

1

Budget-based Control for Interactive Services with
Adaptive Execution

Yuxiong He1 Zihao Ye2 Qiang Fu2 Sameh Elnikety1
1Microsoft Research Redmond

Redmond, WA, USA

2Microsoft Research Asia

Peking, China

ABSTRACT
We study the problem of managing a class of interactive services
to meet a response time target while achieving high service
quality. We focus here on interactive services that support
adaptive execution, such as web search engines and finance
servers. With adaptive execution, when a request receives more
processing time, its result improves, posing new challenges and
opportunities for resource management.

We propose a new budget-based control model for interactive
services with adaptive execution. The budget represents the
amount of resources assigned to all pending requests. The budget-
based control model consists of two components: (1) a hybrid
control mechanism, which combines adaptive and integral
controllers and controls the budget in order to meet the response
time target with small steady-state error, fast settling time and
little runtime overhead, and (2) an optimization procedure, which
takes advantage of adaptive execution to maximize the total
response quality of all pending requests under a given budget.

We implement and evaluate the budget-based control model
experimentally in Microsoft Bing, a commercial web search
engine. The experimental results show that it achieves more
accurate control of mean response time and higher response
quality than traditional static and dynamic admission control
techniques that control the queue length. We also apply the model
to a finance server that estimates option prices, and conduct a
simulation study. The simulation results show large benefits for
budget-based control. For example, under the same response time
and quality requirements, the budget-based model accommodates
double the system throughput compared to a traditional queue-
based control model.

1. INTRODUCTION
Interactive services such as web search, web content servers,
finance servers and online gaming serve millions of customers
using thousands of servers. The SLA of these services often
specifies stringent response time requirements. The most common
metrics include mean and high-percentile response time. Long
response times are not acceptable because they cause user
dissatisfaction and revenue loss [21]. In addition to response time
requirements, interactive services need to achieve high result
quality. For example, a web search engine should return the most
relevant web pages to user queries; a finance server needs to
estimate price of the finance derivatives with small estimation
error. Designing interactive services to meet their response time
and quality requirement is an important and challenging problem.

To meet response time requirements, a common approach is to
limit the length of the incoming request queue: when the queue is
full, new requests are dropped upon arrival. Intuitively, the
bounded queue length provides bounded waiting time that
potentially leads to a desired response time target. However, such

a static admission-control approach [22] leads to several
undesirable situations which result in the failure to meet a
response time target or in degraded quality. If the queue limit is
too small, available resources become underutilized and response
quality is degraded. A large queue limit, on the other hand, may
result in violating response time requirements. Determining the
appropriate static queue length limit is challenging in data center
environments since systems change: the incoming load fluctuates
over time; software updates and hardware upgrades affect request
service demand; and service SLAs change to reflect the evolving
business requirements. Moreover, while a well-designed
interactive service should not be persistently overloaded, transient
periods of overload are often inevitable. The load increase at the
server that leads to a transient period of overload is often difficult
to predict [3]. These factors suggest the need for self-managed
systems that can adapt to the changes and meet response time and
quality requirements.

An intuitive way to offer a response time guarantee in a changing
environment is to apply feedback control. Feedback control has
been widely used to achieve performance guarantees in many
applications [5, 6]. Prior work [8, 9, 20, 23, 24] adjusts the queue
length limit dynamically (or equivalently the buffer size or request
drop rate) according to the feedback on response time: when the
measured response time is higher than the target response time,
the queue length limit is decreased; when response time is lower
than that the target, the limit is increased. This type of dynamic
admission control is effective for the classic “binary” request
model: The server either processes the request returning a
complete response or drops it with a null response. We call this
model binary because the scheduler has a binary decision to
make: either accept or reject the request.

In contrast to the binary request model, many online services
support adaptive execution: a request may have several partial
results with different qualities depending on the amount of
received processing time. The request has a quality function that
maps the received processing time to a corresponding response
quality; the response quality often improves with more processing
time. Many important applications follow the adaptive model,
including the following: (1) Web search: A web search engine
receives requests from clients and returns the matching webpages
within a short deadline. For a web query, there are multiple
acceptable answers, and more processing time allows the search
engine to match and rank more webpages online, providing
progressively better responses. (2) Finance servers: Traders
interactively submit requests to estimate the price of financial
derivatives. A finance server executes a computation, such as
Monte Carlo based pricing algorithms, and the server can trade-
off more processing time for smaller error between the estimated
price and the real price.

2

Applying feedback control to adaptive interactive services is
challenging. In addition to accepting or rejecting a request, the
scheduler can execute requests partially: it needs to assign some
processing time to each request based for example on request
quality function or on system load. The goal is to meet the
response time target and to provide high response quality.
Existing approaches for the binary request model are not suitable
here: they do not consider partial execution of requests, and
therefore some queries are fully served while the others are
rejected. Although traditional approaches may still meet the
response time target; they result, however, in large degradation in
the service quality, and they bring inconsistent user experience as
some requests receive no service.

We exploit the problem of scheduling interactive requests with
adaptive execution to meet the response time target while
achieving high response quality. We introduce a budget-based
control optimization model where the budget is defined as the
total execution time (or amount of resources) for all pending
requests. The model consists of two components: a feedback
control mechanism to adapt the budget so the system can meet its
desired response time, and an optimization procedure that
schedules requests within the provided budget. The optimization
procedure assigns the execution time of individual requests based
on their service demands and quality profiles to improve their
total response quality.

For interactive services, the control mechanism should adapt to
the changing workload quickly and accurately while being simple
enough with little runtime overhead. We develop a hybrid control
mechanism combining adaptive and integral control to achieve
this objective. Given the complexity of real systems, it is often
hard to quantify the transfer function between system input and
output in a changing environment. Therefore, we adopt a linear
quadratic (LQ) adaptive control mechanism, which performs
recursive linear regression to capture system behavior and uses an
LQ optimal controller to compute the control output. However,
frequent regression evaluation is too expensive for interactive
services since each request takes on average only 20 ms of
execution time. In addition, the pure LQ adaptive control cannot
eliminate steady-state error. We, therefore, perform regression
evaluation for adaptive control only at coarse-grain intervals, and
within a coarse-grain interval, we apply integral control to adjust
the control output, reducing both runtime overhead and steady-
state error.

