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ABSTRACT

We describe a novel statistical model, the tied Boltzmann
machine, for combining collaborative and content informa-
tion for recommendations. In our model, pairwise interac-
tions between items are captured through a Boltzmann ma-
chine, whose parameters are constrained according to the
content associated with the items. This allows the model to
use content information to recommend items that are not
seen during training. We describe a tractable algorithm for
training the model, and give experimental results evaluat-
ing the model in two cold start recommendation tasks on
the MovieLens data set.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering ; G.3 [Probability

and Statistics]: correlation and regression analysis; I.2.6
[Artificial Intelligence]: Learning—parameter learning

General Terms

Algorithms, Performance

Keywords

recommender systems, collaborative filtering, content-based
filtering, cold start, Boltzmann machines

1. INTRODUCTION
Recommender systems attempt to suggest items of inter-

est to users based on information including their own pre-
vious usage patterns, the usage patterns of other users, and
features of the items themselves [10]. Collaborative filtering
techniques provide recommendations by using the prefer-
ences of other users that have historically had similar prefer-
ences to the target user [2, 9, 15]. These preferences may be
expressed either explicitly (e.g. by rating movies at an online
movie rental service) or implicitly (e.g. by browsing an item
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description or buying an item at an online retailer). For
example, the familiar Amazon item-to-item recommender
system [9] recommends items that were bought significantly
more often by users buying a given item to a target user
buying that given item. Such systems have the drawback
that they suffer from the item cold start problem–an item
cannot be recommended until it has been rated by a number
of existing users.

This problem can be alleviated by using information about
the content of items. This information can be quite broad,
ranging from words in a document to metadata such as ac-
tors of movies. While many content-based techniques, as
well as hybrid techniques that use both collaborative infor-
mation and content information exist [10], we use the col-
laborative information to learn to predict preferences from
content information. The work of [18] is a step in this direc-
tion, where user ratings and content information are used to
learn user preferences for content. The content information
of a new item is then used to predict the users’ votes for that
item. We present a novel hybrid approach that does this in
an arguably more direct manner. The collaborative data is
used to learn how well different content information predicts
user ratings of items. We treat ratings of items by users as
binary random variables indexed by users and items, and
explicitly model correlations between these binary random
variables using a Boltzmann machine. In order to alleviate
the cold-start problem, we tie the parameters of this Boltz-
mann machine through constraints in terms of the content
information associated with the items.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses some related work. Section 3 describes the
details of our model. We present the use of Boltzmann
machines for modeling pairwise correlations of item ratings
in section 3.1, followed by our content information-based
parameter-tying scheme in section 3.2. In section 3.3 we
present the use of a regularized pseudo-likelihood criterion
for tractable parameter estimation, along with a stratified
sampling technique for further computational gains. Sec-
tion 4 describes the benchmarking of our model against an
aspect model based recommender system on two movie rec-
ommendation tasks. We conclude with some discussion in
section 5.

2. RELATED WORK
In contrast to previous work such as [18], we treat rat-

ings of items by users as binary random variables indexed
by users and items, rather than as a contingency table to be
modeled through a joint distribution over user-item pairs.



This distinction in probabilistic approaches to content-based
recommendation systems is discussed in [12]. The approach
in [18] extends the work of [7] which models the joint dis-
tribution of users and items through an aspect model that
clusters users and items in a latent space. In order to deal
with cold start items, the approach of [18] models the joint
distribution of users and content features instead of the joint
distribution of users and items. Then, a “folding-in” tech-
nique [6] is used to embed items into the latent space so that
items rather than content features can be recommended.
However, this approach can only yield a conditional distri-
bution over users given an item, rather than the desired joint
distribution over items and users. Our approach avoids this
difficulty by modeling the joint distribution of ratings of all
items by all users in terms of the content of the items. Since
the model predicts preferences of items directly, we can avoid
the difficulties associated with “folding-in.”

