ma TlPuPel Cil2] C, must wait for C,
oMap 7 i =200
P, [5 @ C, completes Ts, updates
P, |5 TPl 5] -~ 3] LastProcessedLSN(C,)
[0 (2) 1< N .
A4 ' €, notifies C,. Certifier
= [5] e b @ >) T constraint is true
% : @ C, starts processing T

Figure 5: Synchronization constraints to order single#pan transactions after a multi-partition transaction.

s G, C, c, c

3
| [0] [2] 3] (4] |<:I LastProcessedLSN
LastAssigned
LSNMa
P T][Pz] o
c |2 3] ;
G |7 TSLPZJ [0 @ Synchronization constraint
LastLSNAssigned 7.”! (0] T Q@ supdates ocal structures
. Y
ToCoMap 7] 2;{;: | — @ C, reads
B P2l [’5] L ¥ 3] LastProcessedSN(C) = [0]
P, |5 - %(_
i 0))
1o 7 0] = @ WK@ @ Certifier constraint is true
[5] 71 @ @ C; starts processing T
\® LastProcessedLSN(C,)
updated

Figure 6: Benefits of parallelization for single-partititmansactions.Cs can start processin@; while T is
waiting for Ty to complete orCy.

it. Figure 6 illustrates this scenario where the next tratiga in the log,77, is a single-partition transaction
accessingP;. Since no multi-partition transaction precedifighas accessef;, at(0) the constraint passed to
(3 is LastProcessedLSK()> 0. The constraint is trivially satisfied, whiet; observes aB). Therefore, while
(5 is waiting, at(4) C; starts processing in parallel withCy’s processing offs andC5’s processing off,
thus demonstrating the benefit of parallelizing the cerfie

Figure 7 illustrates that if the synchronization constisiallow, even a multi-partition transaction can be
processed in parallel with other single-partition tratisas without any waits. Transactidfy accessesd’;
and P;. At (0), based on LastAssignedLSNMag, generates a constraint of LastProcessedICGN¢ 2 A
LastProcessedLSKg)> 7 and passes it along witthy to Cy. By the time () starts evaluating its con-
straint, bothC; and C5 have completed processing the transactions of intere§itoTherefore, at2) and
(® Cj reads LastProcessedLSN(= 2 and LastProcessedLS&)= 7. So at(4) C; finds that the constraint
LastProcessedLSKY{)> 2 A LastProcessedLSKg)> 7 is satisfied. Thus, it can immediately start processing
Ts at(5), even thought; is still processind’s. This is another example demonstrating the benefits oflplsah.

As shown in Figure 85 processes the next transacti@p, which accesses only one partitiadp,. Although
Ty is still active atCy and hence blocking further activity @ty andCs, by this timeT has finished running at
C5. Therefore, wherb assignsiy to Cs at(0), Cs's constraint is already satisfied@}, soCy can immediately
start processing@y at(4), in parallel withCy's processing of/s. Later, Ty finishes at5) and Ty finishes ate),
thereby completing the execution.

S Go G G G
5] 2] €] 7] | <=~ LastProcessedLSN

LastAssigned
Sy hi it ti it
v @ srevoniatenconsran
7 (0]
G |2 pal Time @ S updates local structures
G |6 2 0] —_
= T7 . C, reads
> T3 10} @ LastProcessedLSN(C,) = [2]
LastLSNAssigned 7"’ (0] T C, reads
ToC,Map 7/77! 2l = LastProcessedLSN(C;) = [7]
C;:l3]
P, 18 Z@rgm 151 - - 3] @ Certifier constraint is true
P |3 e 1o
2N LR £
PP, 2] i
Ts[’1,P3] c‘-[7] - @ C, starts processing Tg
5071 51-(2 @G)
\@ (6] C, completes Ts, updates
\@ ; LastProcessedLSN(C,)

Figure 7: Benefits of parallelization for multi-partitiorahsaction.Cy can start processirifg while C', contin-
ues processinfg.