The budget-based control model applies the optimization
procedure to exploit adaptive execution. With adaptive execution,
a request can be partially processed, and a quality function maps
the received processing time to the response quality. We develop
two optimization procedures for two types of scheduling
scenarios: (1) clairvoyant scheduling: the scheduler knows request
service demand at their arrival, and (2) nonclairvoyant scheduling:
the scheduler does not know request service demand until the
request completes. The optimization procedure assigns processing
time to pending requests using the budget determined by the
control mechanism to improve the response quality.

We assess the benefits of the budget-based control model through
system implementation and experimental evaluation as well as
through a simulation study.

We show that the budget-based control model is feasible in
practice, and we implement and evaluate it experimentally in
Microsoft Bing, a large commercial web search engine. We
employ hybrid control combining adaptive and integral controllers

to meet the target mean response time with small steady-state
error, fast settling time and little runtime overhead. The hybrid
controller adjusts the budget. We measure the quality profile of
Bing search requests and exploit the concavity of the quality
profile to design an optimization procedure to schedule requests.
The experimental results show significant benefits of using
budget-based control over controlling the queue limit statically or
dynamically. In particular, budget-based control meets the desired
response time target and achieves high result quality. Moreover,
since many commercial applications specify SLA using high
percentile response time, we also apply the budget-based model to
control the 90-percentile response time for web search and show
its effectiveness.

We also evaluate the budget-based control model with a different
optimization procedure in a finance server. We build a simulator
that models a finance server using Monte Carlo methods to
evaluate option prices. Here each request is a task to estimate the
price of a financial option, and the response quality is measured
by the price estimation error: the smaller the estimation error, the
better the result quality. Our results show that, to meet the same
mean response time target, the budget-based control model
reduces the estimation error and improves response quality
compared to the queue-based control model. In particular, to
achieve the same target quality, the budget-based control model
doubles the system throughput while satisfying the target mean
response time.

The contributions of this paper are as follows: (1) We propose the
budget-based control model for interactive services with adaptive
execution. (2) We introduce a hybrid control mechanism suitable
for interactive services, which combines adaptive and integral
control to meet response time requirements. We also introduce
two optimization procedures to improve response quality for
clairvoyant and nonclairvoyant scheduling environments. (3) We
show how to implement budget-based control in modern servers
as used in Bing. (4) We evaluate the benefits of budget-based
control experimentally, using real server software and workload in
Bing. (5) We conduct a simulation study to evaluate budget-based
control in a finance server.

The paper is organized as follows. Section 2 discusses adaptive
execution and presents the measured quality profile from Bing.
Section 3 describes the budget-based control model, and its two
components: the control mechanism and the optimization
procedure. Section 4 describes the implementation and
experimental evaluation results in Bing. Section 5 describes the
simulation results in a finance server. Section 6 discusses related
work and Section 7 shows our conclusions.

2. Adaptive Execution
Adaptive execution is the flexibility of trading more resources for
better results. Examples include estimation computations in which
better estimates are obtained with more processing. For example
in a finance server, Monte Carlo methods compute option pricing
to find better answers with more processing.

With adaptive execution, the relationship between the quality of
the result and the used amount of computational resources is
quantified by request quality function. A quality function ݂: ܴ →
ܴ maps the request completion ratio (processing time / service
demand) to a quality value gained by executing the request.
Quality functions of different applications can have different
shapes. We observe that the quality functions are usually
monotonically non-decreasing: result quality stays the same or
improves with more processing. Moreover, many best-effort

3

applications exhibit concave quality profiles due to the effects of
diminishing returns.

To demonstrate the quality profile for a real application, we
measure the response quality profile in Bing using 200ܭ queries
from a production trace and present it in Figure 1. Each request is
a web search query for a set of keywords. The search engine scans
its inverted index looking for webpages that match the requested
keywords and ranks the matching webpages. The more time the
server spends on matching and ranking the webpages from the
inverted index, the better the results. The response includes a set
of links to the top webpages matching the keywords specified by
the user query. The response quality compares the set of
webpages returned in the test to a golden set of base results (as
explained in Section 4). The x-axis of Figure 1 is request
completion ratio; the y-axis is the average response quality. The
figure demonstrates that the quality profile of Bing search is
monotonically increasing and concave: the concavity comes from
the effect of diminishing returns. The inverted index lists
important (e.g., popular) webpages first; therefore webpages
matched earlier are more likely to rank higher and contribute more
to total response quality.

Figure 1. Measured quality profile in Bing search.

A scheduler can exploit adaptive execution and request quality
profile to improve the response quality. Without adaptive
execution, a scheduler can either execute a request fully or reject
it. In contrast, adaptive execution opens the possibility of partial
processing in which some requests can be processed half-way
returning an approximated result, which is a favorable trade-off in
many situations.

3. Budget-based Control Model
This section presents the budget-based model for interactive
services with adaptive execution. The budget is defined as the
total processing time (or total amount of resources) we plan to
allocate to all pending requests. The budget-based control model
consists of two components: (1) the control mechanism, which
applies feedback control to adjust the budget to meet the response
time target, and (2) the optimization procedure, which is a
scheduling algorithm using adaptive execution to maximize total
response quality at a given target. The budget-based model
divides the two main goals of the system, meeting response time
target and achieving high quality, into the control mechanism and
optimization procedure respectively, so each component has a
clear design goal and responsibility. This section elaborates the
design and features of the control mechanism and optimization
procedure.

3.1 Control Mechanism
The control mechanism takes the observed response time as
feedback and determines the budget value in order to meet the
response time target. There are several approaches to design such
a controller. We present a hybrid controller, combining adaptive
and integral controller, which offers accurate and light-weight
control of interactive services to meet their response time
requirements. Our experimental results show that such hybrid
control combines the benefits of adaptive and integral control: It
meets the response time target with small steady-state error, fast
settling time and little runtime overhead, outperforming the
adaptive controller alone and integral controller alone. This
section first gives a brief description of the integral and adaptive
controllers then it introduces the hybrid controller.