We also contrast our approach to the superficially similar
literature on the use of restricted Boltzmann machines for
collaborative filtering [14]. Tied Boltzmann machines are
fully connected, and have weights constrained through the
use of content information. In contrast, restricted Boltz-
mann machines are constrained to have a bipartite topol-
ogy, but the weights on legal links are unconstrained. Fur-
thermore, restricted Boltzmann machines do not make use
of content information, and as such, are vulnerable to cold
start problems.

There has been some recent work on using filter-bots [4]
for improving cold start recommendations [11]. This work
attempts to use bots implementing various heuristics, some
based on content information, to generate synthetic data
for training recommender systems on. However [11] reports
that the use of content based bots did not improve perfor-
mance. Our approach uses data to learn how content data
can be used to predict vote correlation, rather than using
such heuristics.

Finally, we note that tied Boltzmann machines can also
be viewed as dependency networks [5] where the conditional
probabilities are logistic regressions instead of regression trees,
and where the parameters are tied across nodes. It is this
parameter tying that allows generalization to unseen items.

3. THE MODEL
We treat the problem of generating recommendations as

one of predicting a user’s vote on an item given his votes
on other items as well as the votes of other users. In the
case of implicit ratings, an action such as buying an item is
taken to be an implicit vote for that item, and the problem
is to predict what other items a user might act on in the
future. In the case of explicit ratings, the user explicitly
rates some subset of items, and the problem is to predict
the user’s ratings of other items.

We denote the vote for an item i ∈ 1, · · · , N by a user

u ∈ 1, · · · , M by v
(u)
i . In the case of implicit ratings v

(u)
i = 1

when user u has acted on item i, and is 0 otherwise. In the

case of explicit ratings , v
(u)
i takes on a value given by their

rating. In this paper, we will assume that votes are binary.
Non-binary ratings can still be handled by binarizing as done

in [18]–e.g. v
(u)
i = 1 if user u rates item i 4 or higher. We

denote a user u’s votes for all N items by a vector v(u). The
key challenge is to model the interactions between the votes

v
(u)
i .

λCity Lights,The Circus

The Circus

White Fang

City Lights

λWhite Fang

λCity Lights λThe Circus

λCity Lights,White Fang λThe Circus,White Fang

Figure 1: Example Boltzmann machine for three

movies. The ovals represent a user’s votes on each of

the movies. The solid squares represent the weights

of the Boltzmann machine, which capture the pop-

ularity of each movie and how correlated a user’s

votes on each movie are.

3.1 Modeling Interactions with
Boltzmann Machines

Boltzmann machines are a simple model for modeling in-
teractions between variables. We assume that users’ vote
vectors are i.i.d., with the joint distribution of a user’s vote
vector v modeled using a Boltzmann machine:

p(v) =
1

z(λ)
exp

 

X

i

λivi +
X

i<j

λijvivj

!

Here, we use λ to denote the collection of all λi and λij and
use

P

i<j to denote the sum over unordered pairs (i, j). Note
that the per-item weights λi are distinct from the per-item-
pair weights λij . Since λij is only defined for i < j, we abuse
notation somewhat and use λij and λji interchangeably to
denote the weight associated with the unordered pair (i, j)
without introducing any ambiguity. The partition function

z(λ) is chosen to ensure that p(v) is properly normalized
over all configurations of the vote vector v. We note that the
pairwise weights λij capture pairwise collaborative effects–a
high value of λij indicates that users with vi = 1 also tend
to have vj = 1. The per-item weights λi capture popularity
effects–a high value of λi indicates a higher likelihood of
vi = 1 irrespective of the user’s other votes.

Figure 1 shows an example of a Boltzmann machine for
three movies, The Circus, City Lights, and White Fang. The
ovals represent the random variables vThe Circus, vCity Lights,
and vWhite Fang, which are a randomly chosen user’s votes for
these three movies. The weights λThe Circus, λCity Lights, and
λWhite Fang capture the popularity of these movies–i.e. the
likelihood that the user would vote for these movies, inde-
pendently of what else they voted for. The pair-wise weights
λCity Lights, The Circus, λCity Lights, White Fang, and λThe Circus,

White Fang capture how likely the user’s votes for these pairs
of votes are to be correlated.

