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ABSTRACT 
We study the problem of managing a class of interactive services 
to meet a response time target while achieving high service 
quality. We focus here on interactive services that support 
adaptive execution, such as web search engines and finance 
servers. With adaptive execution, when a request receives more 
processing time, its result improves, posing new challenges and 
opportunities for resource management. 

We propose a new budget-based control model for interactive 
services with adaptive execution. The budget represents the 
amount of resources assigned to all pending requests. The budget-
based control model consists of two components: (1) a hybrid 
control mechanism, which combines adaptive and integral 
controllers and controls the budget in order to meet the response 
time target with small steady-state error, fast settling time and 
little runtime overhead, and (2) an optimization procedure, which 
takes advantage of adaptive execution to maximize the total 
response quality of all pending requests under a given budget. 

We implement and evaluate the budget-based control model 
experimentally in Microsoft Bing, a commercial web search 
engine. The experimental results show that it achieves more 
accurate control of mean response time and higher response 
quality than traditional static and dynamic admission control 
techniques that control the queue length. We also apply the model 
to a finance server that estimates option prices, and conduct a 
simulation study. The simulation results show large benefits for 
budget-based control. For example, under the same response time 
and quality requirements, the budget-based model accommodates 
double the system throughput compared to a traditional queue-
based control model. 

1. INTRODUCTION 
Interactive services such as web search, web content servers, 
finance servers and online gaming serve millions of customers 
using thousands of servers. The SLA of these services often 
specifies stringent response time requirements. The most common 
metrics include mean and high-percentile response time. Long 
response times are not acceptable because they cause user 
dissatisfaction and revenue loss [21]. In addition to response time 
requirements, interactive services need to achieve high result 
quality. For example, a web search engine should return the most 
relevant web pages to user queries; a finance server needs to 
estimate price of the finance derivatives with small estimation 
error. Designing interactive services to meet their response time 
and quality requirement is an important and challenging problem. 

To meet response time requirements, a common approach is to 
limit the length of the incoming request queue: when the queue is 
full, new requests are dropped upon arrival. Intuitively, the 
bounded queue length provides bounded waiting time that 
potentially leads to a desired response time target. However, such 

a static admission-control approach [22] leads to several 
undesirable situations which result in the failure to meet a 
response time target or in degraded quality. If the queue limit is 
too small, available resources become underutilized and response 
quality is degraded. A large queue limit, on the other hand, may 
result in violating response time requirements. Determining the 
appropriate static queue length limit is challenging in data center 
environments since systems change: the incoming load fluctuates 
over time; software updates and hardware upgrades affect request 
service demand; and service SLAs change to reflect the evolving 
business requirements. Moreover, while a well-designed 
interactive service should not be persistently overloaded, transient 
periods of overload are often inevitable. The load increase at the 
server that leads to a transient period of overload is often difficult 
to predict [3]. These factors suggest the need for self-managed 
systems that can adapt to the changes and meet response time and 
quality requirements. 

An intuitive way to offer a response time guarantee in a changing 
environment is to apply feedback control. Feedback control has 
been widely used to achieve performance guarantees in many 
applications [5, 6]. Prior work [8, 9, 20, 23, 24] adjusts the queue 
length limit dynamically (or equivalently the buffer size or request 
drop rate) according to the feedback on response time: when the 
measured response time is higher than the target response time, 
the queue length limit is decreased; when response time is lower 
than that the target, the limit is increased. This type of dynamic 
admission control is effective for the classic “binary” request 
model: The server either processes the request returning a 
complete response or drops it with a null response. We call this 
model binary because the scheduler has a binary decision to 
make: either accept or reject the request. 

In contrast to the binary request model, many online services 
support adaptive execution: a request may have several partial 
results with different qualities depending on the amount of 
received processing time. The request has a quality function that 
maps the received processing time to a corresponding response 
quality; the response quality often improves with more processing 
time. Many important applications follow the adaptive model, 
including the following: (1) Web search: A web search engine 
receives requests from clients and returns the matching webpages 
within a short deadline. For a web query, there are multiple 
acceptable answers, and more processing time allows the search 
engine to match and rank more webpages online, providing 
progressively better responses. (2) Finance servers: Traders 
interactively submit requests to estimate the price of financial 
derivatives. A finance server executes a computation, such as 
Monte Carlo based pricing algorithms, and the server can trade-
off more processing time for smaller error between the estimated 
price and the real price. 
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Applying feedback control to adaptive interactive services is 
challenging. In addition to accepting or rejecting a request, the 
scheduler can execute requests partially: it needs to assign some 
processing time to each request based for example on request 
quality function or on system load. The goal is to meet the 
response time target and to provide high response quality. 
Existing approaches for the binary request model are not suitable 
here: they do not consider partial execution of requests, and 
therefore some queries are fully served while the others are 
rejected. Although traditional approaches may still meet the 
response time target; they result, however, in large degradation in 
the service quality, and they bring inconsistent user experience as 
some requests receive no service. 

We exploit the problem of scheduling interactive requests with 
adaptive execution to meet the response time target while 
achieving high response quality. We introduce a budget-based 
control optimization model where the budget is defined as the 
total execution time (or amount of resources) for all pending 
requests. The model consists of two components: a feedback 
control mechanism to adapt the budget so the system can meet its 
desired response time, and an optimization procedure that 
schedules requests within the provided budget. The optimization 
procedure assigns the execution time of individual requests based 
on their service demands and quality profiles to improve their 
total response quality. 

For interactive services, the control mechanism should adapt to 
the changing workload quickly and accurately while being simple 
enough with little runtime overhead. We develop a hybrid control 
mechanism combining adaptive and integral control to achieve 
this objective. Given the complexity of real systems, it is often 
hard to quantify the transfer function between system input and 
output in a changing environment. Therefore, we adopt a linear 
quadratic (LQ) adaptive control mechanism, which performs 
recursive linear regression to capture system behavior and uses an 
LQ optimal controller to compute the control output. However, 
frequent regression evaluation is too expensive for interactive 
services since each request takes on average only 20 ms of 
execution time. In addition, the pure LQ adaptive control cannot 
eliminate steady-state error. We, therefore, perform regression 
evaluation for adaptive control only at coarse-grain intervals, and 
within a coarse-grain interval, we apply integral control to adjust 
the control output, reducing both runtime overhead and steady-
state error. 