3.1.1 Integral Control
Integral control is a simple and well-known control mechanism,
adjusting the value of control variable based on the difference
between the observed output and the reference output. The control
function is expressed as follows:

ሺ݇ሻݑ ൌ ሺ݇ݑ െ 1ሻ ூ݁ሺ݇ሻܭ

Here k represents time steps; ݑሺ݇ሻ is the output of the integral
controller (which is also the control variable of the system) at time
step k. The tracking error ݁ሺ݇ሻ is the difference between the
observed system output and the reference output, i.e., ݁ሺ݇ሻ ൌ
୰ୣሺ݇ሻݕ െ ሺ݇ݕ െ 1ሻ. The controller parameter ܭூ defines the ratio
of control change to the control error. In our system, the control
variable ݑ is the budget, and the output ݕ is the metric such as
mean response time, or the 90-percentile response time.

Integral control has two main advantages. First, it has zero steady-
state error, which allows systems to meet their desired SLA.
Second, it is computationally efficient, which is an important
property in interactive systems, The integral controller incurs
almost negligible system overhead allowing recalculating the
budget with each request arrival or departure.

Integral control has its limitation: Its response is relatively slow.
For example, when the workload has a big change, it will track the
change slowly, producing a large deviation initially. Integral
control is usually combined with another control mechanism to
overcome this limitation.

3.1.2 Adaptive Control
We consider a linear quadratic adaptive controller [15] with two
parts: a model estimator and a linear quadratic optimal controller.

The Model Estimator. The model estimator uses the prior
behavior of the system to predict the current system model. More
precisely, it uses a number of prior control input and output values
to predict their relationship using a Recursive Least Square (RLS)
model estimation. In our problem, adaptive control predicts the
relationship between the budget and response time using a linear
function. The order of the regression model (i.e., the number of
prior data points used for predicting the system model) indicates a
tradeoff between the estimation precision and computational
overhead. With a larger order, the estimation is generally more
precise, however, the regression computation incurs a higher
computation overhead.

Linear Quadratic (LQ) Optimal Controller. The primary
control objective is to make the system output track the desired
SLA with small error. It is also desirable to avoid large changes to
the control variables. These two goals are achieved by minimizing
the quadratic cost function ܨ defined as follows for linear
quadratic optimal control:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quality

Normalized Processing Time

4

ܨ ൌ |ܹሺݕ௦௧ሺ݇ 1ሻ െ ሺ݇ݕ 1ሻሻ|ଶ |ܳ൫ݑሺ݇ሻ െ ሺ݇ݑ െ 1ሻ൯|ଶ

Here ݕ௦௧ሺ݇ 1ሻ denotes the estimated system output from the
estimator, ݕሺ݇ 1ሻ denotes the reference output for the step
݇ 1, and ݑሺ݇ሻ and ݑሺ݇ െ 1ሻ are the control variables (or system
inputs) at time step k and step k-1, respectively. Moreover, ܹ is a
positive weighting parameter on the tracking errors, and ܳ is a
positive weighting parameter to penalize large changes in the
control variable. The relative magnitude of ܹ and ܳ trades off
between tracking accuracy and smaller changes in the control
variable. The value of the control variable ݑሺ݇ሻ that minimizes ܨ
can be obtained by setting the derivative ߲ݑ߲/ܨሺ݇ሻ ൌ 0.

Next we turn to the advantages of adaptive control. Interactive
services are complex systems: they use heterogeneous hardware
crossing different data centers and generations of software and
hardware components; the workload fluctuates over time;
software updates and hardware upgrades affects the request
service demand. More fundamentally, when an interactive service
supports adaptive execution, requests can be partially processed.
Therefore, it is hard to quantify the transfer function between the
control variable (in our case, it is the budget) and the response
time. This makes adaptive controller a good choice: it captures the
system behavior by modeling the correlation between budget and
response time using the recent data points. The RLS-based model
estimator identifies the changes in the system behavior, and the
controller adjusts the control output and adapts the system
correspondingly.

There are limitations of adaptive control. (1) It is computationally
expensive for interactive services. Given a regression order N, i.e.,
the estimator uses the latest ܰ data points (i.e., control input,
control output), it requires ܱሺܰଷሻ arithmetic operations at each
time step to compute the prediction model online. Our
measurements indicate that it takes about 2.2 ms on our server
when ܰ ൌ 10. The average service demand of a request is around
20 ms. If adaptive control is applied on every request, it
introduces fairly large overhead to the system. (2) The LQ
adaptive controller, similar to a proportional controller, incurs
steady-state errors. More specifically, if we set Q to 0, the LQ has
the form of a proportional controller which can’t guarantee the
small steady-state errors.

3.1.3 Hybrid Control
We develop a hybrid controller to combine the integral and
adaptive control: it runs adaptive control periodically in a coarse-
grain time interval to learn the system model and adjust the
control output, the budget. Within the fine-grain interval, the
hybrid controller uses integral control for the execution of each
request to perform fine-grain adjustment of the control output.
This combination reduces the computation overhead and the
steady-state error. The block diagram of the hybrid controller is
shown in Figure 2.

The hybrid controller uses both integral and adaptive control. If
we use integral control only, we may have slow response for
tracking changes in workload or system environment. Adding
adaptive control allows learning the system model according to
the recent system behavior. We cannot, however, afford the
runtime overhead of using adaptive control for each request and
there will be a steady-state error. Using integral control
complements adaptive control, since integral control runtime
overhead is almost negligible and it eliminates the steady-state
error to meet the response time target. The adaptive part of the
hybrid controller helps to adapt the system to large changes.

Figure 2: Hybrid Control Block Diagram.

Comparing the hybrid controller with a classic PI controller, the
parameter of the P controller is fixed and difficult to tune for
different loads and configurations, while the adaptive control of
the hybrid controller adapts the system on different hardware
configurations and workload regions automatically.