Note that the partition function z(λ) is expensive to com-
pute. It requires summing over all configurations of the vote
vector. However, the conditional probability of a user’s vote
on a single item given his votes on all other items is easy to
compute, and is given by

p(vi|v−i) =
exp

“

vi

“

λi +
P

j 6=i|vj=1 λij

””

1 + exp
“

λi +
P

j 6=i|vj=1 λij

” (1)



This is natural in the case of implicit votes, where a value
of vj is always available for every item–either a user acted
on an item or he didn’t. In the case of explicit ratings, we
typically observe the user’s ratings for only a small set O
of items, and do not have ratings for the other items (i.e.
OC). In this case, the conditional probability of vi given the
observed votes vO is given by

p(vi|vO) ∝
X

v
{OC\i}

exp

0

@

X

j

λjvj +
X

j<k

λjkvjvk

1

A

Note that j and k range over all items, including i, all other
items in OC (i.e. all other items with unknown votes), and
all the items in O. This probability is expensive to compute,
because it involves a summation over all configurations of the
unobserved votes. This difficulty can be averted by explicitly
modeling unobserved votes in the values of vi. For example,
if vi = 1 encodes a positive (e.g. 4-star or higher) rating for
item i, and vi = 0 encodes the lack of a positive rating (i.e.
no rating or a negative rating), equation (1) remains valid
for explicit ratings.

3.2 Content-Based Parameter Tying
One weakness of the model discussed in section 3.1 is that

reliable estimation of the model parameters λ, in particu-
lar the pairwise weights λij , requires sufficient observations.
This is because the number of weights to be estimated scales
quadratically with the number of items we need to be able
to model correlations between. Since real data tends to
be sparse, with many items having low probability of oc-
currence, these weights are difficult to estimate in practice.
Thus, the Boltzmann machine model described above is not
directly applicable to real large-scale applications. In partic-
ular, if an item is not seen during training, we have the item
cold start problem, where none of the weights associated
with that item can be reliably estimated.

We use parameter tying to alleviate these difficulties. In
order to retain the ability to model the interactions between
items, we use content information to guide the parameter
tying. We assume that the content associated with item
i is represented by a feature vector f (i) ∈ R

D composed
of D components. For example, features could be counts
or TF-IDF weights of words in documents, or binary flags
indicating whether specific actors appeared in a movie. Fea-
tures with different semantics could be combined in a single
vector. For example, some feature components could corre-
spond to actors in a movie, while others could correspond
to genres, while still others could take on numerical values
such as movie length in minutes. We constrain λ to satisfy

λi = µT f (i)

λij = f (i)T
ηf (j)

where µ ∈ R
D and η ∈ R

D×D is symmetric. In this paper,
we will only consider diagonal η, although none of our the-
oretical results depend on this simplification. In effect, this
reparametrizes the model through the content, µ and η:

p(v; µ, η) =
1

z(µ, η)
·

exp
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(2)
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Figure 2: The example of Figure 1, showing how the

movies are connected through content. The rectan-

gles represent actors, and the links between actors

and movies indicate that the actor appears in the

movie.

where ηk denotes the kth diagonal component of η and
z(µ, η) = z(λ(µ, η)).