The budget-based control model applies the optimization 
procedure to exploit adaptive execution. With adaptive execution, 
a request can be partially processed, and a quality function maps 
the received processing time to the response quality. We develop 
two optimization procedures for two types of scheduling 
scenarios: (1) clairvoyant scheduling: the scheduler knows request 
service demand at their arrival, and (2) nonclairvoyant scheduling: 
the scheduler does not know request service demand until the 
request completes. The optimization procedure assigns processing 
time to pending requests using the budget determined by the 
control mechanism to improve the response quality. 

We assess the benefits of the budget-based control model through 
system implementation and experimental evaluation as well as 
through a simulation study. 

We show that the budget-based control model is feasible in 
practice, and we implement and evaluate it experimentally in 
Microsoft Bing, a large commercial web search engine. We 
employ hybrid control combining adaptive and integral controllers 

to meet the target mean response time with small steady-state 
error, fast settling time and little runtime overhead. The hybrid 
controller adjusts the budget. We measure the quality profile of 
Bing search requests and exploit the concavity of the quality 
profile to design an optimization procedure to schedule requests. 
The experimental results show significant benefits of using 
budget-based control over controlling the queue limit statically or 
dynamically. In particular, budget-based control meets the desired 
response time target and achieves high result quality. Moreover, 
since many commercial applications specify SLA using high 
percentile response time, we also apply the budget-based model to 
control the 90-percentile response time for web search and show 
its effectiveness. 

We also evaluate the budget-based control model with a different 
optimization procedure in a finance server. We build a simulator 
that models a finance server using Monte Carlo methods to 
evaluate option prices. Here each request is a task to estimate the 
price of a financial option, and the response quality is measured 
by the price estimation error: the smaller the estimation error, the 
better the result quality. Our results show that, to meet the same 
mean response time target, the budget-based control model 
reduces the estimation error and improves response quality 
compared to the queue-based control model. In particular, to 
achieve the same target quality, the budget-based control model 
doubles the system throughput while satisfying the target mean 
response time. 

The contributions of this paper are as follows: (1) We propose the 
budget-based control model for interactive services with adaptive 
execution. (2) We introduce a hybrid control mechanism suitable 
for interactive services, which combines adaptive and integral 
control to meet response time requirements. We also introduce 
two optimization procedures to improve response quality for 
clairvoyant and nonclairvoyant scheduling environments. (3) We 
show how to implement budget-based control in modern servers 
as used in Bing. (4) We evaluate the benefits of budget-based 
control experimentally, using real server software and workload in 
Bing. (5) We conduct a simulation study to evaluate budget-based 
control in a finance server. 

The paper is organized as follows. Section 2 discusses adaptive 
execution and presents the measured quality profile from Bing. 
Section 3 describes the budget-based control model, and its two 
components: the control mechanism and the optimization 
procedure. Section 4 describes the implementation and 
experimental evaluation results in Bing. Section 5 describes the 
simulation results in a finance server. Section 6 discusses related 
work and Section 7 shows our conclusions. 

2. Adaptive Execution 
Adaptive execution is the flexibility of trading more resources for 
better results. Examples include estimation computations in which 
better estimates are obtained with more processing. For example 
in a finance server, Monte Carlo methods compute option pricing 
to find better answers with more processing. 

With adaptive execution, the relationship between the quality of 
the result and the used amount of computational resources is 
quantified by request quality function. A quality function ݂: ܴ →
ܴ  maps the request completion ratio (processing time / service 
demand) to a quality value gained by executing the request. 
Quality functions of different applications can have different 
shapes. We observe that the quality functions are usually 
monotonically non-decreasing: result quality stays the same or 
improves with more processing. Moreover, many best-effort 
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applications exhibit concave quality profiles due to the effects of 
diminishing returns. 

To demonstrate the quality profile for a real application, we 
measure the response quality profile in Bing using 200ܭ queries 
from a production trace and present it in Figure 1. Each request is 
a web search query for a set of keywords. The search engine scans 
its inverted index looking for webpages that match the requested 
keywords and ranks the matching webpages. The more time the 
server spends on matching and ranking the webpages from the 
inverted index, the better the results. The response includes a set 
of links to the top webpages matching the keywords specified by 
the user query. The response quality compares the set of 
webpages returned in the test to a golden set of base results (as 
explained in Section 4). The x-axis of Figure 1 is request 
completion ratio; the y-axis is the average response quality. The 
figure demonstrates that the quality profile of Bing search is 
monotonically increasing and concave: the concavity comes from 
the effect of diminishing returns. The inverted index lists 
important (e.g., popular) webpages first; therefore webpages 
matched earlier are more likely to rank higher and contribute more 
to total response quality. 

 
 

Figure 1. Measured quality profile in Bing search. 
 

A scheduler can exploit adaptive execution and request quality 
profile to improve the response quality. Without adaptive 
execution, a scheduler can either execute a request fully or reject 
it. In contrast, adaptive execution opens the possibility of partial 
processing in which some requests can be processed half-way 
returning an approximated result, which is a favorable trade-off in 
many situations. 

3. Budget-based Control Model 
This section presents the budget-based model for interactive 
services with adaptive execution. The budget is defined as the 
total processing time (or total amount of resources) we plan to 
allocate to all pending requests. The budget-based control model 
consists of two components: (1) the control mechanism, which 
applies feedback control to adjust the budget to meet the response 
time target, and (2) the optimization procedure, which is a 
scheduling algorithm using adaptive execution to maximize total 
response quality at a given target. The budget-based model 
divides the two main goals of the system, meeting response time 
target and achieving high quality, into the control mechanism and 
optimization procedure respectively, so each component has a 
clear design goal and responsibility. This section elaborates the 
design and features of the control mechanism and optimization 
procedure. 