3.2 Optimization Procedure
The optimization procedure is a scheduling algorithm that takes a
resource budget and a set of pending requests as inputs, and
assigns a portion of the budget to each request with the objective
of maximizing total response quality. The design of the
optimization procedure depends on the request quality profile,
service demand, and other application specific constraints. We do
not intend to enumerate all optimization procedures to cover all
scenarios. Rather, we focus on concave quality profiles as they are
popular in practice due to the iterative nature of many best-effort
applications and the effect of diminishing return. We introduce
two optimization procedures for clairvoyant and nonclairvoyant
scheduling environment respectively. This section presents how
these two optimization procedures work and they are evaluated in
Section 4 and 5. For other quality profiles and application specific
constraints, one can develop and employ a tailored optimization
procedure.

3.2.1 Optimization for Clairvoyant Scheduling
This section describes an optimization procedure with known
request service demand and concave quality profile. An example
is the finance server that uses Monte Carlo methods to evaluate
option prices (Section 5). This optimization procedure maximizes
the response quality of the pending requests under a given budget.

Figure 3 presents the optimization procedure. The budget is
defined as the amount of processing time available for all ready
requests. The optimization procedure decides the assigned
processing time of each request in the ready queue by solving the
optimization problem defined at MaxQuality. MaxQuality
maximizes the total quality of requests based on the budget,
request demand and quality profile. Since all constraints in the
MaxQuality are linear and its objective is to maximize the
summation of concave functions, MaxQuality is a convex
optimization problem and can be solved using convex solvers
such as CVS [1]. MaxQuality produces a solution that maximizes
the total quality of all pending requests with a given budget.

Without compromising the total response quality, we can further
reduce response time by applying MinMRT after MaxQuality.
MinMRT sorts the requests in the ascending order of the assigned
processing time. It is well known that given a batch of jobs,
running the shortest job first produces a schedule with the smallest
mean response time [17]. Here by performing MinMRT after
MaxQuality, the scheduler further minimizes the response time in
the set of solutions that maximize the total quality. This also

5

benefits the response quality: given the same budget, MinMRT
reduces the mean response time; thus given the same mean
response time target, MinMRT relaxes the budget and leads to
higher quality.

Figure 3: Optimization procedure for clairvoyant scheduling.

The optimization procedure performs local optimization on the set
of pending requests and the available budget. When there is new
request arrival or budget change, we can repeat the optimization
procedure with the updated request information.

3.2.2 Optimization for Nonclairvoyant Scheduling
This section describes an optimization procedure assuming
requests have unknown request service demands and have
concave quality profile. An example application is the index
server at Bing (Section 4). Besides meeting response time and
quality requirement, Bing server has two additional requirements:
(1) It is often hard to know the exact quality profile of each
request. The scheduler uses an expected quality profile (as shown
in Figure 1) for all requests. (2) Context switching is expensive
because of cache warm-up; it may take a few hundred
microseconds to more than a millisecond [2]. Since the mean
service demand of Bing requests is only about 20 ms, the
scheduler should execute each request only once, rather than
suspending the request and resuming it later.

Figure 4 shows the pseudo-code of the optimization procedure
EqResv. The budget is defined as the amount of processing time
available for all pending requests. The input does not include
request service demand because it is unknown at request arrival.
EqResv is a heuristic algorithm to improve total response quality
of ready requests under a given budget.

EqResv processes requests in the FIFO order and it decides the
assigned processing time of the first job in the FIFO queue based
on the load and the budget. In order to improve total response
quality, when requests are competing for resources, a scheduler
prefers running the part of requests with higher quality gain.
Given a concave quality profile, the early portion of processing
request has higher gain than its later portion. Therefore, the key

idea of EqResv is to prevent jobs at the beginning of the queue
from consuming the entire budget and starving later requests so
each request has a fair opportunity to be processed (at least for its
early portion). To achieve this goal, EqResv applies two
techniques. (1) Equi-Partitioning (EQ): When the system is
heavily loaded, EqResv performs EQ to reserve a fair share of
processing time for waiting requests (in Line 2). With a concave
quality function, giving each job the same amount of processing
time maximizes the overall quality. (2) Reservation (RESV): In a
lightly loaded case, EqResv performs RESV to reserve the
expected service demand for the queuing requests and allocates
the remaining time to the current running job (in Line 3)1. RESV
gives the long requests a chance to finish if they will not impact
short ones.

Figure 4: Optimization procedure for nonclairvoyant scheduling.

EqResv does not need a load threshold to decide if it should use
the result from EQ or RESV. During light load, we want to
estimate the processing time using RESV, and its processing time
is larger than the one produced by EQ. During heavy load, we
want to use EQ, and its processing time is larger than the one
produced by RESV. Therefore, selecting the larger between these
two gives the assigned processing time (in Line 5).

4. Implementation and Evaluation in Bing
This section presents the implementation and evaluation of the
budget-based control model in Microsoft Bing web search engine.

4.1 Application Overview
Bing is a large commercial web search engine from Microsoft. We
focus on the index serving part (interactive processing), which
serves user queries online to return the best matching webpages.
Notably, the index serving part is different from the web crawler
and index builder (batch processing) which processes crawled
webpages to generate the inverted index offline.

The index serving system of Bing accepts user queries, and it
forwards the queries to index servers when the query’s results do
not exist in the cache. Each index server manages a small portion
of the inverted index and therefore becomes responsible for a set
of web pages. The index server searches its inverted index for all

1 Service demand of individual request is unknown but expected or mean

service demand of requests can be obtained through offline
measurement or online approximation.

EqResv (jobs[] queue, double ݓഥ , double ܤ)

Inputs:

queue: list of ready requests in FIFO order;

ഥݓ : expected (or mean) service demand of requests;

 budget (total processing time for ready jobs) :ܤ

Pseudo code:

1: qLen = queue.size() //queue length

2: EQ = ܤ	/ qLen // Equi-partitioning

3: RESV = ܤ −(qLen−1)×	ݓഥ // Reservation

4: //assign processing time for the first job at ready queue

5: queue[0].p = max(EQ, RESV)

Optimization Model

Inputs:

ܬ ൌ ሼܬ|݅ ൌ 1,… , ݊ሽ: set of ݊ ready jobs

 ܬ : service demand of jobݓ

݂: quality function of job ܬ

 budget (total processing time for all pending jobs) :ܤ

Variables:

 .ܬ : assigned processing time of

MaxQuality:

Maximize ∑ ݂ሺ/ݓሻ

ୀଵ

Subject to:

Resource availability constraint: ∑ ܤ
ୀଵ

Processing time constraint: ݓ

MinMRT:
 Sort jobs in J in ascending order of

6

webpages that match the query, ranks these webpages, and returns
the top ܰ webpages that match the query. The index server
supports adaptive execution: the result quality improves with the
increased number of webpages examined and ranked. Moreover,
the response quality profile is concave as shown in Figure 1. In
Bing, we want to limit the mean response time of the index server
as part of the web search SLA requirements for important
commercial reasons. These factors make the index server a good
candidate to apply the budget-based control model.