s G c, c, c

3
5] 2] 6] 7 |<‘,: LastProcessedLSN
LastAssigned
Synchi i traint
et @ srvaraion s
T [0]
C |2 @Tz[m ol I Time @ S updates local structures
c, |9 —_
=1 o C, reads
S Tl 0] T LastProcessedLSN(C;) = [5]
LastLSNAssigned e [0} V- @ Certif raint s true
ertifier constraint is tru
ToC.Ma rlPueal 2]
oViap 73 Gasl —> T
e 71l 1 i Y — @ C, starts processing T
s ! o1 letes Ty, upd
3 N C, completes Ty, updates
PPl E‘E} e I LastProcessedLSN(C,)
X
- -~ €, completes Ty, updates
Ty'” 5]) 5]\/_/® @ LastProcessedLSN(C,)
V5 N w
= [9]

Figure 8: Parallel certifier continues processing the @etisns in log order and the synchronization constraints
ensure correctness of the parallel design.

3.4 Discussion

Correctness requires that for each partitignall transactions that acceSsare certified in log order. There are
two cases, single-partition and multi-partition trangat.

e The constraint on a single-partition transactirensures thdt; is certified after all multi-partition trans-
actions that precede it in the log and that accesBedSynchronization conditions on multi-partition
transactions ensure thaj is certified before all multi-partition transactions thalidw it in the log and
that accessed;.

e The constraint on a multi-partition transactidnensures thdt; is certified after all single-partition trans-
actions that precede it in the log and that accessed padifif;;, P;2, ...} thatT; accessed. Synchro-
nization conditions on single-partition transactionsugashat for eact?; € {P;1, Pjo, ...}, T; is certified
before all single-partition transactions that follow itthee log and that accesséy.

Note that transactions that modify a given partitiBnwill be certified byC; or Cy (but not both), depending on
whether it is single-partition or multi-partition.

The extent of parallelism achieved by the proposed paredidifier depends on designing a partitioning that
ensures most transactions access a single partition andpiteads transaction workload uniformly across the
partitions. With a perfect partitioning, each certifier ¢eave a dedicated core. So withpartitions, a parallel
certifier will run up ton times faster than a single sequential certifier.

Each of the variables that is used in a synchronization cainst—LastAssignedLSNMap, LastProcess-
edLSN, and LastLSNAssigned@TgMap—is updatable by only one certifier. Therefore, therenareace con-
ditions on these variables that require synchronizatidwéen certifiers. The only synchronization points are
the constraints on individual certifiers which can be vaédavith atomic read operations.

3.5 Finer-Grained Conflict Testing

The parallelized certifier algorithm generates constsaimtder the assumption that certification of two trans-
actions that access the same partition must be synchronikki$ is a conservative assumption, in that two
transactions that access the same partition might accesaithe data item in non-conflicting modes, or might
access different data items in the partition, which impthess transactions do not conflict. Therefore, the syn-
chronization overhead can be improved by finer-grained iobtelsting. For example, in LastAssignedLSNMap,
instead of storing one value for each partition that idezgtithe LSN of the transaction assigned to the patrtition,
it could store two values: the LSN of the last transaction tead the partition and was assigned to the partition
and the LSN of the last transaction that wrote the partitiodh was assigned to the partition. A similar distinc-
tion could be made for the other variables. Then, S could gém@ constraint that would avoid requiring that
a multi-partition transaction that only read partitihbe delayed by an earlier single-partition transaction that
only read partitionP;, and vice versa. Of course, the constraint would still neeghisure that a transaction that
wrote P; is delayed by earlier transactions that read or wiéteand vice versa.

This finer-grained conflict testing would not completely deagt with synchronization betweefi; and
C;, even when a synchronization constraint is immediateligfsad. Synchronization would still be needed to
ensure that only one afy, andC; is active on a partitiorP; at any given time, since conflict-testing within a
partition is single-threaded. Aside from that synchrotitzg and the use of finer-grained constraints, the rest of
the algorithm for parallelizing certification remains tteare.

4 Partitioned Log

Partitioning the database also allows partitioning the fwgvided ordering constraints between intentions in

different logs are preserved. The log protocol is executeddrh server that processes transactions. Alterna-
tively, it could be embodied in a log server, which receiveguests to append intentions from servers that run
transactions.