Figure 2 shows the content associated with the movies
considered in the example of Figure 1. In this example,
the content information consists of actors appearing in the
movies, and the feature vectors have a component for each
actor, which is 1 when the actor appears in the movie and
0 otherwise. The fact that Charlie Chaplin appears in City

Lights affects its popularity while the fact that Steve Mur-
phy appears in White Fang affects its popularity. Our model
assumes that the popularity weights of the movies are the
sums of the effects of the actors appearing in them. Thus,
the popularity weight λThe Circus is the sum of the popularity
effect µCharlie Chaplin of Charlie Chaplin and the popularity
effect µSteve Murphy of Steve Murphy. However, the model
makes no assumption about the relative magnitude of the ef-
fects that each actor can have. Thus, µCharlie Chaplin may be
higher than µSteve Murphy if movies including Charlie Chap-
lin happen to be more popular than movies including Steve
Murphy. Similarly, the fact that Charlie Chaplin appears
in both The Circus and City Lights may cause the votes for
these movies to be correlated while the appearance of Steve
Murphy in both The Circus and White Fang may cause the
votes for those movies to be correlated. While the model as-
sumes that the correlation weight of two movies is the sum
of the correlation effects of the actors they have in common,
it makes no assumption about the magnitude of these ef-
fects. If people who like Charlie Chaplin movies tend to like
other Charlie Chaplin movies more than people who tend to
like Steve Murphy movies tend to like other Steve Murphy
movies, ηCharlie Chaplin will be higher than ηSteve Murphy.

The conditional probability of vi given all other votes v−i

is given by

p(vi|v−i; µ, η) =

exp
“

vi

“

P

k
µkf

(i)
k +

P

k
ηkf

(i)
k

P

j 6=i
f

(j)
k vj

””

1 + exp
“

P

k
µkf

(i)
k +

P

k
ηkf

(i)
k

P

j 6=i
f

(j)
k vj

” (3)

We note that instead of constraining λ to be a determin-
istic function of the content feature vectors f and the pa-
rameters µ and η, we could have specified a distribution on
λ, to yield a Bayesian model. However, we restrict attention



to the more simple case of deterministic constraints on λ in
this paper.

Generating recommendations for a user from this model
once it is trained is simple. Equation (3) is used to compute
the probability of vi = 1 for an item i not yet seen by a
user. This is the likelihood that the user would vote for
item i. Ranking all items not yet seen by this probability
gives a ranked list of recommendations. Thus, the remaining
difficulty is in training the model.

3.3 Training the Model
We assume that we have a training set consisting of votes

v
(u)
i for all N items i ∈ 1, · · · , N by all M users u ∈ 1, · · · , M .

We also assume that the feature vectors f (i) are available
for all items. We assume that missing votes are encoded by
vi = 0 as discussed above. The log likelihood of the training
set is given by

− log
`

z(µ, η)
´

+
X

u

 

X

k

µk

X

i

f
(i)
k v

(u)
i +

X

k

ηk

X

i<j

f
(i)
k f

(j)
k v

(u)
i v

(u)
j

!

This likelihood is hard to optimize because it requires the
evaluation of the partition function z(µ, η) for all candidate
parameters.

Because of this, we approximate the log likelihood of the
training set by its log pseudo-likelihood [1]:

X

u

log p(v(u); µ, η) ≈
X

u

X

i

log p(v
(u)
i |v

(u)
−i ; µ, η)

As discussed above, the conditional likelihood p(vi|v−i) is
easily computed using equation (3). If we treat each user
u’s vote for each item i as an independent training event
given that user’s other votes, the pseudo-likelihood can be
interpreted as the conditional likelihood of the training set
under a conditional model given by equation (3). In fact,
equation (3) can be interpreted as the output probability

of a logistic regression on vi with inputs given by f
(i)
k and

P

j 6=i|vj=1 f
(i)
k f

(j)
k . Thus optimizing the pseudo-likelihood

of the tied Boltzmann machine model is equivalent to train-
ing a set of logistic regression classifiers with a very partic-
ular input parametrization and parameter tying scheme to
predict individual votes. By the same argument, we note
that the pseudo-likelihood is convex in the parameters, and
therefore easily optimized via gradient methods.

In order to get robust estimates, we train the parameters
µ, η by maximizing the regularized pseudo-likelihood

L(µ, η) =
X

u

X

i

log p(v
(u)
i |v

(u)
−i ; µ, η) + α(||µ||2 + ||η||2)

(4)

This can be viewed as MAP estimation of the set of tied
logistic regressions mentioned above under a Gaussian prior
[3].