4.2 Implementation
The web index is partitioned among many index servers. We use
our approach to control each index server so that each individual
server can satisfy the target mean response time while returning
high quality results. The original index server works as follows.
Newly arrived requests join the waiting queue. The waiting queue
has a length limit: when the queue is full, new requests are
dropped. There are a number of worker threads and each worker
thread processes one request at a time. The number of workers is
equal to the number of cores in the system. When a worker thread
completes a request, it gets a new query from the head of the
waiting queue and starts to process it. To process a query, the
worker searches the inverted index and obtains a list of matching
webpages to the search keywords. It then ranks the matching
webpages in a loop, which we call index ranking loop. This loop
is the most time consuming part of the query processing. After
ranking all matched webpages, the worker returns the top ܰ
matched results and completes the query.

Our implementation at index server includes three parts to apply
budget-based control.

(1) We enable adaptive execution of requests using early
termination. We add a termination condition in the ranking loop,
so that when a request uses up its assigned processing time, the
request is terminated early.

(2) We add the optimization procedure from Figure 4 to
dynamically assign processing time to requests based on the
budget. The optimization procedure is extended to multicore
servers by changing the queue length value (qLen) to reflect the
expected queue length for each core.

(3) We implement the hybrid controller consisting of the model
estimator and linear quadratic optimal controller to adjust the
budget based on mean response time. The mean response time is
computed online as a moving average ܴܶܯ ൌ ሺ1 െ ሻߙ ൈܴܶܯ
ߙ ൈ ݅ is the response time of the last processed requestݎ , whereݎ
and ߙ is a constant multiplier. We use ߙ ൌ 0.05 in our
implementation.

To compare the budget-based control to the traditional dynamic
approaches, we also implement queue-based control and integrate
it in the index server. It applies the same hybrid controller in
Section 3 to adjust the queue length limit based on the mean
response time. When the queue is full, the newly arrived requests
are dropped. When the queue length limit decreases due to
control decision, the overflowed requests are also dropped.

In the remainder of this section, we compare these three
implementations of the index server:

 OriginalIS: original implementation of index server
 BudgetIS: index server using budget-based control
 QueueIS: index server using queue-based control.

4.3 Experimental Setup
Performance Metrics: The primary goal to control an interactive
system is to meet the response time target and to achieve high
response quality. The index server has an SLA requirement on the
average response time and response quality. The request response
time is the duration between when request arrives to the index
server and when the response is sent back; the server sends
responses to all requests including the dropped ones. Our
experiments use 35 ms as our target mean response time, and we
control the server to make the mean response time at or below the
target. We also tried several other mean response time targets and
the results are similar.

To compute the quality of a response of a web search query, we
compare returned webpages in the response to the webpages in the
base results of the query when it is processed completely. We use
proportional quality, which gives each of the top N webpages the
same weight. For example, when N=10 and there are 8 matches
between the response and the base results, the quality is 8/10.
Proportional quality is one way to measure the response quality.
We also used other quality metrics, such as assigning higher
weights to higher ranking webpages; the experimental results are
similar we, therefore, present the proportional quality only.

Other important measures include classic metrics for evaluating
controllers, such as settling time and steady-state error. Settling
time is the time from the change in the workload to when the
measured output is sufficiently close to its new steady-state value.
Shorter settling time is desired. Moreover, the control mechanism
should be computationally efficient without incurring high
overhead.

Workload and Hardware: Our evaluation includes an index
server that answers queries and a client that replays queries from a
trace file. We use a query trace with 200,000 actual user queries
from production to drive the experiments. We run the system by
issuing queries following a Poisson distribution in an open-loop
system. We vary system load by changing the arrival rate
expressed as QPS (queries per second). The index server searches
its local index and returns the top 10 matching results to the client.
The index server for our evaluation has a six core Intel 64-bit
Xeon processor (3.33 GHz) and 24 GB main memory.

Controller Configurations: The hybrid controller uses adaptive
control to adjust the budget at every 10 queries and applies
integral control at every step with ܭூ ൌ 1. The order of the RLS-
based model estimator is 10. The weight parameters of the linear
quadratic controller have values Q=0.5 and W=0.5.

Experiments: We conduct the following four sets of experiments
and present their results in the remaider of this section.

(1) Comparing budget control to static queue: we compare the
budget-based control model (BudgetIS) to the original index
server that has a static limit on the queue length (OriginalIS).
(2) Control variables: we compare BudgetIS that uses budget as
control variable to QueueIS that uses queue length.

(3) Control mechanisms: we evaluate the impact of integral,
adaptive, and hybrid control mechanisms.

(4) Controlling high-percentile response time: we apply budget-
based control to meet a 90-percentile response time target.

7

4.4 Comparing Budget Control to Static Queue
This experiment compares BudgetIS to the static approach of
having a fixed queue length. We use two fixed queue length
values 7 and 50 (corresponding to OriginalIS_7 and
OriginalIS_50 respectively) to demonstrate the effect of different
queue lengths. Figures 5 and 6 show the mean response time and
quality results for the three implementations: their x-axis
represents the load expressed as the request arrival rate, varying
from 200 to 500 QPS, which covers the operational range of the
workload. The y-axis is the mean response time and average
response quality, respectively.

The results show that for static approach, different queue lengths
represent a tradeoff between mean response time and average
response quality. With shorter queue length, the mean response
time decreases and the quality degrades too. OriginalIS_7 meets
the response time target, but its quality degrades even at light and
moderate load; OriginalIS_50 obtains higher quality but its mean
response time at high load is significantly higher than the target. It
indicates that there is no single queue length value that meets both
the response time and quality requirement.

