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ABSTRACT
Sponsored search advertisement slots are currently sold via
Generalized Second Price (GSP) auctions. Despite the sim-
plicity of their rules, these auctions are far from being fully
understood. Our observations on real ad-auction data show
that advertisers usually enter many distinct auctions with
different opponents and with varying parameters. We de-
scribe some of our findings from these observations and pro-
pose a simple probabilistic model taking them into account.
This model can be used to predict the number of clicks re-
ceived by the advertisers and the total price they can expect
to pay depending on their bid, or even to estimate the play-
ers valuations, all at a very low computational cost.

Categories and Subject Descriptors
J4 [Social and Behavioral Sciences]: Economics; K4.4
[Computers and Society]: Electronic Commerce

General Terms
Economics, Algorithms, Theory

Keywords
Sponsored search auctions, position auctions, generalized
second price auction, game theory, click-through rates

1. INTRODUCTION
Each time someone types a query in a search engine such

as Bing or Google, an auction is run and used to determine
which sponsored links will appear and what price will be
paid by the advertiser if their ad is clicked. The General-
ized Second Price (GSP) auction is the current mechanism

∗The authors wish to thank Anton Schwaighofer and
Alexandre Proutiere for their help and comments on this
paper.
†Work performed while author was an intern at Microsoft
Research Cambridge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’11, June 5–9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0261-6/11/06 ...$10.00.

used. Although these auctions are very simple to describe
and have been in use since at least 2002, their behavior in
practice is far from being fully understood. In this paper
we develop a new analytical model for such a position auc-
tion, motivated and informed by measurements from actual
ad-auctions, which attempts to account for some of the real-
world variability in such auctions.

In a simplified version of a GSP, each advertiser (or player)
places a bid for a keyword. The auctioneer (namely the ad-
platform) then displays the ads with the highest bids, allo-
cating the highest bidder to the best slot, and so on, until
all the allowed slots are allocated. Payment is then orga-
nized on a Pay-Per-Click (PPC) basis: an advertiser only
pays when her ad is clicked, and pays the price equal to the
bid of the player just below her.

A prerequisite to improving auction design is the ability
to predict accurately the behavior of bidders. In particular,
one challenge is to estimate a player’s valuation knowing her
bid, and conversely to predict the bids when the valuations
are given.

We describe a new analytical model, which allows us to
predict a player’s valuation given her bid and her opponents’
bids. This model relies on the observation that the players
participate with the same bid in a great number of auctions
with varying conditions. For instance, we noticed that the
number and the identity of the opponents of a given player
usually vary across successive auctions. Moreover, the play-
ers’ bids are in practice multiplied by weights which depend
on many criteria, and vary from one auction to another.
We also observed that most players do not change their bid
often.

For these reasons, the classical model of a single auction
repeated an infinite number of times is inappropriate. Be-
cause of the stochastic noise in our model, in general players
have a unique optimal response to a given opponent’s bid-
ding profile, whereas in the classical model where only one
single auction is considered (or one auction repeated with
the same weights and players), there typically is a complete
interval of optimal bids.

Contributions. The main contributions of this paper are
first, insights into the inherent randomness of ad-auctions,
and a description of the type of randomness encountered,
namely high variability in the weights associated with bids,
and variability in both the number and identity of play-
ers participating in different instances of the same keyword-
auction. Second, we describe a model which captures this
inherent variability, and which allows us, under additional
simplifying assumptions on the distribution of bids, to de-