The regularized pseudo-likelihood is alo convex in the pa-
rameters, and can easily be optimized using gradient meth-
ods. The gradients used can be computed according to:

∂

∂µk

L(µ, η) =
X

u

X

i

f
(i)
k

“

v
(u)
i − p(v

(u)
i |v

(u)
−i ; µ, η)

”

+ 2αµ

and

∂

∂ηk

L(µ, η) =
X

u

X

i

f
(i)
k

“

v
(u)
i − p(v

(u)
i |v

(u)
−i ; µ, η)

”

·

X

j 6=i

f
(j)
k v

(u)
j + 2αη

3.3.1 Sparse Training Through Stratified Sampling

With large data sets, optimizing the training criterion of
equation (4) may be too expensive since it requires com-
puting a conditional likelihood for each of M ×N user-item
pairs, where M and N may both be large. Since the set

of items for which v
(u)
i = 1 is sparse, a further speedup is

possible. Denote this sparse set of positive training items

by I
(u)
+ and its complement by I

(u)
− . Sample items from I

(u)
−

with probability θ to yield a sampled set of negative items

I
(u)
− (θ). Choose θ so that the total number of sampled nega-

tive items
P

u
|I

(u)
− (θ)| is on the order of the total number of

positive items
P

u
|I

(u)
+ |. The regularized pseudo-likelihood

of equation (4) is then approximated by

L(µ, η) ≈
X

u

 

X

i∈I
(u)
+

log p(v
(u)
i |v

(u)
−i ; µ, η)

+
1

θ

X

i∈I
(u)
− (θ)

log p(v
(u)
i |v

(u)
−i ; µ, η)

!

+ α(||µ||2 + ||η||2) (5)

Now, evaluating the training criterion only requires comput-
ing the conditional likelihood for O(V ) items, where V is the
number of votes observed. Of course, the speedup depends
on how sparse votes are, and the loss in accuracy is data
dependent.

The gradients then become
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+ 2αη



4. COLD START MOVIE

RECOMMENDATIONS
We evaluate our model on two movie recommender tasks,

and compare performance with that of the aspect models
described in [18]. In this case, the feature vectors will be as
described for the examples in Figures 1 and 2–we will have
a feature component for each actor, which will be 1 if the
actor plays a headlining role in the movie and 0 otherwise.

We use the 1,000,000 rating MovieLens data set for all ex-
periments (see www.movielens.org). This data set contains
1,000,209 ratings of 3706 movies by 6040 users. A rating
consists of an assignment of one to five stars to a movie.
Not all movies are rated by all users. The MovieLens movie
description pages were crawled to obtain the headlining ac-
tors of each of these movies. This yielded 8406 actors.

We randomly divided the movies into 2962 training movies
and 744 test movies, thereby simulating a cold start situa-
tion. We randomly selected 500 users to evaluate recom-
mendations on, yielding a test set of 372,000 possible rec-
ommendations. We evaluate using two tasks on this data
set. The first is to predict which of the test movies a user
rated given the set of training movies he rated. There were
16,717 ratings in the test set. The second is to predict which
of the test movies a user rated four stars or higher given the
training movies he rated four stars or higher. There were
9592 ratings of four stars or higher in the test set. Thus,
the first task is an implicit rating one and the second is an
explicit rating one. In the terminology of [18], the first is
a “weak occurrence prediction” task while the second is a
“rating prediction” task.