Figure 5 shows that BudgetIS successfully bounds the request
mean response time to the 35 ms target with tracking error less
than 1 ms. Moreover, Figure 6 shows that BudgetIS also improves
response quality at high load. In particular, the response quality of
OriginalIS_7 and OriginalIS_50 drops more sharply at high load
and OriginalIS_50 exceeds the response time target, while
BudgetIS offers higher quality. BudgetIS achieves this by
assigning request processing time dynamically exploiting request
quality profile to improve the total response quality. For example

at 450 QPS, BudgetIS terminates 32% queries early with partial
results and no queries are dropped, while OriginalIS_7 drops 25%
queries and these queries have quality 0.

This experiment demonstrates that (1) Using a fixed queue length
cannot meet response time requirements with high response
quality, and (2) The budget-based model accurately controls the
mean response time to match the SLA target and uses partial
evaluation to improve the request response quality.
4.5 Control Variables: Budget vs. Queue Length
This experiment compares QueueIS, which controls the length of
the waiting job queue, to BudgetIS, which controls the budget.
Figures 7 and 8 show the mean response time and quality
comparison for the two approaches. Both approaches can bound
request mean response time at high load, however, QueueIS
incurs bigger errors tracking the response time target and has
worse quality at high load.

QueueIS incurs bigger tracking error than BudgetIS for two
factors. (1) QueueIS uses queue length as control input, which is
an integer value with the smallest change of incrementing or
decrementing by one; the discrete values of the control input may
not be able to meet the control target precisely. (2) In BudgetIS,
changes in the budget value are immediately reflected on the
queries’ processing times, since the system assigns query
processing time according to the budget. However, in QueueIS,
changes of the queue length take effect only after a period of time,
since queue length won’t affect response time of the queries
before the queue becomes full. Such a delay between control input
and output can also cause reduced control accuracy.

Figure 5: Mean response time for BudgetIS
and OriginalIS.

Figure 6: Average quality for BudgetIS and
OriginalIS.

Figure 7: Mean response time for BudgetIS
and QueueIS.

Figure 8: Average quality for BudgetIS and
QueueIS.

Figure 9: Mean resp. time for different
control mechanisms

Figure 10: Average quality for different
control mechanisms.

Figure 11: Transient behavior.

Figure 12: P90 response time for BudgetIS
and OriginalIS.

Figure 13: Average quality for BudgetIS and
OriginalIS.

8

QueueIS produces lower quality than BudgetIS at high load
because QueueIS drops queries to meet the response time target
while BudgetIS processes queries partially. Given a concave
quality profile, partially executing queries with similar processing
time achieves higher average quality than executing some queries
fully while dropping the others.

4.6 Comparing Control Mechanisms
This section shows that the hybrid control mechanism which
combines integral and adaptive control outperforms either integral
control alone or adaptive control alone. Hybrid control offers
small steady-state errors, small settling time and is
computationally efficient. Adaptive and integral control offer a
subset of these properties rather than all of them.

In this experiment, all the evaluated systems use the budget as the
control variable with the same optimization procedure but
different control mechanisms.

Figure 9 and 10 show mean response time and average quality for
the different control mechanisms with the system load. We
discuss each of them below.

Adaptive controller. The adaptive controller exceeds the mean
response time target of 35 ms at high load. It uses the RLS model
estimator to predict system behavior and its control law is close to
proportional control: its accuracy is sensitive to workload
variation and the control law cannot eliminate steady-state errors.
Moreover, running model estimation of adaptive control before
executing every request introduces a considerable amount of
computational overhead (about 2.2 ms of overhead for every
query with average service demand of 20 ms). This not only
increases the mean response time of requests but also becomes the
noise factor that the control law cannot remove from its steady-
state error. Therefore, using adaptive controller alone cannot
bound mean response time effectively.

Integral controller. The integral controller controls the mean
response time effectively with tracking errors less than 2.5 ms.
However, it has a long settling time. Figure 11 compares the
transient state behavior of integral controllers to the hybrid and
adaptive controllers. In this experiment, we first launch queries at
200 QPS; then we double the load to 400 QPS. The figure shows
that hybrid controller has the shortest settling time. As for the
integral controller, it has slower responsiveness to the workload
change, with large settling time. Due to its slow responsiveness,
the integral controller does not meet all the desired properties.

Hybrid controller. The hybrid controller has the best
characteristics among the three control mechanisms: the smallest
steady-state error, highest response quality, and the shortest
settling time. It uses the adaptive controller in a coarse-grain
manner to detect large changes and responds quickly; it uses the
integral controller in a fine-grain manner to reduce steady-state
error and reduce computation overhead. The hybrid controller
combines the advantage of adaptive and integral controller.

4.7 Controlling High-Percentile Response Time
High-percentile response time is another important and common
SLA requirement for interactive services. This section shows that
the budget-based model meets the high percentile response time
target. This experiment is conducted on Bing index server with a
90-percentile response target of 75 ms, i.e., 90% requests must
have response time of 75 ms or less. We use the last 1000 queries’
90-percentile value as the current observed value in a moving
window of recent requests and we adjust the budget based on the

difference between the observed and the target 90-percentile
response time.

Figure 12 and 13 show the 90-percentile response time and
average response quality for BudgetIS, OriginalIS_6 and
OriginalIS_50. The results are similar as in Section 4.4. BudgetIS
effectively meets the 90-percentile response target while
OriginalIS_50 incurs very high response time at heavy load and
OriginalIS_6 suffers from quality loss at light and moderate load.
The quality of both versions of OriginalIS is lower than BudgetIS
at heavy load due to request dropping. Again, the benefits of
BudgetIS come from adopting partial results and exploiting the
concave quality profile. This experiment demonstrates that the
budget-based model is not limited to controlling mean response
time; it can be extended to meet other SLA for adaptive
interactive services.

5. Finance Server
Section 4 evaluates the budget-based control model for
nonclairvoyant scheduling where request service demand is
unknown. This section evaluates it for clairvoyant scheduling. We
build a simulator to model a finance server where request service
demand is known. We show that budget-based control model
outperforms the queue-based model: under the same load, the
budget-based control model produces higher response quality and
under the same quality requirement, it achieves higher throughput.