rive closed form expressions for the optimal bid for a given
player assuming they know their own valuation. The simpli-
fying assumptions are that the bids an opponent faces in any
particular instance of an auction are well approximated by
sampling independently a random number of players with a
common bid distribution. There are both empirical and the-
oretical reasons why this is good approximation for heavily
contested keywords, and this assumption also allows play-
ers to work with observable-in-principle quantities (bids) of
other opponents rather than unobservable valuations, offer-
ing the potential for advertisers to find their optimal bid eas-
ily. Our model produces utility functions that are smooth
functions of a player’s own value, in contrast to the dis-
continuous step functions of classical GSP models. Third,
for the ad-platform, our model allows fast computation of
players’ valuations and click-through estimates to be derived
from bids by assuming bids are optimal and finding the ap-
propriate value, with the computation being two orders of
magnitude faster than an Incremental Cost Per Click (ICC)
model [3].
Related Work. GSP auctions have been studied by Varian

in [12], and by Edelman, Ostrovsky and Schwarz (EOS) in
[6]. Both examine Nash equilibria in a single auction with
complete information. Most subsequent papers [1, 2, 7] have
followed this simple model of a single auction. Some works
[4, 5, 13] have looked at the dynamics of these auctions by
considering an auction repeated multiple times with a fixed
set of participants and most parameters fixed. Some others
[10] even studied the dynamics of ad auctions with incoming
and departing participants using tools from queueing theory.
The beneficial effects of noise on bids was emphasized in

[4], where the authors noticed that such noise made some
low-revenue equilibria unstable, and suggested adding some
artificial noise to the bids. However they did not mention
that such variability is naturally present in practice.
The other type of variability we observed in real auctions

was a randomness in the identity of players participating
in the auctions. The results on equilibria obtained for a
single auction are hard to generalize to multiple auctions
with varying opponents, and there is a lack of research in
this area.
One paper which does consider multiple auctions with

varying opponents and a random noise on the weights, is
Athey and Nekipelov [3]. It is also probably the closest to
our work in spirit. The main difference between our model
and theirs is that they assume that players still have full in-
formation on their opponent’s identity in each auction they
enter, while in our model players ignore this information,
and are given instead the bid distribution of their opponents.
The advantage of our model compared to Athey-Nekipelov’s
is its simplicity, inducing a low computational cost of the es-
timation. However, our model being asymmetrically focused
on a single player, cannot be used to directly manipulate
Nash Equilibria, which Athey-Nekipelov’s allows.
Gomes and Sweeney[8] consider a Bayes Nash equilibria of

a GSP. Using the standard setting of Bayes-Nash, assuming
a common prior distribution Fv(v) of players values, they
derive an integral equation which a bidding function β(v) has
to satisfy in an efficient symmetric equilibrium, and provide
a way to calculate the solution recursively. They also discuss
conditions under which efficient equilibria do not exist. It
is possible to connect their main equation to ours in the
case of a fixed number of players, by transforming the value

distribution Fv(v) into a distribution across bids Fb(·), using
the optimal bid function β(v). We comment on this more
fully in section 6.2.

Organization. In Section 2, we give a quick introduction
to the GSP auction mechanism and our model. We then
present in Section 3 the results of studies done on real auc-
tions in the Bing database, and show with these observa-
tions that the classical model of a single repeated auction is
far from reality. We propose in Section 4 our new analyti-
cal model which is based on more realistic assumptions in-
spired from our observations on real data. Section 5 presents
the results of estimations made using that model, Section 6
explores in detail similarities and differences between our
model and some other works [3, 8], and we conclude in Sec-
tion 7.

2. NOTATIONS AND ASSUMPTIONS
An overview of sponsored search and some of the technol-

ogy is given in Jansen and Mullen [9]. In the GSP mech-
anism currently used, the auctioneer (the ad-platform of a
search engine, e.g. Google or Bing) sells to advertisers a fi-
nite set of slots in which ads are displayed. Each time a
search query is returned, an auction is run to decide which
ad will appear in each slot. The payment is then organized
on a price-per-click (PPC) basis: an advertiser pays only
when someone clicks on her ad.

All slots are sold simultaneously in one single auction,
although the slots are not all equivalent. For example, the
slots at the top of the result page (called themainline) offer a
greater visibility than the ones displayed in the sidebar. The
click-through-rate (CTR) measures the probability of an ad
being clicked on. Although CTRs may depend on multiple
factors, a classical assumption is that they are separable as a
product of two independent factors depending respectively
on the slot position (slot-CTR) and the ad displayed in it
(ad-CTR).