4.1 Design

In our design, there is one lof; dedicated to every partitio®; (Vi € [1,n]), which stores intentions for
single-partition transactions accessifAg There is also a lod.q, which stores the intentions of multi-partition
transactions. If a transactichi accesses only?;, its intention is appended tb; without communicating with
any other log. IfT; accessed multiple partitiods”, }, its intention is appended t, followed by communication
with all logs{L;} corresponding td P; }. The log protocol must ensure the following constraint farectness:

Partitioned Log Constraint: There is a total order between transactions accessing ithe garti-
tions, which is preserved in all logs where both transastispear.

Figure 9 provides an overview of the log sequence numberbingbe partitioned log design. A technique
similar to vector clocks is used for sequence-number génarfll, 17]. Each log.; for i € [1,n] maintains
the single-partition LSN of_;, denoted SP-LSN{;), which is the LSN of the last single-partition log record
appended td;. To order single-partition transactions with respect tdtiapartition transactions, every log also
maintains the multi-partition LSN of;, denoted MP-LSNL;), which is the LSN of the last multi-partition

10

L L L, L,

Multi-partition Single-partition Single-partition Single-partition
log log (P,) log (P;) log (P,)
[MP-LSN(L,), [MP-LSN(L,), [MP-LSN(L,), [MP-LSN(L,),
SP-LSN(L,)] SP-LSN(L,)] SP-LSN(L,)] e SP-LSN(L,)]
=10,0] =10,0] =1[0,0] =10,0]

Figure 9: Ordering of entries in the log. Each lbgmaintains a compound LSN ([MP-LSN(), SP-LSN({;)])
to induce a partial order across conflicting entries in diffe logs.

transaction that accessé&dand is known ta_;. The sequence number of each recBydin log L; for i € [1,n]

is expressed as a pair of the foftMP-LSN(L;), SP-LSN;(L;)] which identifies the last multi-partition and
single-partition log records that were appended.foincluding Ry, itself. The sequence number of each record
Ry in log Ly is of the form[MP-LSN, (L), 0], i.e., the second position is always zero. All logs starhwit
sequence numbéo, 0].

The order of two sequence numbers is decided by first conpdliR-LSN(L;) and then SP-LSN{,).
That is,[MP-LSN,,(L;), SP-LSN,,(L;)] precedesMP- LSN, (L;), SP- LSN,(L,)] iff either MP-LSN,,(L;) <
MP-LSN,(L;), or (MP-LSN,,(L;) = MP-LSN,(L;) A SP-LSN,.(L;) < SP-LSN,(L;)). This technique
totally orders intentions in the same log (i.e.,iif= j), while partially ordering intentions of two different
logs (i.e., ifi # j). If the ordering between two intentions is not defined, ttieey are treated as concurrent.
Notice that LSNs in different logs are incomparable, beedhgir SP-LSN'’s are independently assigned. The
assignment of sequence numbers is explained in the desorgdtthe log protocol.

4.2 Log Protocol

Single-partition transactions: Given transactiorY;, if T; accessed a single partitidf), thenZ;’s intention is
appended only td,;. SP-LSN(;) is incremented and the LSN @f’s intention is set tdmp-Isn SP-LSN L;)],
where mp-Isn is the latest value of MP- LS| that L; has received frond.
Multi-partition transactions: If T; accessed multiple partitioqd;1, P;o, . . .}, thenT;’s intention is appended
to log Ly and the multi-partition LSN of.y, MP-LSN(L), is incremented. After these actions finish, MP-
LSN(Ly) is sent to all logg L;1, L2, . . .} corresponding td P;1, Pyo, . . .}, which completed;’s append.

This approach of log-sequencing enforces a causal ordesebatthe log entries. That is, two log entries
have a defined order only if they accessed the same patrtition.

Each logL;(Vi € [1,n]) maintains MP-LSNL;) as the largest value of MP-LSH() it has received from
L so far. However, each; does not need to store its MP-LSINJ persistently. IfL; fails and then recovers, it
can obtain the latest value of MP-LSD) by examiningLg’s tail. It is tempting to think that this examination of
Lg’s tail can be avoided by having; log each value of MP-LSN{) that it receives. While this does potentially
enableL; to recover further without accessirdg’s tail, it does not avoid that examination entirely. To sdeyw
suppose the last transaction that acced3eefore L; failed was a multi-partition transaction that succeeded
in appending its intention td,y, but L; did not receive the MP-LSN{) for that transaction beforé; failed.
In that case, aftel; recovers, it still needs to receive that value of MP-LEN(which it can do only by
examiningLg’s tail. If Ly has also failed, then after recovery, can continue with its highest known value of
MP-LSN(L,) without waiting for L to recover. As a result, a multi-partition transaction nilgd ordered irn’;
at a later position than where it would have been ordereckifditure did not happen.