5.1 Application Overview
Banks and fund management companies evaluate thousands of
financial derivatives every day. Traders and analysts submit
requests to value the derivatives, and they make trading decisions
online based on the returned results. At the backend, there are
many servers that perform quantitative analysis on various
financial products. This section presents an option pricing server
that uses Monte Carlo methods to price complex path-dependent
options. Monte Carlo methods are widely used for analyzing
complex derivatives that are difficult to value using other
techniques such as Black-Scholes and lattice-based computations
[16]. Monte Carlo methods are computationally intensive and rely
on repeated random sampling to compute the results. Such a
finance server is a good candidate for budget-based control: (1)
tasks are time-bounded: traders often wait for no more than a few
seconds to get the results and perform online trading and (2) tasks
are adaptive: with more processing time, the price estimation error
reduces and result quality improves.

5.2 Performance Metric and Quality Profile
The result quality is measured by a statistical metric called
standard error of mean (SEM), which is the standard deviation of
the sample mean to the population mean [4]. It indicates how well
the sample mean estimates the population mean. The SEM value
is calculated as the population standard deviation 2 divided by the
square root of the sample size n, i.e., ܵܯܧ ൌ The smaller .݊√/ߜ
SEM is, the closer the estimated price is to the real price.

Figure 14 shows the request error profile3 with the normalized
processing time, which is the ratio of request processing time to

2 The population standard deviation is often unknown in practice. As a
conventional technique, we estimate SEM using the sample standard
deviation divided by the square root of the sample size.

3 When total processing time of a request is 0, SEM value is undefined
and can be arbitrarily large. To compute mean SEM of requests
including the unprocessed ones, we set the unprocessed request with

9

its full service demand. Here we set the SEM target to 0.05: when
a request’s SEM reaches 0.05, we consider it fully evaluated.
When the number of samples increases along with the processing
time, SEM decreases, which indicates the increase of the result
quality. Moreover, the error profile is convex; when we compute
more samples, the additional reduction on error for adding a
sample gets smaller. Here minimizing SEM with a convex error
profile is equivalent to maximizing quality with a concave quality
profile. Smaller SEM indicates better quality.

Request service demand is known because it depends on two input
values of the option, namely (1) the total duration and (2) period
value, and the target SEM, which are all known at request arrival.

5.3 Experimental Setup
In the simulation study, requests arrive following a Poisson
process, and their service demands follow an exponential
distribution with an average of 300 ms. The desired mean
response time is 600 ms. We implement and compare two control
models: budget-based and queue-based control. Moreover, since
request service demand is known at request arrival, we also apply
the shortest job first (SJF) technique [17] to reduce mean response
time. So in total, we evaluate four schemes:

 Budget+FIFO: budget-based model with optimization
procedure in Figure 3 with MaxQuality only (and without
MinMRT). The requests are processed in FIFO order.

 Budget+SJF: budget-based model with optimization
procedure in Figure 3 with both MaxQuality and MinMRT.
The requests with smaller assigned processing time are
processed earlier.

 Queue+FIFO: queue-based model serving requests in FIFO
order and dropping a new request when the queue is full.

 Queue+SJF: queue-based model serving requests using SJF
ordering and dropping the longest request when queue is full.

5.4 Performance Evaluation
Figure 15 and 16 show the mean response time and SEM of the
four schemes with the varying load expressed as QPS or user
requests per second. All schemes effectively bound mean
response time at 600 ms or below, but budget-based schemes
produce much smaller SEM and thus higher quality. For example,
to keep ܵܯܧ 0.1, the maximum throughput which the queue-
based approach sustains is less than 2.5 QPS while budget-based
approach can sustain more than 5 QPS, which doubles the
throughput. We now look into more details of the results.

From Figure 15, all schemes effectively bound the mean response
time under 600 ms. SJF helps to reduce mean response time at
moderate load: both Budget+SJF and Queue+SJF exhibit lower

quality 1 (a small value in favor of queue-based model since it is likely
to drop more requests.)

response time than their corresponding FIFO versions at load 1.5-
2.5 QPS. At light load, SJF is similar to FIFO because most jobs
don’t wait and mean response time is close to mean service
demand. At heavy load, again, SJF is similar to FIFO because
response time is controlled around the 600 ms target value.

There are three observations from Figure 16. (1) Budget-based
schemes show much lower error and thus higher quality than
queue-based schemes because they use adaptive execution to
achieve partial results and use quality profile to optimize the
assigned processing time of requests for higher quality. (2)
Queue+SJF achieves higher quality than Queue+FIFO because
given the same queue length, SJF helps to reduce the mean
response time; thus given the same mean response time, Queue-
SJF may allow longer queue length than Queue-FIFO, which
results in less dropped queries and higher quality. (3) The quality
difference of Budget-SFJ and Budget-FIFO is very small. This
seems to be inconsistent with observation (2), but it does not.
Using optimization procedure MaxQuality at Figure 3, when
requests have concave quality profile and they are competing for
resources, long requests are likely to be cut to prevent them from
starving the short requests. Therefore, at heavy load, requests tend
to obtain nearly equal processing time such that using FIFO or
SJF results in similar orderings, making little difference.

6. Related Work
Feedback control theory has been widely used to achieve
performance guarantees in computer systems with many
applications such as multimedia streaming, real-time computing,
transaction processing, embedded systems, and many others [5,
6]. In this section we focus on server systems using feedback
control to meet response time guarantees, and applications that
use adaptive executions.

Controlling server systems with response time requirements.
The prior works along this line focus on three scenarios.

(1) Control for relative response time. For example, Adbelzaher et
al. [7] build a feedback control loop for an Apache web server that
enforces desired relative response time among different service
classes via connection scheduling and process reallocation.

(2) Control elastic resources. In these prior works [8, 9, 25, 26,
27], systems acquire and release resources in response to dynamic
workload to meet response time target. There are various types of
resources to adapt: For example, adding or removing a storage
node [27], altering CPU allocation [25], changing processing
speed through dynamic voltage and frequency scaling [26].