Notation.
Consider a set of N players (or bidders) competing for K

slots. Each player i has a private value (or valuation) vi she
attributes to a click. To each player i is attributed a weight,
which corresponds to the ad-CTR of the player’s ad, and
each slot j has a specific slot-CTR sj , such that when player
i is assigned to slot j she receives a CTR equal to wisj .

Without loss of generality, we assume the slots to be or-
dered in decreasing order of slot-CTR: s0 ≥ s1 ≥ · · · ≥ sK ,
and we assume K > N , by adding fictitious undisplayed
slots with slot-CTR sj = 0 if needed.

The auctioneer fixes a reserve price r corresponding to the
lowest price at which it accepts to display ads.

GSP.
The GSP mechanism consists as follows. Each player i

submits a bid bi. The players whose weighted bid is lower
than the reserve price r are rejected from the auction. The
remaining k players are then ordered in decreasing order of
their weighted bids, such that b1w1 ≥ b2w2 ≥ · · · ≥ bkwk ≥
r, breaking ties randomly. The first player according to that
order is then displayed in the first slot, the second player in
the second slot, and so on, until all players are placed. Each
player then pays per click a price equal to the minimal bid
necessary to maintain their position. That is, player i < k



must bid at least bi ≥ bi+1wi+1/wi in order to stay above
player i + 1, and thus she has to pay pi(b) = bi+1wi+1/wi

per click. Similarly, the last player above the reserve price
has to pay pk(b) = r/wk per click. The utility (or payoff) of
player i is then given by Ui(vi, b) = (vi−pi(b))wiϕi(b) where
the allocation function ϕi(b) ∈ {s0, s1, . . . , sK} denotes the
CTR of the slot obtained by player i.
However, this simple description is far from being suffi-

cient for a full understanding of the real GSP auctions used
in practice. Indeed, we described here the mechanism of
one single auction, while in practice, a player enters many
distinct auctions with the same single bid, while the other
parameters (opponents, weights) vary from one auction to
the other, as we will show in the next section. In addition,
the weights attributed to each advertiser are only estimates
computed by the ad-platform and are not directly commu-
nicated to the advertisers.

3. REAL DATA ANALYSIS
We now present some observations derived from the anal-

ysis of full records of one week of auctions run on Microsoft’s
search engine Bing.
We focused on several aspect of these auctions, such as the

evolution of ad qualities or players’ behavior during these
auctions. In particular, several observations indicate that
the classical model of one single auction is inaccurate to
describe real auctions, in particular for ads shown frequently.

3.1 Stochastic Variability of the Weights
We study the behavior of two typical and distinct ads cho-

sen from the set of ads that participated in the most auctions
during the one week period. We will refer to these two ads
as Player A and B. Each one of these two ads was associ-
ated with one single keyword, and could only participate in
an auction when this keyword matched a user query. The
two keywords associated to Player A and B were distinct
and unrelated.
One of the most important features in ad auctions is the

fact that the weights attributed to players are in practice
estimations of their ad-CTR computed by the ad-platform
itself, and are thus significantly variable.
Figure 1(a) shows the evolution of Player A’s weight. As

we can see, it is extremely variable (the standard deviation is
40% of the mean). An explanation for this could be the fact
that the estimation of ad-CTR depends on multiple factors.
Some of them are specific to the ad, but do not evolve fast
enough to explain this variability. Some other factors are
specific to the auction entered by the player, like the profile
of the user performing the query and his propensity to click
on ads. However, such factors are common to all ads entering
the auction, and should not affect the weight ratio between
two given players. To test this, we selected one of Player’s
A most frequent opponents and measured the weight ratio
between these two players. The evolution of this ratio across
time is displayed in Figure 1(b). We see that this ratio is also
highly variable (the standard deviation is 9.5% of the mean).
This suggests that the weights of the players are subject to
some additional noise. We were unable to explain where
this noise exactly comes from. We believe that the auction-
specific parameters may simply have a non-multiplicative
effect on the estimations, and may thus alter the weight
ratio of two players even if shared by them.
Additionally, we find diurnal variation in real CTRs, and