Alternatively, for each multi-partition transactiohg could run two-phase commit with the logs correspond-
ing to the partitions that the transaction accessed. Thatdsuld send MP-LSNL,) to those logs and wait for

11

Ly L L, L

3
00) 0] 0] 0o | <= 15N

v 7P q/® e 1/® e D/@

[0,1] [0,1] [0,1]

7le2)

3
P [
Ta[2 [0,2] Ty is appen»ded to L, and
TlPs SP-LSN(L,) is updated

T, is appended to L, and
SP-LSN(L,) is updated

T; is appended to L, and SP-
LSN(L,) is updated

T, is appended to L; and
SP-LSN(L,) is updated

Figure 10: Single-partition transactions are appendelddasingle-partition log€.,, Lo, andLs.

acknowledgments from all of them before logging the tratisacat L,. However, like any use of two-phase
commit, this protocol has the possibility of blocking if alfeie occurs between phases one and two.

To avoid this blocking, in our design, whdn, recovers, it communicates with evefy to pass the latest
value of MP-LSN(). When one of thd.;'s recovers, it reads the tail df,. This recovery protocol ensures
that MP- LSN(.() propagates to all single-partition logs.

4.3 An Example

Let us assume that a database has three partittpns,, Ps. Let L1, Ly, L3 be the logs assigned 1, P, Ps
respectively, and.¢ be the log for multi-partition transactions. Consider tbkofving sequence of transactions:
Tl[Pﬂ’ 2[P1]’T?EP2}, 4[P3]’ Ts[Pl,Pz}’ 6[P2]7T7[P3}’T£P1,P3}’ g[Pz]

As earlier, a transaction is represented in the f(ii‘ii‘ﬁ"‘“} wherei is a unique transaction identifier; note
that this identifier does not induce an ordering between rénestictions. The superscript @h identifies the
partitions thatl; accesses. We usg to refer to both a transaction and its intention. In figures1#) the
vertical line at the extreme left shows the order in whichdbpend requests arrive; time progresses from top
to bottom. The LSN at the top of each figure shows each log’s b8fdre it has appended the recently-arrived
transactions, i.e., the values after processing the tcéinsa from the previous figure in the sequence. The black
circles on each vertical line for a log shows the append ofrdmesaction and the updated values of the LSN.
A multi-partition transaction is shown using a triangle aedeipt of a new multi-partition LSN at the single
partition logs is shown with the dashed triangle. The valugdated as a result of processing an intention are
highlighted in red.

Figure 10 shows four single-partition transactidnsTs, T3, 7, that are appended to the logs correspond-
ing to the partitions that the transactions accessed; thdars(1)-(4) identify points in the execution. When
appending a transaction, the log’s SP-LSN is incremented.inStance, in Figure 1@} is appended td., at
(D which changed.,’s LSN from [0, 0] to [0, 1]. Similarly at(2»-(4), the intentions fofl, — T, are appended
and the SP-LSN of the appropriate log is incremented. Apparidingle-partition transactions do not need
synchronization between the logs and can proceed in piarafieorder is induced only between transactions
appended to the same log. For instariteandT3 both access partitiof, and hence are appendediig with
T, (at(D) precedingl; (at(®); however, the relative order @f, T», andT} is undefined.

Multi-partition transactions result in loose synchrotiiza between the logs to induce an ordering among
transactions appended to different logs. Figure 11 showesxample of a multi-partition transactidfy that
accessed, andP,. WhenTj's intention is appended tb, (at(1), MP-LSN(L) is incremented td. In step
(2), the new value MP-LSN{y) = 1 is sent toL; and L,. On receipt of this new LSN (step)), L; and Lo

12

Ly L L, L

3
[oo o1 02) 1 | <= 15N

P2l
7 A U T[PI]{[OJ] g1 TP @01
.