3.1 Control Mechanism 
The control mechanism takes the observed response time as 
feedback and determines the budget value in order to meet the 
response time target. There are several approaches to design such 
a controller. We present a hybrid controller, combining adaptive 
and integral controller, which offers accurate and light-weight 
control of interactive services to meet their response time 
requirements. Our experimental results show that such hybrid 
control combines the benefits of adaptive and integral control: It 
meets the response time target with small steady-state error, fast 
settling time and little runtime overhead, outperforming the 
adaptive controller alone and integral controller alone. This 
section first gives a brief description of the integral and adaptive 
controllers then it introduces the hybrid controller. 

3.1.1 Integral Control 
Integral control is a simple and well-known control mechanism, 
adjusting the value of control variable based on the difference 
between the observed output and the reference output. The control 
function is expressed as follows: 

ሺ݇ሻݑ ൌ ሺ݇ݑ െ 1ሻ   ூ݁ሺ݇ሻܭ

Here k represents time steps; ݑሺ݇ሻ is the output of the integral 
controller (which is also the control variable of the system) at time 
step k. The tracking error ݁ሺ݇ሻ  is the difference between the 
observed system output and the reference output, i.e., ݁ሺ݇ሻ ൌ
୰ୣሺ݇ሻݕ െ ሺ݇ݕ െ 1ሻ. The controller parameter ܭூ defines the ratio 
of control change to the control error. In our system, the control 
variable ݑ is the budget, and the output ݕ is the metric such as 
mean response time, or the 90-percentile response time. 

Integral control has two main advantages. First, it has zero steady- 
state error, which allows systems to meet their desired SLA. 
Second, it is computationally efficient, which is an important 
property in interactive systems, The integral controller incurs 
almost negligible system overhead allowing recalculating the 
budget with each request arrival or departure. 

Integral control has its limitation: Its response is relatively slow. 
For example, when the workload has a big change, it will track the 
change slowly, producing a large deviation initially. Integral 
control is usually combined with another control mechanism to 
overcome this limitation. 

3.1.2 Adaptive Control 
We consider a linear quadratic adaptive controller [15] with two 
parts: a model estimator and a linear quadratic optimal controller.  

The Model Estimator. The model estimator uses the prior 
behavior of the system to predict the current system model. More 
precisely, it uses a number of prior control input and output values 
to predict their relationship using a Recursive Least Square (RLS) 
model estimation. In our problem, adaptive control predicts the 
relationship between the budget and response time using a linear 
function. The order of the regression model (i.e., the number of 
prior data points used for predicting the system model) indicates a 
tradeoff between the estimation precision and computational 
overhead. With a larger order, the estimation is generally more 
precise, however, the regression computation incurs a higher 
computation overhead. 

Linear Quadratic (LQ) Optimal Controller. The primary 
control objective is to make the system output track the desired 
SLA with small error. It is also desirable to avoid large changes to 
the control variables. These two goals are achieved by minimizing 
the quadratic cost function ܨ  defined as follows for linear 
quadratic optimal control: 
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ܨ ൌ |ܹሺݕ௦௧ሺ݇  1ሻ െ ሺ݇ݕ  1ሻሻ|ଶ  |ܳ൫ݑሺ݇ሻ െ ሺ݇ݑ െ 1ሻ൯|ଶ 

Here ݕ௦௧ሺ݇  1ሻ denotes the estimated system output from the 
estimator, ݕሺ݇  1ሻ denotes the reference output for the step 
݇  1, and ݑሺ݇ሻ and ݑሺ݇ െ 1ሻ are the control variables (or system 
inputs) at time step k and step k-1, respectively. Moreover, ܹ is a 
positive weighting parameter on the tracking errors, and ܳ  is a 
positive weighting parameter to penalize large changes in the 
control variable. The relative magnitude of ܹ  and ܳ  trades off 
between tracking accuracy and smaller changes in the control 
variable. The value of the control variable ݑሺ݇ሻ that minimizes ܨ 
can be obtained by setting the derivative ߲ݑ߲/ܨሺ݇ሻ ൌ 0. 

Next we turn to the advantages of adaptive control. Interactive 
services are complex systems: they use heterogeneous hardware 
crossing different data centers and generations of software and 
hardware components; the workload fluctuates over time; 
software updates and hardware upgrades affects the request 
service demand. More fundamentally, when an interactive service 
supports adaptive execution, requests can be partially processed. 
Therefore, it is hard to quantify the transfer function between the 
control variable (in our case, it is the budget) and the response 
time. This makes adaptive controller a good choice: it captures the 
system behavior by modeling the correlation between budget and 
response time using the recent data points. The RLS-based model 
estimator identifies the changes in the system behavior, and the 
controller adjusts the control output and adapts the system 
correspondingly. 

There are limitations of adaptive control. (1) It is computationally 
expensive for interactive services. Given a regression order N, i.e., 
the estimator uses the latest ܰ  data points (i.e., control input, 
control output), it requires ܱሺܰଷሻ arithmetic operations at each 
time step to compute the prediction model online. Our 
measurements indicate that it takes about 2.2 ms on our server 
when ܰ ൌ 10. The average service demand of a request is around 
20 ms. If adaptive control is applied on every request, it 
introduces fairly large overhead to the system. (2) The LQ 
adaptive controller, similar to a proportional controller, incurs 
steady-state errors. More specifically, if we set Q to 0, the LQ has 
the form of a proportional controller which can’t guarantee the 
small steady-state errors. 

3.1.3 Hybrid Control 
We develop a hybrid controller to combine the integral and 
adaptive control: it runs adaptive control periodically in a coarse-
grain time interval to learn the system model and adjust the 
control output, the budget. Within the fine-grain interval, the 
hybrid controller uses integral control for the execution of each 
request to perform fine-grain adjustment of the control output. 
This combination reduces the computation overhead and the 
steady-state error. The block diagram of the hybrid controller is 
shown in Figure 2. 