that real players’ weighted bids and allocations can vary
dramatically between players. When we look at the bids
a particular player ‘‘faces”, we see even if the opponents’
bids are concentrating around a few values (for example, a
few round numbers) the relative weighted bid distribution
is smoothed by the randomness of the player’s weights.

Further observations arising from the data can be found
in the full version of this paper [11].

3.2 Insights from our observation
These observations reveal that real ad auctions are far

from the classical model of one single auction with known
players and complete information. In practice, a player en-
ters many distinct auctions, with distinct opponents, varying
weights and reserve prices. For this reason, a player cannot
learn her opponents’ bids or valuations, since they change
from one auction to the other. But she could learn the dis-
tribution of the number of opponents and the distribution
of their bids, assuming she had access to such information1.

This inspires the analytical model presented in the next
section, where we focus on one single player to whom these
distributions would be given.

4. ANALYTICAL MODEL
Our analytical model basically consists in considering a

player with known value competing in a GSP auction against
a given number of unknown opponents submitting random
i.i.d. weighted bids with known probability distributions,
and studying the player incentives in that auction.

We first emphasize that the assumptions needed for this
model are realistic and fit our previous empirical observa-
tions.

4.1 Discussion on the relevance of the model
This model may seem far from reality at first sight, since

we would expect the player to learn the bids of her adver-
saries with time. But there are a few effects that make real-
life auctions closer to the model than it seems. In practice
the player places a single bid on a keyword, and that bid is
used for a great number of auctions with different configura-
tions. We observed in particular that most players did not
change their bid very often; unfortunately we cannot give
any precise data on this for confidentiality reasons.

First the identity of the opponents can change over time,
because the players enter auctions when the user query matches
their ad. For instance, if a player places a bid on the keyword
“insurance”, she may enter an auction for the query “house
insurance” and another for “car insurance”, facing distinct
opponents in the two auctions while submitting the same
bid to both. We observed from the data set that frequently
appearing ads met a wide range of opponents, unfortunately
qualitative results are confidential.

Second, the profile of the user performing the query, such
as his age or his geographical location, can change the rele-
vance of ads and thus change the opponents met in an auc-
tion.

1Of course, in practice players do not have access to the full
auction records and they probably never will. We emphasize
however that it would be easy for the ad-platforms to provide
advertisers with the distribution of the number of opponents
and the distribution of their bids, or even with real-time
estimates of their total number of clicks received and total
price paid depending on their bid, by using our model.
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(a) Player A’s weight
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Figure 1: Estimated probability of click (weight) of Player A’s ad across the week and weight ratio against
one of her opponents. Each green dot correspond to an auction in which Player A’s participated (we display
each 10th auction only). The solid black line indicates the average of these weights for the past 6 hours. The
solid blue line at the bottom of each figure indicates the frequency of auctions in which Player A participated
depending on the time of the day. The vertical axes have been renormalized to 1 for confidentiality reasons.

Third, bidders have in practice a monthly (or even daily)
budget to spend, and when a bidder runs out of budget, she
simply stops bidding until next month. This can also change
the identity of a player’s opponents across time. Lastly,
advertisers may have several ads in the same campaign, and
the ad-platform performs a rotation among these ads, so that
if the same user performs the same query twice, he does not
necessarily see the same ads twice.
In addition to the identity of the opponents, their weighted

bids change as well across time, for several reasons. First the
opponents can change their bid to explore and to optimize
their revenue. Second, their weights, as well as the player’s
weight, change across time since they depend on several non-
constant factors like the number of clicks received in the
past, the profile of the user, and the keyword-query matching
process.
Because of all these effects and others, the adversary bids

faced by a player can be quite irregular, and the relative
weighted bids are even more irregular. We also observed
that the number of opponents faced in one auction was not
fixed, but varied from auction to auction. Further details
can be found in [11].
We later generalize our model to an uncertain number of

opponents.