(3) Control to prevent overloading. While a well-designed system
should not be persistently overloaded, transient periods of
overload are often inevitable, since the load is external to the
server system and requests arrive according to a stochastic
process, leading to transient overload and underload periods at the
server. Such transient periods are inevitable and difficult to
predict [3]. Many prior works [20, 23, 24] apply feedback control

Figure 14: Error profile.

Figure 15: Mean resp. time comparison.

Figure 16: Mean SEM comparison.

10

to cope with transient overload, deciding when to drop requests in
order to meet response time target.

The above prior work [7, 8, 9, 20, 23, 24, 25, 26, 27] uses control
theory to achieve response time guarantees, however, none of
them consider adaptive execution of requests. Like many prior
work [18, 19] on admission control, they either serve a request in
full or reject a request completely. Our budget-based model is
designed for applications with partial evaluation and it optimizes
the scheduling based on request quality profiles.

Adaptive execution. Employing adaptive execution and
approximate computations is an active area of research. Web
content adaptation [10, 11] offers different versions of the content
for the same request. Loop perforation [12] offers compiler and
runtime support for adaptive execution and has been applied to
audio and video codecs. Baek and Chilimbi [13] develop a general
framework to support approximated computation of different
applications to trade quality for lower energy.

These prior works [10, 11, 12, 13] offer important insights on how
to adapt execution for different applications. They focus on
adaptive execution mechanism that enables individual requests to
produce partial results. They do not, however, consider server
environments where multiple requests are competing for resources
with response time and quality targets.

Control systems with content adaptation. The closest prior
work to ours is controlling web servers that support content
adaptation, which is a form of adaptive execution. Abdelzaher and
Bhatti [14] propose to resolve the overloading problem of web
servers by adapting web content to load conditions. To meet the
desired server utilization, they control the ratio between the
requests offering degraded content versus all the requests.
Although this work uses adaptive execution to meet their control
target, it has important differences from our work: they do not
consider maximizing overall response quality for all requests as a
goal, and they do not consider request quality profiles to improve
the scheduling decision. We develop the budget-based model as a
general approach for interactive services supporting adaptive
execution. With an appropriate optimization procedure, it is
applicable to web servers with content adaptation.

7. Conclusions
This paper presents the budget-based control model for interactive
services with adaptive execution to meet a response time target
while achieving high service quality. The budget-based model
consists of two components: (1) a hybrid control mechanism that
adapts the budget so as to meet the response time target accurately
and quickly, and (2) an optimization procedure that improves the
total response quality using adaptive execution. We assess the
benefits of the budget-based control model through system
implementation and experimental evaluation on a commercial
search engine as well as through a simulation study of a finance
server. Both the experimental and simulation results show that the
budget-based model achieves more accurate control of mean
response time with higher response quality than the traditional
static and dynamic approaches that do not consider adaptive
execution.

8. References
[1] J. Hiriart-Urruty and C. Lemar´echal. Convex Analysis and

Minimization Algorithms, I and II. 305 and 306. 1993.

[2] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch.
ECS, 2007.

[3] B. Schroeder and M. Harchol-Balter. Web servers under overload:
How scheduling can help. ACM Trans. on Internet Tech. 2006.

[4] http://en.wikipedia.org/wiki/Standard_error.

[5] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. 2004.

[6] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu.
Introduction to control theory and its application to computing
systems. Performance Modeling and Engineering. 2008.

[7] C. Lu, T.F. Abdelzaher, J. Stankovic, and S. Son. A feedback control
approach for guaranteeing relative delays in web servers. RTAS,
2001.

[8] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queuing model based
network server performance control. RTSS, 2002.

[9] X. Liu, R. Zheng, J. Heo, Q. Wang, and L. Sha. Timing performance
control in web server systems utilizing server internal state
information. ICAS/ICNS, 2005.

[10] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to
network and client variation using infrastructural process proxies:
lessons and perspectives. Personal Communications, IEEE. 1998.

[11] Y. Chen. Detecting web page structure for adaptive viewing on small
form factor devices. WWW, 2003.

[12] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. C. Rinard. Dynamic knobs for responsive power-aware
computing. ASPLOS, 2011.

[13] W. Baek and T. M. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation.
PLDI, 2010.

[14] T. F. Abdelzaher and N. Bhatti. Web content adaptation to improve
server overload behavior. WWW, 1999.

[15] J. Yao, X. Liu, M. Yuan, and Z. Gu. Online adaptive utilization
control for real-time embedded multiprocessor systems.
CODES+ISSS, 2008.

[16] R. Reitano. Introduction to Quantitative Finance: A Math Tool Kit.
2010.

[17] I. Adan and J. Resing. Queueing Theory. 2001.

[18] R. Gullapalli, C. Muthusamy, and V. Babu. Control systems
application in java based enterprise and cloud environments – a
survey. Journal of ACSA, 2011.

[19] C. A. Yfoulis, and A. Gounaris. Honoring SLAs on Cloud
Computing Services: A Control Perspective. ECC, 2009.

[20] X. Liu, J. Heo, L. Sha, and X. Zhu. Queueing-model-based adaptive
control of multi-tiered web applications. IEEE Trans. on Network
and Service Management, 2008.

[21] J. Hamilton. Blog article at http://perspectives.mvdirona.com/
2009/10/31/thecostoflatency.aspx, 2009.

[22] W. Szpankowski. Bounds for queue lengths in a contention packet
broadcast system. IEEE Trans. on Comm., 1986.

[23] H. Chen and P. Mohapatra, Session-based overload control in QoS-
aware web servers. INFOCOM, 2002.

[24] L Cherkasova and P. Phaal, Session-based admission control: a
mechanism for peak load management of commercial web sites.
IEEE Trans. Comput., 2002.

[25] R Wang, Dara M. Kusic, N. Kandasamy, A distributed control
framework for performance management of virtualized computing
environments. ICAC, 2010.

[26] J. Leite, D. Kusic, D. Mosse, Stochastic approximation control of
power and tardiness in a three-tier web-hosting cluster. ICAC, 2010.

[27] H. C. Lim, S. Babu, and J. S. Chase. Automated Control for Elastic
Storage. ICAC, 2010.