The hybrid controller uses both integral and adaptive control. If 
we use integral control only, we may have slow response for 
tracking changes in workload or system environment. Adding 
adaptive control allows learning the system model according to 
the recent system behavior. We cannot, however, afford the 
runtime overhead of using adaptive control for each request and 
there will be a steady-state error. Using integral control 
complements adaptive control, since integral control runtime 
overhead is almost negligible and it eliminates the steady-state 
error to meet the response time target. The adaptive part of the 
hybrid controller helps to adapt the system to large changes. 

 
Figure 2: Hybrid Control Block Diagram. 

Comparing the hybrid controller with a classic PI controller, the 
parameter of the P controller is fixed and difficult to tune for 
different loads and configurations, while the adaptive control of 
the hybrid controller adapts the system on different hardware 
configurations and workload regions automatically. 

3.2 Optimization Procedure 
The optimization procedure is a scheduling algorithm that takes a 
resource budget and a set of pending requests as inputs, and 
assigns a portion of the budget to each request with the objective 
of maximizing total response quality. The design of the 
optimization procedure depends on the request quality profile, 
service demand, and other application specific constraints. We do 
not intend to enumerate all optimization procedures to cover all 
scenarios. Rather, we focus on concave quality profiles as they are 
popular in practice due to the iterative nature of many best-effort 
applications and the effect of diminishing return. We introduce 
two optimization procedures for clairvoyant and nonclairvoyant 
scheduling environment respectively. This section presents how 
these two optimization procedures work and they are evaluated in 
Section 4 and 5. For other quality profiles and application specific 
constraints, one can develop and employ a tailored optimization 
procedure. 

3.2.1 Optimization for Clairvoyant Scheduling 
This section describes an optimization procedure with known 
request service demand and concave quality profile. An example 
is the finance server that uses Monte Carlo methods to evaluate 
option prices (Section 5). This optimization procedure maximizes 
the response quality of the pending requests under a given budget. 

Figure 3 presents the optimization procedure. The budget is 
defined as the amount of processing time available for all ready 
requests. The optimization procedure decides the assigned 
processing time of each request in the ready queue by solving the 
optimization problem defined at MaxQuality. MaxQuality 
maximizes the total quality of requests based on the budget, 
request demand and quality profile. Since all constraints in the 
MaxQuality are linear and its objective is to maximize the 
summation of concave functions, MaxQuality is a convex 
optimization problem and can be solved using convex solvers 
such as CVS [1]. MaxQuality produces a solution that maximizes 
the total quality of all pending requests with a given budget. 

Without compromising the total response quality, we can further 
reduce response time by applying MinMRT after MaxQuality. 
MinMRT sorts the requests in the ascending order of the assigned 
processing time. It is well known that given a batch of jobs, 
running the shortest job first produces a schedule with the smallest 
mean response time [17]. Here by performing MinMRT after 
MaxQuality, the scheduler further minimizes the response time in 
the set of solutions that maximize the total quality. This also 
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benefits the response quality: given the same budget, MinMRT 
reduces the mean response time; thus given the same mean 
response time target, MinMRT relaxes the budget and leads to 
higher quality. 

 

 
Figure 3: Optimization procedure for clairvoyant scheduling. 

 

The optimization procedure performs local optimization on the set 
of pending requests and the available budget. When there is new 
request arrival or budget change, we can repeat the optimization 
procedure with the updated request information. 

3.2.2 Optimization for Nonclairvoyant Scheduling  
This section describes an optimization procedure assuming 
requests have unknown request service demands and have 
concave quality profile. An example application is the index 
server at Bing (Section 4). Besides meeting response time and 
quality requirement, Bing server has two additional requirements: 
(1) It is often hard to know the exact quality profile of each 
request. The scheduler uses an expected quality profile (as shown 
in Figure 1) for all requests. (2) Context switching is expensive 
because of cache warm-up; it may take a few hundred 
microseconds to more than a millisecond [2]. Since the mean 
service demand of Bing requests is only about 20 ms, the 
scheduler should execute each request only once, rather than 
suspending the request and resuming it later. 

Figure 4 shows the pseudo-code of the optimization procedure 
EqResv. The budget is defined as the amount of processing time 
available for all pending requests. The input does not include 
request service demand because it is unknown at request arrival. 
EqResv is a heuristic algorithm to improve total response quality 
of ready requests under a given budget. 

EqResv processes requests in the FIFO order and it decides the 
assigned processing time of the first job in the FIFO queue based 
on the load and the budget. In order to improve total response 
quality, when requests are competing for resources, a scheduler 
prefers running the part of requests with higher quality gain. 
Given a concave quality profile, the early portion of processing 
request has higher gain than its later portion. Therefore, the key 

idea of EqResv is to prevent jobs at the beginning of the queue 
from consuming the entire budget and starving later requests so 
each request has a fair opportunity to be processed (at least for its 
early portion). To achieve this goal, EqResv applies two 
techniques. (1) Equi-Partitioning (EQ): When the system is 
heavily loaded, EqResv performs EQ to reserve a fair share of 
processing time for waiting requests (in Line 2). With a concave 
quality function, giving each job the same amount of processing 
time maximizes the overall quality. (2) Reservation (RESV): In a 
lightly loaded case, EqResv performs RESV to reserve the 
expected service demand for the queuing requests and allocates 
the remaining time to the current running job (in Line 3)1. RESV 
gives the long requests a chance to finish if they will not impact 
short ones. 

 
Figure 4: Optimization procedure for nonclairvoyant scheduling. 

 

EqResv does not need a load threshold to decide if it should use 
the result from EQ or RESV. During light load, we want to 
estimate the processing time using RESV, and its processing time 
is larger than the one produced by EQ. During heavy load, we 
want to use EQ, and its processing time is larger than the one 
produced by RESV. Therefore, selecting the larger between these 
two gives the assigned processing time (in Line 5). 

4. Implementation and Evaluation in Bing 
This section presents the implementation and evaluation of the 
budget-based control model in Microsoft Bing web search engine. 