4.2 Model
We consider the following model: A player called Player 0

with known value v0 and weight w0 competes in a GSP auc-
tion with reserve price r against n opponents. These op-
ponents submit random i.i.d. weighted bids with a known
probability density function (p.d.f.) f , and we denote by
F the corresponding cumulative distribution function. The
slots are numbered from 0 to n, where we add dummy slots
with a CTR of zero if necessary.
Without loss of generality, we assume that all players (in-

cluding Player 0) have the same weights wi = 1, since we can
interpret the relative weighted bids biwi/w0 seen by Player 0
as simple bids. Thus the p.d.f. f corresponds to the distri-
bution of opponents’ relative weighted bids. We also denote
by ϕ(b) the CTR of the slot attributed to Player 0 when she
bids b.

Under these assumptions, when Player 0 bids b > r (we
only consider Player 0’s bids above the reserve price, but
opponents may bid under), the probability that Player 0
gets the k-th slot for k ≤ n is then: P(ϕ(b) = sk) =(
n
k

)
F (b)n−k(1− F (b))k.
When in k-th position, Player 0 has n − k players be-

low her, and the maximum of their bids is a random vari-
able with cumulative distribution P(b1 < t, . . . , bn−k < t) =
P(b1 < t)n−k = F (t)n−k. Therefore, Player 0’s expected
price per click in that position is:

E
[
p(b) | ϕ(b) = sk

]
=

1

F (b)n−k

(
rF (r)n−k +

∫ b

r

tf(t)(n− k)F (t)n−k−1dt

)

= b−
∫ b

r

F (t)n−k

F (b)n−k
dt (1)

by integrating by parts.
Thus, her expected price per click is:

E[p(b)] =
n∑

k=0

E[p(b) | ϕ(b) = sk]P(ϕ(b) = sk)

=

n∑
k=0

(
n

k

)
F (b)n−k(1− F (b))k

(
b−

∫ b

r

F (t)n−k

F (b)n−k
dt
)

= b−
∫ b

r

(F (t) + (1− F (b)))ndt . (2)



It is interesting to notice that the expected price of our
player is equal to her bid minus some discount depending
on her bid, the reserve price, the number of opponents and
the distribution function of their bids. In particular, we
see that when the reserve price or the number of opponents
increase, this discount becomes smaller and tends toward
zero when r tends to b or n tends toward infinity. That is,
for a high reserve price or with a high number of players, the
GSP mechanism becomes closer to a First Price mechanism
(where players pay their bids for each received click).
Using (1), we then see that the player expected utility is:

E[U(v, b)]

=

n∑
k=0

P(ϕ(b) = sk)sk(v − E[p(b)|ϕ(b) = sk])

=
n∑

k=0

(
n

k

)
F (b)n−k(1− F (b))ksk

(
v − b+

∫ b

r

F (t)n−k

F (b)n−k
dt
)

which can be rewritten with a more compact notation as:

E[U(v, b)] =
n∑

k=0

(
n

k

)
sk

∫ v

r

(1− F (b))kF (t ∧ b)n−kdt (3)

where t ∧ b := min(t, b).
The optimal bid bopt of our player will maximize their

expected utility, at which point the partial derivative of the
expected utility with respect to the bid is zero. This lead
to the following necessary condition, whose proof is given
in [11]:

Theorem 4.1. The optimal bid bopt of Player 0 (as well
as any local extrema of E[U(v, b)]) must satisfy the following
equation in b∗:

v = b∗ +

∑n−1
k=0

(
n−1
k

)
sk+1(1− F (b∗))k

∫ b∗
r

F (t)n−k−1dt∑n−1
k=0

(
n−1
k

)
(sk − sk+1)(1− F (b∗))kF (b∗)n−k−1

.