[
T, 2
[P1] 5
T. -
2 @*;ék ARV
TP [seo [0,2] .
3 el Ts is appended to L, and
RN MP-LSN(L,) is updated

lPs
. ifies MP-LSN(L,) t
PP @ L, notifies MP-LSN(L,) to
5 LandL,
L, and L, update their MP-
LSN to MP-LSN(L,)

/

Figure 11: A multi-partition transaction is appended.tcand MP-LSN(,) is passed to the logs of the partitions
accessed by the transaction.

Ly L L, L

3
[o L1 (1.2 1 | <= 15N

P] b
h D LR Er YRIREESY SORTEY 108V
! e <= (2] (3]

2 Szl 2 P.

i#) S T e T 02 :
T3 ~~~~~ T is appended to L, and
lps] “‘\,35,..[1 2 SP-LSN(L) is updated
[P4P] ’ T; is appended to L; and

Ts 2 1P @11,3] SP-LSN(Ly) is updated

plea]

6
TlFil

Figure 12: Single-partition transactions that follow a tlpértition transaction persistently store the new value
of MP-LSN(L;) in L;.

update their corresponding MP-LSN, i.€4’s LSN is updated td1, 1] andLs’s LSN is updated td1, 2]. As an
optimization, this updated LSN is not persistently stomed.i or L. If either log fails, this latest value can be
obtained fromL that stores it persistently.

Any subsequent single-partition transaction appendedthere.; or L. will be ordered aftefls, thus es-
tablishing a partial order with transactions appended.do As shown in Figure 1275 is a single-partition
transaction accessinf, which when appended th, (at (1)) establishes the ordél; < 75 < Ts. As a
side-effect of appendin@y’s intention, MP-LSN(,) is persistently stored as well;, another single-partition
transaction accessing;, is appended td.;3 at(2). It is concurrent with all transactions except, which was
appended td.3 beforeT.

Figure 13 shows the processing of another multi-partitramdactiony which accesses partitiorf3, and
P5. Similar to the steps shown in Figure 17k, is appended td, (at(2)) and MP-LSN() is updated. The new
value of MP-LSN(¢) is passed td.; and L3 (at(2) after which the logs update their corresponding MP-LSN
(at(®). Ty induces an order between multi-partition transactionseaged tol, and subsequent transactions
accessing”; and P;. The partitioned log design continues processing traimsechs described, establishing a
partial order between transactions as and when neededeHigishows the append of the next single-partition
transactiorily appended td.; (at(2).

13

Ly L L, L

3
[o L1 13 02 | <= 15N

[P2] 3
n AP LAY YOSV TORIE VY 108
)P s “evesg (72]
2 STmzal T2 [P3]
(PP A 12,01 (1.1] 3 > T, [0,2]
i) Tg SN0 B (021 T is appended to Ly and
TlPs ~~<al. % [2,2] MP-LSN(L,) is updated
4
L, notifies MP-LSN(L,) to
(P1.P,] @ i °
T. L;and L.
5 1 3
TG[Pz] L, and L, update their MP-
. LSN to MP-LSN(Lp)
T, *
[P1,Ps]
T,
8

Figure 13: Different logs advance their LSNs at differertesa A partial order is established by the multi-
partition transactions.

Ly L L, L

3
[o 21 13 L2 | <= 15N

[P2] s
i D R JOREEEAEY TRV S 102
Ty s “Tesss [p2]
2 3 T2 [P3]
Pr) A12,0] (1.1] 3 > T, [0,2]
e T} - S _[‘_7 1 Ty is appended to L, and
1P ol R | [1-2-]-------% . 12,2] SP-LSN(L,) is updated
4 I L
Tl (21]
g i I8
" [P,]
TP Ty " @ (1,4]
piru
i)

Figure 14: The partitioned log design continues appendinglespartition transactions without the need to
synchronize with other logs.

4.4 Concurrent Appends toL

To ensure that multi-partition transactions have a comsigirder across all logs, a new intention is appended to
Ly only after the previous append Iy has completed, i.e., the new value of MP-LZN) has propagated to

all single-partition logs corresponding to the partiti@sessed by the transaction. This sequential appending
of transactions td., might increase the latency of multi-partition transactio®\ simple extension can allow
parallel appends téa simply by requiring that each log partition retains only thegest MP- LSN{) that it

has received so far. If a lofy; receives values of MP-LSNJ,) out of order, it simply ignores the stale value
that arrives late. For example, suppose a multi-partittangdactionl; is appended td., followed by another
multi-partition transactiorY;, which have MP-LSNL,) = 1 and MP-LSN() = 2, respectively. Suppose log

L; receives MP-LSNLy) = 2 and later receives MP-LSMN{) = 1. In this case,L; ignhores the assignment
MP-LSN(Ly) = 1, since it is a late-arriving stale value.