4.1 Application Overview 
Bing  is a large commercial web search engine from Microsoft. We 
focus on the index serving part (interactive processing), which 
serves user queries online to return the best matching webpages. 
Notably, the index serving part is different from the web crawler 
and index builder (batch processing) which processes crawled 
webpages to generate the inverted index offline. 

The index serving system of Bing accepts user queries, and it 
forwards the queries to index servers when the query’s results do 
not exist in the cache. Each index server manages a small portion 
of the inverted index and therefore becomes responsible for a set 
of web pages. The index server searches its inverted index for all 

                                                                 
1 Service demand of individual request is unknown but expected or mean 

service demand of requests can be obtained through offline 
measurement or online approximation. 

EqResv (jobs[] queue, double ݓഥ , double ܤ) 

Inputs: 

queue: list of ready requests in FIFO order; 

ഥݓ : expected (or mean) service demand of requests; 

 budget (total processing time for ready jobs) :ܤ
 

Pseudo code: 

1: qLen = queue.size()  //queue length 

2: EQ = ܤ	/ qLen   // Equi-partitioning 

3: RESV = ܤ −(qLen−1)×	ݓഥ   // Reservation 

4: //assign processing time for the first job at ready queue 

5: queue[0].p = max(EQ, RESV ) 

Optimization Model 

Inputs: 

ܬ ൌ ሼܬ|݅ ൌ 1,… , ݊ሽ: set of ݊ ready jobs 

  ܬ : service demand of jobݓ

݂: quality function of job ܬ 

 budget (total processing time for all pending jobs) :ܤ
 

Variables: 

 .ܬ  : assigned processing time of
 

MaxQuality: 

Maximize ∑ ݂ሺ/ݓሻ

ୀଵ  

Subject to: 

Resource availability constraint: ∑   ܤ
ୀଵ   

Processing time constraint:     ݓ

MinMRT: 
 Sort jobs in J in ascending order of   
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webpages that match the query, ranks these webpages, and returns 
the top ܰ  webpages that match the query. The index server 
supports adaptive execution: the result quality improves with the 
increased number of webpages examined and ranked. Moreover, 
the response quality profile is concave as shown in Figure 1. In 
Bing, we want to limit the mean response time of the index server 
as part of the web search SLA requirements for important 
commercial reasons. These factors make the index server a good 
candidate to apply the budget-based control model. 

4.2 Implementation 
The web index is partitioned among many index servers. We use 
our approach to control each index server so that each individual 
server can satisfy the target mean response time while returning 
high quality results. The original index server works as follows. 
Newly arrived requests join the waiting queue. The waiting queue 
has a length limit: when the queue is full, new requests are 
dropped. There are a number of worker threads and each worker 
thread processes one request at a time. The number of workers is 
equal to the number of cores in the system. When a worker thread 
completes a request, it gets a new query from the head of the 
waiting queue and starts to process it. To process a query, the 
worker searches the inverted index and obtains a list of matching 
webpages to the search keywords. It then ranks the matching 
webpages in a loop, which we call index ranking loop. This loop 
is the most time consuming part of the query processing. After 
ranking all matched webpages, the worker returns the top ܰ 
matched results and completes the query. 

Our implementation at index server includes three parts to apply 
budget-based control. 

(1) We enable adaptive execution of requests using early 
termination. We add a termination condition in the ranking loop, 
so that when a request uses up its assigned processing time, the 
request is terminated early. 

(2) We add the optimization procedure from Figure 4 to 
dynamically assign processing time to requests based on the 
budget. The optimization procedure is extended to multicore 
servers by changing the queue length value (qLen) to reflect the 
expected queue length for each core. 

(3) We implement the hybrid controller consisting of the model 
estimator and linear quadratic optimal controller to adjust the 
budget based on mean response time. The mean response time is 
computed online as a moving average ܴܶܯ ൌ ሺ1 െ ሻߙ ൈܴܶܯ 
ߙ ൈ  ݅  is the response time of the last processed requestݎ , whereݎ
and ߙ  is a constant multiplier. We use ߙ ൌ 0.05  in our 
implementation. 

To compare the budget-based control to the traditional dynamic 
approaches, we also implement queue-based control and integrate 
it in the index server. It applies the same hybrid controller in 
Section 3 to adjust the queue length limit based on the mean 
response time. When the queue is full, the newly arrived requests 
are dropped.  When the queue length limit decreases due to 
control decision, the overflowed requests are also dropped. 

In the remainder of this section, we compare these three 
implementations of the index server: 

 OriginalIS: original implementation of index server 
 BudgetIS: index server using budget-based control 
 QueueIS: index server using queue-based control. 

4.3 Experimental Setup 
Performance Metrics: The primary goal to control an interactive 
system is to meet the response time target and to achieve high 
response quality. The index server has an SLA requirement on the 
average response time and response quality. The request response 
time is the duration between when request arrives to the index 
server and when the response is sent back; the server sends 
responses to all requests including the dropped ones. Our 
experiments use 35 ms as our target mean response time, and we 
control the server to make the mean response time at or below the 
target.  We also tried several other mean response time targets and 
the results are similar. 

To compute the quality of a response of a web search query, we 
compare returned webpages in the response to the webpages in the 
base results of the query when it is processed completely. We use 
proportional quality, which gives each of the top N webpages the 
same weight. For example, when N=10 and there are 8 matches 
between the response and the base results, the quality is 8/10. 
Proportional quality is one way to measure the response quality. 
We also used other quality metrics, such as assigning higher 
weights to higher ranking webpages; the experimental results are 
similar we, therefore, present the proportional quality only. 

Other important measures include classic metrics for evaluating 
controllers, such as settling time and steady-state error. Settling 
time is the time from the change in the workload to when the 
measured output is sufficiently close to its new steady-state value. 
Shorter settling time is desired. Moreover, the control mechanism 
should be computationally efficient without incurring high 
overhead. 