We measure performance on these tasks using global ROC
(GROC) and customer ROC (CROC) curves as described
in [18]. The GROC is an ROC curve that measures perfor-
mance when the system is allowed to recommend a different
number of items (even no items) to some users. The CROC
is a modified ROC curve that measures performance when
the system is forced to make the same number of recommen-
dations to each user. We recall that ROC curves plot the
sensitivity vs. (1 − specificity) of a statistical test. While
sensitivity is equivalent to the recall measure used in in-
formation retrieval, specificity differs from precision in that
it measures the proportion of negative examples correctly
identified (i.e., 1−false positive rate) in contrast to precision
which measures the proportion of examples labeled as posi-
tive that are correctly labeled. Thus, the GROC and CROC
curves are subtly different measures than the precision-recall
curves that are used in information retrieval problems. In
addition to the areas under the curves (AUCs), [18] notes
that it is important to focus attention on the left-hand por-
tion of the GROC and CROC curves which corresponds to
the low false positive region of operation.

We note that our evaluation differs from that of [18] in the
following three ways. First, we evaluate on the full 1,000,000
rating MovieLens data set instead of the 100,000 rating
MovieLens data set. Second, we use staring actors from
MovieLens movie description pages instead of first billed ac-
tors from the Internet Movie Database (IMDB) for content
information. MovieLens typically lists fewer staring actors
per movie that IMDB lists as first billed actors. Since we use
less content information, ours is arguably a more stringent
evaluation. Third, we evaluate on a “rating prediction” task
where the goal is to predict the rating a user would give a

movie rather than a“rating imputation” task where the goal
is to predict the rating a user gave a movie given that they

saw it. Rating imputation is arguably less useful in recom-
mender systems–the user gets little utility from a prediction
of his rating after he has already watched the movie. How-
ever, we note that solutions of both the “weak occurrence
prediction” and “rating prediction” tasks necessarily give a
solution to the “rating imputation” task as well.

4.1 The Baseline Model
We use the user-actor aspect model described in [18] as

our baseline. While more complicated models are discussed
in [17] we used the user-actor model since the more compli-
cated approaches were not reported to significantly improve
performance. We now outline the approach of [18].

The user-actor aspect model fits a joint distribution of the
form

p(u, a) =
X

z

p(z)p(u|z)p(a|z)

to a user-actor contingency table. The aspect model is
trained using the tempered EM algorithm [6]. Given a novel
movie i, it is “folded in” to the latent space through the fol-
lowing EM algorithm:

E-Step:

p(z|a, i) ∝ p(a|z)p(z|i)

M-Step:

p(z|i) ∝
X

z

n(a, i)p(z|a, i)

where n(a, i) is the number of times actor a appears in movie
i, to yield p(z|i). This enables the computation of

p(u|i) =
X

z

p(u|z)p(z|i)

Items i are ranked according to p(u|i) in order to recommend
items to user u. We used the PennAspect implementation
for our experiments [16]. Runtime was on the order of hours
on a 3 GHZ Xeon workstation with 16GB of memory.

4.2 Tied Boltzmann Machines for Movie
Recommendations

In order to train tied Boltzmann machines for these tasks,
we represent the movie content using vectors of actors. In
other words, we set the dimensionality D of the content
feature vectors to the total number of actors, and identify
each dimension of the feature vectors with an actor. Then,
we have

f
(i)
k =

(

1 if actor k stars in movie i.

0 otherwise

Thus, our model has parameters µk that model the popu-
larity of movies starring actor k and parameter ηk modeling
the co-occurrence of movies starring actor k. While com-
ponents of the feature vectors f (i) given here correspond to
the same kind of content, this is not necessary in general.
Because we train the model conditionally, it is easy to com-
bine content features of different kinds in the same vector
[8]. For example, we could have components corresponding
to actors, directors, writers, and genres.



We train our model using the RPROP [13] algorithm to
optimize the regularized sampled pseudo-likelihood training
criterion of equation (5). This is a non-linear gradient tech-
nique that maintains an adaptive step size for each dimen-
sion. The step size during optimization was initialized to
1/D, the inverse dimensionality of the feature vector, the
step growth and shrinkage parameters of the RPROP algo-
rithm were set to 1.2 and 0.5, while backtracking was en-
abled. The algorithm was run for at most 100 iterations.
The regularization parameter α was set to 1000, but we ob-
served that the results were not very sensitive to this value.