(4)

Notice that this is a necessary but not sufficient condition:
the equation does not characterize entirely the optimal bid
which may have several solutions in b∗, namely all the local
extrema of E[U(v, b)]. However, we see that this equation
determines entirely the value v as a function of b∗, allowing
us to retrieve the player’s valuation if we know her optimal
bid.
It is also immediate that bopt ≤ v, since the slot-CTRs

are decreasing. The player thus never has any incentive to
overbid.

4.2.1 Study of the solutions of the equation
We first study the solutions of equation (4) in a simpler

special case: A common approximation in the literature [5]
consists in assuming that the slot-CTRs are geometrically
decreasing. In the circumstances, the previous equation ad-
mits a much simpler form, whose proof is straightforward:

Corollary 4.2. Assuming the slot-CTRs are geometri-
cally decreasing, i.e. sj = γj for some γ ∈ (0, 1), then equa-
tion (4) can be reduced to:

v = b∗ +
γ

1− γ

∫ b∗

r

(
F (t) + γ(1− F (b∗))
F (b∗) + γ(1− F (b∗))

)n−1

. (5)
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Figure 2: Plot of the solutions of equation (5) for sev-
eral numbers of opponents (n = 2, 3, 5, 10, 30). When
the equation has multiple solution, the dashed lines
indicate where the optimal bid jumps from one so-
lution to the other. The dash-dotted line indicates
the main diagonal and the dotted line gives the op-
ponent’s bid distribution f (×0.2).
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Figure 3: Player 0’s expected utility depending of
her bid, against n = 10 opponents and for several
valuations of the player.

Figure 2 shows a plot of the extremal bids which are solu-
tions of Equation (5) depending on the player’s valuation v
when the number of opponents varies2. We notice that for
some valuations, there are 3 solutions to Equation (5). These
solutions correspond to local extrema of the player’s utility,
but only one of them corresponds to the optimal bid. The
dashed lines show were the optimal bid jumps from a solu-
tion to the other.

To better understand that effect, Figure 3 represents the
Player’s expected utility as a function of her bid when she
plays against n = 10 opponents and when her value is v =
1, 1.1 and 1.2 (values for which Equation (5) has several
solutions, according to Figure 2). As we can see in Figure
3, the Player’s utility curve has 3 local extrema: 2 local

2We used the following parameters for all figures in that
paragraph: reserve price r = 0.1 and decaying rate γ = 0.7.
The considered opponents’ bids distribution was a lognormal
distribution with mean 1 and variance 0.1.
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Figure 4: Optimal bid depending on the player’s valuation for several numbers of opponents (n = 2, 3, 5, 9, 15, 30)
in an auction with reserve price r = 0.4 and r = 0.7 and 9 allocated slots with slot-CTRs corresponding to
those we observed in practice. The bid distribution is a lognormal with mean 1 and variance 0.1.

maxima and 1 local minimum in-between. When the player’s
value increases, the global maximum suddenly jumps from
one local maximum to the other.
When the player’s value is low, her utility curve becomes

mostly flat, and the maximum given by the analytic solution
of (5) becomes less meaningful, since it belongs to a sort of
“plateau” (see curve v = 1 on Figure 3).

4.2.2 Results for realistic slot-CTRs
We now show some results obtained with the general equa-

tion (4). In particular we can study the impact of the reserve
price and the number of players.
Figure 4 shows the optimal bids against various number

of opponents when the reserve price is r = 0.4 and r = 0.7
and the slots-CTRs si are taken similar to those observed in
practice3. As we can see, we still have a discontinuity in the
optimal bid for some values of n, but the general shape is
much harder to understand and seems to depend highly on
the number of opponents, particularly when this is smaller
than the number of available slots. Observe, however, that
when the reserve price or the number of players increases,
this discontinuity tends to disappear.
Our main observation, from both real observation and

synthetic models, is that the utility curve of a player is
in general not quasi-concave, which causes a discontinuity
in the optimal bid response of our player when her value
changes. This highlights the pitfalls of an advertiser trying
to find their optimal bid by local search, which may only
find a local optimum.