Workload and Hardware: Our evaluation includes an index 
server that answers queries and a client that replays queries from a 
trace file. We use a query trace with 200,000 actual user queries 
from production to drive the experiments. We run the system by 
issuing queries following a Poisson distribution in an open-loop 
system. We vary system load by changing the arrival rate 
expressed as QPS (queries per second). The index server searches 
its local index and returns the top 10 matching results to the client. 
The index server for our evaluation has a six core Intel 64-bit 
Xeon processor (3.33 GHz) and 24 GB main memory. 

Controller Configurations: The hybrid controller uses adaptive 
control to adjust the budget at every 10 queries and applies 
integral control at every step with ܭூ ൌ 1. The order of the RLS-
based model estimator is 10. The weight parameters of the linear 
quadratic controller have values Q=0.5 and W=0.5. 

Experiments: We conduct the following four sets of experiments 
and present their results in the remaider of this section. 

(1) Comparing budget control to static queue: we compare the 
budget-based control model (BudgetIS) to the original index 
server that has a static limit on the queue length (OriginalIS). 
(2) Control variables: we compare BudgetIS that uses budget as 
control variable to QueueIS that uses queue length. 

(3) Control mechanisms: we evaluate the impact of integral, 
adaptive, and hybrid control mechanisms. 

(4) Controlling high-percentile response time: we apply budget-
based control to meet a 90-percentile response time target. 
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4.4 Comparing Budget Control to Static Queue 
This experiment compares BudgetIS to the static approach of 
having a fixed queue length. We use two fixed queue length 
values 7 and 50 (corresponding to OriginalIS_7 and 
OriginalIS_50 respectively) to demonstrate the effect of different 
queue lengths. Figures 5 and 6 show the mean response time and 
quality results for the three implementations: their x-axis 
represents the load expressed as the request arrival rate, varying 
from 200 to 500 QPS, which covers the operational range of the 
workload. The y-axis is the mean response time and average 
response quality, respectively. 

The results show that for static approach, different queue lengths 
represent a tradeoff between mean response time and average 
response quality. With shorter queue length, the mean response 
time decreases and the quality degrades too. OriginalIS_7 meets 
the response time target, but its quality degrades even at light and 
moderate load; OriginalIS_50 obtains higher quality but its mean 
response time at high load is significantly higher than the target. It 
indicates that there is no single queue length value that meets both 
the response time and quality requirement. 

Figure 5 shows that BudgetIS successfully bounds the request 
mean response time to the 35 ms target with tracking error less 
than 1 ms. Moreover, Figure 6 shows that BudgetIS also improves 
response quality at high load. In particular, the response quality of 
OriginalIS_7 and OriginalIS_50 drops more sharply at high load 
and OriginalIS_50 exceeds the response time target, while 
BudgetIS offers higher quality. BudgetIS achieves this by 
assigning request processing time dynamically exploiting request 
quality profile to improve the total response quality. For example 

at 450 QPS, BudgetIS terminates 32% queries early with partial 
results and no queries are dropped, while OriginalIS_7 drops 25% 
queries and these queries have quality 0. 

This experiment demonstrates that (1) Using a fixed queue length 
cannot meet response time requirements with high response 
quality, and (2) The budget-based model accurately controls the 
mean response time to match the SLA target and uses partial 
evaluation to improve the request response quality.  
4.5 Control Variables: Budget vs. Queue Length 
This experiment compares QueueIS, which controls the length of 
the waiting job queue, to BudgetIS, which controls the budget. 
Figures 7 and 8 show the mean response time and quality 
comparison for the two approaches. Both approaches can bound 
request mean response time at high load, however, QueueIS 
incurs bigger errors tracking the response time target and has 
worse quality at high load. 

QueueIS incurs bigger tracking error than BudgetIS for two 
factors. (1) QueueIS uses queue length as control input, which is 
an integer value with the smallest change of incrementing or 
decrementing by one; the discrete values of the control input may 
not be able to meet the control target precisely. (2) In BudgetIS, 
changes in the budget value are immediately reflected on the 
queries’ processing times, since the system assigns query 
processing time according to the budget. However, in QueueIS, 
changes of the queue length take effect only after a period of time, 
since queue length won’t affect response time of the queries 
before the queue becomes full. Such a delay between control input 
and output can also cause reduced control accuracy. 

  

 

 

 

 

Figure 5: Mean response time for BudgetIS 
and OriginalIS. 

 

Figure 6: Average quality for BudgetIS and 
OriginalIS. 

 

Figure 7: Mean response time for BudgetIS 
and QueueIS. 

 

Figure 8: Average quality for BudgetIS and 
QueueIS. 

 

Figure 9: Mean resp. time for different 
control mechanisms 

 

Figure 10: Average quality for different 
control mechanisms. 

 

Figure 11: Transient behavior.  

 

Figure 12: P90 response time for BudgetIS 
and OriginalIS. 

 

Figure 13: Average quality for BudgetIS and 
OriginalIS. 
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QueueIS produces lower quality than BudgetIS at high load 
because QueueIS drops queries to meet the response time target 
while BudgetIS processes queries partially. Given a concave 
quality profile, partially executing queries with similar processing 
time achieves higher average quality than executing some queries 
fully while dropping the others. 

4.6 Comparing Control Mechanisms 
This section shows that the hybrid control mechanism which 
combines integral and adaptive control outperforms either integral 
control alone or adaptive control alone. Hybrid control offers 
small steady-state errors, small settling time and is 
computationally efficient. Adaptive and integral control offer a 
subset of these properties rather than all of them. 

In this experiment, all the evaluated systems use the budget as the 
control variable with the same optimization procedure but 
different control mechanisms. 

Figure 9 and 10 show mean response time and average quality for 
the different control mechanisms with the system load. We 
discuss each of them below. 

Adaptive controller. The adaptive controller exceeds the mean 
response time target of 35 ms at high load.  It uses the RLS model 
estimator to predict system behavior and its control law is close to 
proportional control: its accuracy is sensitive to workload 
variation and the control law cannot eliminate steady-state errors. 
Moreover, running model estimation of adaptive control before 
executing every request introduces a considerable amount of 
computational overhead (about 2.2 ms of overhead for every 
query with average service demand of 20 ms). This not only 
increases the mean response time of requests but also becomes the 
noise factor that the control law cannot remove from its steady-
state error. Therefore, using adaptive controller alone cannot 
bound mean response time effectively. 