4.5 Discussion

With a sequential certification algorithm, the logs can begad by each compute server. A multi-partition
transactioril; is sequenced immediately before the first single-partitiansactioril; that accessed a partition
thatT; accessed and was appended Wifls MP-LSN(Lg). To ensure all intentions are ordered, each LSN is
augmented with a third component, which is its partition$b that two LSNs with the same multi-partition and
single-partition LSN are ordered by their partition ID.

14

Cross partition links
maintained lazily

Partition P, Partition P, Partition P, Partition P,
(a) Independent trees (b) Lazily-maintained inter-partition links

Figure 15: Partitioning a database in Hyder. Subfigure (ajvstpartitions as independent trees. Subfigure (b)
shows a single database tree divided into partitions wittrdipartition links maintained lazily.

With the parallel certifier, the schedulSradds constraints when assigning intentions to the cesifiéer-
tifiers C; (i € [1,...,n]) will process single-partition transactions appended tand C, will process multi-
partition transactions appendeditg. ForC; (: € [1,...,n]) processing a single-partition transaction with LSN
[MP-LSN(L;), SP-LSN.(LZ;)], the certification constraint faf’; is LastProcessedLSK{) > [MP-LSNg(L;),

0]. This constraint ensures that the single-partition taatien is certified only afte€’y has certified the multi-
partition transaction with MP-LSNL;). ForC processing multi-partition transactidhthat accessed partitions
{P;} and has LSN [MP-LSILy), 0], the scheduling constraint Ys(vjzpje{PZ_}) LastProcessedLSN;) > X,
where X is the LSN of the last single-partition transaction acaesst; that appeared id.; beforeT'. This
constraint ensures that the multi-partition transacfiors certified only after all single-partition transactions
that are ordered befofE have been certified. These constraints can be deduced feodath structures that the
scheduling thread maintains, as described in Section 3.1.

Consider for example the sequence of transactions in $e¢t®and the LSNs assigned as shown in Fig-
ure 14. Ty is a single partition transaction with LSN,[3] is ordered after multi-partition transactiafy with
LSN [1,0]. T5’s position in Lo is betweenTs and Tg. The constraint passed t@, which certifiesTy is
LastProcessedLSKY{) > [1, 0]. This constraint ensures th@b certifiesTy only after Cy has certified7s.
Now consider the certification of multi-partition transaotTy which accessed partitiond, and P;. Cy's con-
straint is LastProcessedL$;) > [0,1] A LastProcessedLSN's) > [0,2]. This ensures thaf, certifiesTy
only afterC; has certifiedl;, andC3 has certified.

To argue about correctness, we need to show that the paetiting behaves the same as a non-partitioned
log. For sequential certification, the partitioned log isrgeel into a single non-partitioned log, so the result
follows immediately. For parallel certification, for eadylL; (i # 0), the constraints ensure that each multi-
partition transaction is synchronized betwdgnand L; in exactly the same way as in the single-log case.

If most of the transactions access only a single partitiahthare is enough network capacity, this partitioned
log design provides a nearly linear increase in log througlgs a function of the number of partitions. The
performance impact of multi-partition transactions is expected to be very high.

5 Partitioning in Hyder — An application scenario

As we explained in Section 1, Hyder is a system that uses O@@ éog-structured database that is shared by
all servers. Given an approximate partitioning of the dasahthe parallel certification and partitioned log algo-
rithms described in this paper can be directly applied toddy&ach parallel certifier would run Hyder's OCC
algorithm, called meld, and each log partition would be atir@ry Hyder log storing updates to that partition.
Each log stores the after-image of the binary search tredeztdoy transactions updating the corresponding par-
tition. Multi-partition transactions result in a singlaémtion record that stores the after-image of all partijon
though this multi-partition intention can be split so thategarate intention is created for every partition.