4.3 Generalization to an Uncertain Number
of Opponents

In practice, the number of opponents of a considered player
may vary from one auction to another. We now enhance
our model by considering the number of opponents as a ran-

3In practice on Bing, the first four slots in the mainline have
a high CTR with high discrepancy between slots, while the
5 slots on the sidebar have a much lower CTR, which does
not decrease much from one slot to the next.

dom variable N in {0, . . . , N}, independent of the bids, with
P(N = n) = pn.

In that case, the Player’s expected utility becomes:

E[U(v, b)] =
N∑

n=0

n∑
k=0

(
n

k

)
pnsk

∫ v

r

(1− F (b))kF (t ∧ b)n−kdt,

(6)
and the optimal bid must thus verify the following equation:

v = b∗+

N∑
n=1

n−1∑
k=0

(
n−1
k

)
npnsk+1(1− F (b∗))k

∫ b∗
r

F (t)n−k−1dt

N∑
n=1

n−1∑
k=0

(
n−1
k

)
npn(sk − sk+1)(1− F (b∗))kF (b∗)n−k−1

.

(7)
We also have the expected allocation:

E[ϕ(b)] =
N∑

n=0

n∑
k=0

(
n

k

)
pnsk(1− F (b))kF (b)n−k , (8)

and the expected total price paid by the player:

E[p(b)ϕ(b)] =
N∑

n=0

n∑
k=0

[(
n

k

)
pnsk(1− F (b))kF (b)n−k

(
b−

∫ b

r

F (t)n−k

F (b)n−k
dt

)]
. (9)

4.4 Adding a Mainline Reserve Price
Our model can easily be modified to take into account an

additional mainline reserve price R. However, if we consider
this reserve price to be fixed, we obtain a discontinuity in
the player’s utility. To avoid this, we added a random noise
on the sidebar and mainline reserve prices, which smooths
the utility curve and allows to take its partial derivative
according to b. This gives a closed form equation similar to
(7). We omit this equation due to lack of space — details
are given in [11]. The estimation results of the next section
were obtained using this generalized analytical model with
a mainline reserve price.
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Figure 5: Optimal bid curves computed for an ad
from real auction data. The Optimal Bid by ana-
lytical model was computed using the optimal bid
equation derived from the analytical model, while
the Optimal Bid by Replay was computed by re-
playing all the auctions with all possible bids and
selecting the bid with the best utility. The Bid
Distribution line represents the distribution of the
opponents’ relative weighted bid observed by the
considered player. Both axes have been arbitrarily
renormalized to 1.

4.5 Results
We selected an ad from the auction database, and by look-

ing at all the auctions it participated in we estimated both
the distribution of the number of opponents and the distri-
bution of their relative weighted bids. With these distribu-
tions, we computed the optimal bid curve of the player us-
ing the generalized analytical model with a mainline reserve
price, and compared it to the optimal bid curve computed
greedily by replaying all the auctions for all possible bids
(with a low resolution on bids, since it is a heavy computa-
tion) and then choosing the optimal bid.
Figure 5 shows the comparison of the two optimal bid

curves. The Optimal Bid Replay curve is not continuous
because the bid resolution used to compute it was low. How-
ever both curves are quite close and present a similar dis-
continuity in the optimal bid.
This shows that this discontinuity is not an artifact of our

model, and still happens when the parameters are measured
from real auctions, or even when we compute explicitly the
optimal bid with real auction data.