Integral controller. The integral controller controls the mean 
response time effectively with tracking errors less than 2.5 ms. 
However, it has a long settling time. Figure 11 compares the 
transient state behavior of integral controllers to the hybrid and 
adaptive controllers. In this experiment, we first launch queries at 
200 QPS; then we double the load to 400 QPS. The figure shows 
that hybrid controller has the shortest settling time. As for the 
integral controller, it has slower responsiveness to the workload 
change, with large settling time. Due to its slow responsiveness, 
the integral controller does not meet all the desired properties. 

Hybrid controller. The hybrid controller has the best 
characteristics among the three control mechanisms: the smallest 
steady-state error, highest response quality, and the shortest 
settling time. It uses the adaptive controller in a coarse-grain 
manner to detect large changes and responds quickly; it uses the 
integral controller in a fine-grain manner to reduce steady-state 
error and reduce computation overhead. The hybrid controller 
combines the advantage of adaptive and integral controller. 

4.7 Controlling High-Percentile Response Time 
High-percentile response time is another important and common 
SLA requirement for interactive services. This section shows that 
the budget-based model meets the high percentile response time 
target. This experiment is conducted on Bing index server with a 
90-percentile response target of 75 ms, i.e., 90% requests must 
have response time of 75 ms or less. We use the last 1000 queries’ 
90-percentile value as the current observed value in a moving 
window of recent requests and we adjust the budget based on the 

difference between the observed and the target 90-percentile 
response time. 

Figure 12 and 13 show the 90-percentile response time and 
average response quality for BudgetIS, OriginalIS_6 and 
OriginalIS_50. The results are similar as in Section 4.4. BudgetIS 
effectively meets the 90-percentile response target while 
OriginalIS_50 incurs very high response time at heavy load and 
OriginalIS_6 suffers from quality loss at light and moderate load. 
The quality of both versions of OriginalIS is lower than BudgetIS 
at heavy load due to request dropping. Again, the benefits of 
BudgetIS come from adopting partial results and exploiting the 
concave quality profile. This experiment demonstrates that the 
budget-based model is not limited to controlling mean response 
time; it can be extended to meet other SLA for adaptive 
interactive services. 

5. Finance Server 
Section 4 evaluates the budget-based control model for 
nonclairvoyant scheduling where request service demand is 
unknown. This section evaluates it for clairvoyant scheduling. We 
build a simulator to model a finance server where request service 
demand is known. We show that budget-based control model 
outperforms the queue-based model: under the same load, the 
budget-based control model produces higher response quality and 
under the same quality requirement, it achieves higher throughput. 

5.1 Application Overview 
Banks and fund management companies evaluate thousands of 
financial derivatives every day. Traders and analysts submit 
requests to value the derivatives, and they make trading decisions 
online based on the returned results. At the backend, there are 
many servers that perform quantitative analysis on various 
financial products. This section presents an option pricing server 
that uses Monte Carlo methods to price complex path-dependent 
options. Monte Carlo methods are widely used for analyzing 
complex derivatives that are difficult to value using other 
techniques such as Black-Scholes and lattice-based computations 
[16]. Monte Carlo methods are computationally intensive and rely 
on repeated random sampling to compute the results. Such a 
finance server is a good candidate for budget-based control: (1) 
tasks are time-bounded: traders often wait for no more than a few 
seconds to get the results and perform online trading and (2) tasks 
are adaptive: with more processing time, the price estimation error 
reduces and result quality improves.  

5.2 Performance Metric and Quality Profile 
The result quality is measured by a statistical metric called 
standard error of mean (SEM), which is the standard deviation of 
the sample mean to the population mean [4]. It indicates how well 
the sample mean estimates the population mean. The SEM value 
is calculated as the population standard deviation 2 divided by the 
square root of the sample size n, i.e., ܵܯܧ ൌ  The smaller .݊√/ߜ
SEM is, the closer the estimated price is to the real price.  

Figure 14 shows the request error profile3 with the normalized 
processing time, which is the ratio of request processing time to 

                                                                 

2 The population standard deviation is often unknown in practice. As a 
conventional technique, we estimate SEM using the sample standard 
deviation divided by the square root of the sample size. 

3 When total processing time of a request is 0, SEM value is undefined 
and can be arbitrarily large. To compute mean SEM of requests 
including the unprocessed ones, we set the unprocessed request with 
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its full service demand. Here we set the SEM target to 0.05: when 
a request’s SEM reaches 0.05, we consider it fully evaluated. 
When the number of samples increases along with the processing 
time, SEM decreases, which indicates the increase of the result 
quality. Moreover, the error profile is convex; when we compute 
more samples, the additional reduction on error for adding a 
sample gets smaller. Here minimizing SEM with a convex error 
profile is equivalent to maximizing quality with a concave quality 
profile. Smaller SEM indicates better quality. 

Request service demand is known because it depends on two input 
values of the option, namely (1) the total duration and (2) period 
value, and the target SEM, which are all known at request arrival. 

5.3 Experimental Setup 
In the simulation study, requests arrive following a Poisson 
process, and their service demands follow an exponential 
distribution with an average of 300 ms. The desired mean 
response time is 600 ms. We implement and compare two control 
models: budget-based and queue-based control. Moreover, since 
request service demand is known at request arrival, we also apply 
the shortest job first (SJF) technique [17] to reduce mean response 
time. So in total, we evaluate four schemes: 

 Budget+FIFO: budget-based model with optimization 
procedure in Figure 3 with MaxQuality only (and without 
MinMRT). The requests are processed in FIFO order. 

 Budget+SJF: budget-based model with optimization 
procedure in Figure 3 with both MaxQuality and MinMRT. 
The requests with smaller assigned processing time are 
processed earlier. 

 Queue+FIFO: queue-based model serving requests in FIFO 
order and dropping a new request when the queue is full. 

 Queue+SJF: queue-based model serving requests using SJF 
ordering and dropping the longest request when queue is full. 