15

The application of approximate partitioning to Hyder asearthat the partitions are independent trees as
shown in Figure 15(a). Directory information is maintairtedt describes which data is stored in each partition.
During transaction execution, the executer tracks thetjoeus accessed by the transaction. This information is
included in the transaction’s intention, which is used kg $bheduler to parallelize certification and by the log
partitioning algorithm.

In addition to the standard Hyder design where all computieaaun transactions (on all partitions), it is
possible for a given compute node to serve only a subset gidhéions. However, this increases the cost of
multi-partition transaction execution and meld.

A design with a partitioned tree, as shown in Figure 15(bal$® possible, though at the cost of increased
complexity. Cross-partition links are maintained as lagiinks, to allow single-partition transactions to pro-
ceed without synchronization and to minimize the synctmation required to maintain the database tree. For
instance, in Figure 15(b), the link between partitidghsand P; is specified as a link from node to the rootk
of P3. Since single-partition transactions &% modify Ps's root, traversing this link fronf’ requires a lookup
of the root of partitionPs. This link is updated during meld of a multi-partition tracton accessing’ and
P5 and results in adding an ephemeral node replaéirif) F's left subtree was updated concurrently with the
multi-partition transaction. The generation of ephemaaales is explained in [9].

6 Related Work

Optimistic concurrency control (OCC) was introduced by §@amd Robinson in [14]. Its benefits and tradeoffs
have been extensively explored in [1,2,12,16, 18, 20]. Mamations and applications of OCC have been pub-
lished. For example, Tashkent uses a centralized OCC validger distributed data [10]. An OCC algorithm
for an in-memory database is described in [15]. None of thes&s discuss ways to partition the algorithm.

An early timestamp-based concurrency control algorithat tises partitioning of data and transactions is
described in [5]. More recent examples of systems thattjariilata to improve scalability are in [3,13,19, 21].

The only other partitioned OCC algorithm we know of is for thengo system [4]. In Tango, after a
server runs a multi-partition transactidhand appendd™s log record, it rolls forward the log to determine
T's commit/abort decision and then writes that decision ®Ithg. The certifier of each partition uses that
logged decision to decide how to act on log records from apadttition transactions. This enables the certifier
to update its version state of data, so it can perform OCQlatdin of single-partition transactions. That is,
each certifielC; reads the sequence of single-partition and multi-pantitegy records that read or updatétl
When(C; encounters a multi-partition log record, it waits untilées a decision record for that transaction in the
log. This synchronization point is essentially the saméhataf C; waiting for Cy in our approach. However,
the mechanism is different in two ways: the synchronizairdarmation is passed through the log, rather than
through shared variables; and every server that runs a-partition transaction also performs the log roll-
forward to determine the transaction’s decision (althotigs could be done by a centralized server, Kg.
The experiments in [4] show good scalability with a modefedetion of cross-partition transactions. It remains
as future work to implement the algorithm proposed here angpare it to Tango’s.

In Tango, all partitions append log records to a single setipldog. Therefore, the partitioned log constraint
is trivially enforced. By contrast, our design offers egjtlsynchronization between log records that access the
same patrtition. This enables them to be written to diffetegs$, which in aggregate can have higher bandwidth
than a single log, like Tango’s.

Another approach to parallelizing meld is described in [Blises a pipelined design that parallelizes meld
onto multiple threads. One stage of the pipeline prepresesach intentiod by testing for conflicts with
committed transactions before the final meld step. It alsbvéshes’T by replacing stale data ihby committed
updates. The other stage combines adjacent intentiong iilogh also before the final meld step. Each of these
stages reduces the work required by the final meld step.

16

7 Concluding Remarks

In this paper, we explained a design to leverage approxipeatéioning of a database to parallelize the certifier
of an optimistic concurrency control algorithm and its aopanying log. The key idea is to dedicate a certifier
and a log to each partition so that independent non-comifjdtiansactions accessing only a single partition can
be processed in parallel while ensuring transactions acgeshe same partition are processed in a sequence.
Since partitioning of the database, and hence the transactheed not be perfect, i.e., a transaction can ac-
cess multiple partitions, our design processes these-paudtiition transactions using a dedicated multi-pantitio
certifier and log. The efficiency of the design stems from gidightweight synchronization mechanisms—
the parallel certifiers synchronize using constraints avthie partitioned log synchronizes using asynchronous
causal messaging. The design abstracts out the detaile akttifier and the logging protocol, making it ap-
plicable to a wide variety of systems. We also discussed pipdication of the design in Hyder, a scale-out
log-structured transactional record manager. Our dedigwsaHyder to leverage approximate partitioning to
further improve the system’s throughput.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficieptimistic concurrency control using loosely
synchronized clocksProc. ACM SIGMOD Int. Conf. on Management of Datages 23—-34, 1995.