The sampling parameter θ was set to 0.05 for the “weak
occurrence prediction” task and to 0.03 for the “rating pre-
diction” task to balance the number of positive and nega-
tive examples in the training set. The sampling reduces the
number of training examples considered, and therefore the
training time, by a factor of about 100 for these data sets.
Actual runtime was a few minutes on a 3 GHZ Xeon work-
station with 16GB of memory. While formal evaluation of
the resulting accuracy loss is left for future work, increasing
θ by a factor of four, thus increasing training complexity
by a factor of four, resulted in no change in the CROC and
GROC curves. This strongly suggests that sampled training
results in little accuracy loss.

4.3 Results
Figure 3 shows GROC and CROC curves comparing the

tied Boltzmann machine model to the user-actor aspect model
on the implicit rating prediction problem. The AUCs for
the curves are also indicated in the figure. While the ideal
GROC curve would follow the left and upper boundaries of
the plot, having AUC 1.0, the ideal CROC curve is on the in-
terior of the plot, having AUC less than 1.0. This is because
not all the users rate the same number of items, while the
CROC evaluation forces the system to recommend the same
number of items to each user. For this reason, we also show
the CROC curve of an ideal recommender to give an upper
bound on performance. The GROC and CROC curves for
random recommendations with AUC 0.5 are also shown.

The tied Boltzmann machine outperforms the aspect model
in terms of area under the GROC and CROC curves, as well
as in terms of the GROC and CROC performance in the low
false positive region. The difference is particularly striking
in the case of the CROC curves. Figure 4 repeats the anal-
ysis for the explicit rating prediction problem. Once again,
the tied Boltzmann machine outperforms the aspect model,
particularly in the case of the CROC curves. Although we
did not perform a formal statistical significance test, we note
that out test sets contained 372,000 test cases of which on
the order of 1000 were positive for each task.

The aspect models tended to over-train on our sparse data
set, as remarked upon in [18]. We found that when the an-
nealing weight (inverse temperature) was reduced enough
to prevent over-training, the resulting models did not dis-
criminate between the latent classes. That is, at this point,
the models were effectively using a single latent class. We
verified this by training the model with various numbers of
latent classes, including a single class. These models were
identical in terms of performance. Since the aspect mod-
els rank recommendations by the probability of users given
movies, the resulting degenerate models recommend all the
movies to each user in turn, ordering users in terms of their
weight in the training set.

5. DISCUSSION
We have shown that tied Boltzmann machines are ef-

fective at generating cold start recommendations, even on
sparse data sets. We conjecture that the superior perfor-
mance of tied Boltzmann machine over aspect models in
the tasks we have presented can be attributed to two fac-
tors. First, tied Boltzmann machines have a relatively par-
simonious parametrization that is easily regularized to com-
bat over-training. Second, tied Boltzmann machines pro-
vide conditional distributions over ratings. In contrast, the
folding-in procedure for new items means that content-user
aspect models only provide a distribution over users, when
what is desired is a distribution over items.

We also propose three directions for extending the ideas
present in this paper. First, as mentioned briefly in sec-
tion 4.2, tied Boltzmann machines provide a simple frame-
work for combining different kinds of content information.
In addition, given a recommendation, a sensitivity analy-
sis of the conditional probability of the recommended item

with respect to the different content features f
(i)
k can be used

to determine which content information was most responsi-
ble for producing the recommendation. This could be used
in explaining the reasons behind the system’s recommen-
dations to users, making the system interpretable. Second,
since Boltzmann machines can model pairwise collaborative
effects directly while tied Boltzmann machines estimate col-
laborative effects from content information, it is natural to
investigate the combination of these two approaches through
softening the parameter-tying constraints. Third, the model
can be extended to multinomial votes. Such an extension
could attempt to model the product space of possible pair-
wise interactions, or could use interaction terms that depend
on the difference of the vote pair.
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Figure 3: GROC and CROC curves for the implicit rating task.
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Figure 4: GROC and CROC curves for the explicit rating task.
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