5.4 Performance Evaluation 
Figure 15 and 16 show the mean response time and SEM of the 
four schemes with the varying load expressed as QPS or user 
requests per second. All schemes effectively bound mean 
response time at 600 ms or below, but budget-based schemes 
produce much smaller SEM and thus higher quality. For example, 
to keep ܵܯܧ  0.1, the maximum throughput which the queue-
based approach sustains is less than 2.5 QPS while budget-based 
approach can sustain more than 5 QPS, which doubles the 
throughput. We now look into more details of the results. 

From Figure 15, all schemes effectively bound the mean response 
time under 600 ms. SJF helps to reduce mean response time at 
moderate load: both Budget+SJF and Queue+SJF exhibit lower 

                                                                                                           

quality 1 (a small value in favor of queue-based model since it is likely 
to drop more requests.) 

response time than their corresponding FIFO versions at load 1.5-
2.5 QPS. At light load, SJF is similar to FIFO because most jobs 
don’t wait and mean response time is close to mean service 
demand. At heavy load, again, SJF is similar to FIFO because 
response time is controlled around the 600 ms target value. 

There are three observations from Figure 16. (1) Budget-based 
schemes show much lower error and thus higher quality than 
queue-based schemes because they use adaptive execution to 
achieve partial results and use quality profile to optimize the 
assigned processing time of requests for higher quality. (2) 
Queue+SJF achieves higher quality than Queue+FIFO because 
given the same queue length, SJF helps to reduce the mean 
response time; thus given the same mean response time, Queue-
SJF may allow longer queue length than Queue-FIFO, which 
results in less dropped queries and higher quality. (3) The quality 
difference of Budget-SFJ and Budget-FIFO is very small. This 
seems to be inconsistent with observation (2), but it does not. 
Using optimization procedure MaxQuality at Figure 3, when 
requests have concave quality profile and they are competing for 
resources, long requests are likely to be cut to prevent them from 
starving the short requests. Therefore, at heavy load, requests tend 
to obtain nearly equal processing time such that using FIFO or 
SJF results in similar orderings, making little difference. 

6. Related Work 
Feedback control theory has been widely used to achieve 
performance guarantees in computer systems with many 
applications such as multimedia streaming, real-time computing, 
transaction processing, embedded systems, and many others [5, 
6]. In this section we focus on server systems using feedback 
control to meet response time guarantees, and applications that 
use adaptive executions. 

Controlling server systems with response time requirements. 
The prior works along this line focus on three scenarios. 

(1) Control for relative response time. For example, Adbelzaher et 
al. [7] build a feedback control loop for an Apache web server that 
enforces desired relative response time among different service 
classes via connection scheduling and process reallocation. 

(2) Control elastic resources. In these prior works [8, 9, 25, 26, 
27], systems acquire and release resources in response to dynamic 
workload to meet response time target. There are various types of 
resources to adapt: For example, adding or removing a storage 
node [27], altering CPU allocation [25], changing processing 
speed through dynamic voltage and frequency scaling [26]. 

(3) Control to prevent overloading. While a well-designed system 
should not be persistently overloaded, transient periods of 
overload are often inevitable, since the load is external to the 
server system and requests arrive according to a stochastic 
process, leading to transient overload and underload periods at the 
server. Such transient periods are inevitable and difficult to 
predict [3]. Many prior works [20, 23, 24] apply feedback control 

 

 

 

 

Figure 14: Error profile. 

 

Figure 15: Mean resp. time comparison. 
 

Figure 16: Mean SEM comparison. 
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to cope with transient overload, deciding when to drop requests in 
order to meet response time target. 

The above prior work [7, 8, 9, 20, 23, 24, 25, 26, 27] uses control 
theory to achieve response time guarantees, however, none of 
them consider adaptive execution of requests. Like many prior 
work [18, 19] on admission control, they either serve a request in 
full or reject a request completely. Our budget-based model is 
designed for applications with partial evaluation and it optimizes 
the scheduling based on request quality profiles. 

Adaptive execution. Employing adaptive execution and 
approximate computations is an active area of research. Web 
content adaptation [10, 11] offers different versions of the content 
for the same request. Loop perforation [12] offers compiler and 
runtime support for adaptive execution and has been applied to 
audio and video codecs. Baek and Chilimbi [13] develop a general 
framework to support approximated computation of different 
applications to trade quality for lower energy. 

These prior works [10, 11, 12, 13] offer important insights on how 
to adapt execution for different applications. They focus on 
adaptive execution mechanism that enables individual requests to 
produce partial results. They do not, however, consider server 
environments where multiple requests are competing for resources 
with response time and quality targets. 

Control systems with content adaptation. The closest prior 
work to ours is controlling web servers that support content 
adaptation, which is a form of adaptive execution. Abdelzaher and 
Bhatti [14] propose to resolve the overloading problem of web 
servers by adapting web content to load conditions. To meet the 
desired server utilization, they control the ratio between the 
requests offering degraded content versus all the requests. 
Although this work uses adaptive execution to meet their control 
target, it has important differences from our work: they do not 
consider maximizing overall response quality for all requests as a 
goal, and they do not consider request quality profiles to improve 
the scheduling decision. We develop the budget-based model as a 
general approach for interactive services supporting adaptive 
execution. With an appropriate optimization procedure, it is 
applicable to web servers with content adaptation. 

7. Conclusions 
This paper presents the budget-based control model for interactive 
services with adaptive execution to meet a response time target 
while achieving high service quality. The budget-based model 
consists of two components: (1) a hybrid control mechanism that 
adapts the budget so as to meet the response time target accurately 
and quickly, and (2) an optimization procedure that improves the 
total response quality using adaptive execution. We assess the 
benefits of the budget-based control model through system 
implementation and experimental evaluation on a commercial 
search engine as well as through a simulation study of a finance 
server. Both the experimental and simulation results show that the 
budget-based model achieves more accurate control of mean 
response time with higher response quality than the traditional 
static and dynamic approaches that do not consider adaptive 
execution. 
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