[2] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Senguptatributed multi-version optimistic concurrency
control with reduced rollbackDistributed Computing2(1):45 — 59, 1987.

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, Jdoa, J.-M. Leon, Y. Li, A. Lloyd, and V. Hush-
prakh. Megastore: Providing scalable, highly availabtagie for interactive services. Rroc. 5th
Biennial Conf. on Innovative Data Systems Resedt0fi1.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhala, M. Wei, J. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: distributed data structures over a shargd la Proc. 24th ACM Symp. on Operating
System Principlepages 325-340, 2013.

[5] P. Bernstein, D. Shipman, and J. R. Jr. Concurrency obirira system for distributed databases (sdd-1).
ACM Trans. Database Sysh(1):1 — 17, 1980.

[6] P. A. Bernstein, S. Das, B. Ding, and M. Pilman. Optimgiaptimistic concurrency control for tree-
structured, log-structured databasesPtoc. ACM SIGMOD Int. Conf. on Management of De2a15.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodm@&mncurrency Control and Recovery in Database Systems
Addison-Wesley, 1987.

[8] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a traneaatirecord manager for shared flash Phoc.
5th Biennial Conf. on Innovative Data Systems Reseg@apes 9-20, 2011.

[9] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan. Optimistiancurrency control by melding treeBroc.
VLDB Endowment4(11):944-955, 2011.

[10] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: hiitiurability with transaction ordering for high-
performance scalable database replicationPrrc. 1st ACM SIGOPS/EuroSys European Conf. on Com-
puter Systemgages 117 — 130, 2006.

17

[11] M. J. Fischer and A. Michael. Sacrificing serializatyilio attain high availability of data in an unreliable
network. InProc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Datat#gstemspages 70-75,
1982.

[12] R. Gruber. Optimistic concurrency control for nestetributed transactions. Technical Report
MIT/LCS/TR-453, MIT, June 1989.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,&lonik, E. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. Abadi. H-store: a high-performardistributed main memory transaction
processing systenkroc. VLDB Endowment.(2):1496 — 1499, 2008.

[14] H. T. Kung and J. Robinson. On optimistic methods foraomency controlACM Trans. Database Syst.
6(2):213 — 226, 1981.

[15] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. RatdIM. Zwilling. High-performance concurrency
control mechanisms for main-memory databas@sc. VLDB Endowmenb(4):298—-309, 2011.

[16] G. Lausen. Concurrency control in database systemseftewards the integration of optimistic methods
and locking. InProc. ACM Annual Confpages 64 — 68, 1982.

[17] D.S. Parker Jr., G. J. Popek, G. Rudisin, A. Stoughtord, BValker, E. Walton, J. M. Chow, D. A. Edwards,
S. Kiser, and C. S. Kline. Detection of mutual inconsistemcgtistributed systemdEEE Trans. Software
Eng, 9(3):240-247, 1983.

[18] S. Phatak and B. R. Badrinath. Bounded locking for of#tiit concurrency control. Technical Report
DCS-TR-380, Rutgers University, 1999.

[19] J. Rao, E. Shekita, and S. Tata. Using paxos to build lalsiea consistent, and highly available datastore.
Proc. VLDB Endowmen(4):243 — 254, 2011.

[20] A. Thomasian and E. Rahm. A new distributed optimistacurrency control method and a comparison
of its performance with two-phase locking. Rroc. 10th Int. Conf. on Distributed Computing Systems
pages 294 — 301, 1990.

[21] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, andl. Bbadi. Calvin: fast distributed transac-
tions for partitioned database systemsPhoc. ACM SIGMOD Int. Conf. on Management of Dgtages
1-12,2012.

18