5. EXPERIMENTS
One of the main benefits of our model is that it provides

a simple method, easy to implement and with low compu-
tational cost, for estimating the expected number of clicks a
player receives, (8), their expected total price (9), and even
their valuations via (7). In this section we present the results
of click estimation and value inference using generalized ver-
sions of these equation which incorporate a mainline reserve
price as sketched in Section 4.4.
We used the full records of 132 millions auctions played

over a given time period on the Bing ad-platform. We con-
sidered a randomly chosen set of 15777 ads, each associated
with one specific keyword (or set of keywords) and with one
specific bid. More precisely, each triple formed by an ad
and its associated keyword and bid were considered as one
specific player (Player 0). We then looked at the record of
all auctions in which this player participated and estimated
from these the distributions of the number of opponents4

and of their relative weighted bids biwi/w0. Using this in-
formation only, we then estimated the expected number of
clicks received per auction by each player and inferred their
valuations, assuming their bids were chosen optimally.

5.1 Valuation Inference Results
We compared our valuation estimations with the ones ob-

tained from the ICC (Incremental Cost per Click) method5

designed by Athey and Nekipelov in [3].
Figure 6 shows the comparison of our valuation estima-

tion with the analytical model against the player’s bids and
against the estimations from Athey-Nekipelov’s ICC model.
A key parameter for the accuracy of the estimations is the
slot-CTR : In real auctions, players receive a click with some
probability, which is estimated by the CTR wisj for player
i in slot j. When replaying the auctions, each displayed
player is assumed to receive a fraction of a click correspond-
ing to this probability. That is, player i in slot j will receive
wisj < 1 click in that auction. For a fair comparison, the
same slot-effect estimations were used in both models.

It is interesting to notice in the figure that under both
models, the estimated value is significantly higher for the ad-
vertisers who submitted a high bid. This suggest that play-
ers with a high valuation have a strong incentive to shade
their bids, as already suggested by Figures 4 and 5. Also,
since the key assumption for both models to infer valuations
is that players are playing optimally, this may also suggest
that players with high valuations do not play optimally in
practice and do not shade their bids enough, which results
in an over-approximation of their values by both models.

5.2 Estimations of the Number of Clicks
Since the real valuations are not known in practice, it is

impossible to test directly the accuracy of the valuation esti-
mations. We can however test the accuracy of both models
by comparing the estimations of the expected number of
clicks received by each player to the real number of clicks
they actually received.

Figure 7 shows a summary histogram of the results, while
the full plots are given in [11]. It shows the comparisons of
the estimations of each model against the realizations (ac-
tual number of clicks received), and against each other. To
test the predictive power of these estimations, we also com-

4Because the maximal number of slots displayed on Bing was
9 at the of this study, we considered only the 9 opponents
with the highest weighted bids in each auction, since the
other opponents have no impact on the result of the auction.
The number of opponents was also taken to be at most 9.
5The ICC method consists basically in replaying all the auc-
tions in which a given player placed a given bid and estimat-
ing the value as being equal to the incremental cost per click
at the bid placed. When the number of auctions is too low
to have a smooth cost per click curve, virtual auctions are
added by replaying the real one and adding an artificial noise
on weights. This method also requires the assumption that
advertisers are playing optimally.
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Figure 6: Estimations of the valuations from our analytical model compared to the original bids and to the
estimations from the ICC model. Each point corresponds to one player. We show here the results for the
players who received more than 100 clicks. The horizontal axes use a logarithmic scale; the labels have been
removed for confidentiality reasons.
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Figure 7: Summary histogram of the click estima-
tions results for various ranges of received click (the
number of click increasing exponentially from the
left to the right). We show the average relative er-
ror of our model against the realizations, of the ICC
model against the realizations, of our model against
ICC, and of the realizations of the click obtained in
the first half of the considered time period against
the second half.

pared the actual number of click received per auction in the
first half of the considered time period against the second
half.
As we can see, the estimations of our model and the re-

plays are much closer than they are from the realizations,
and as Figure 7 shows, the realizations are much more volatile
than our estimations are inaccurate. This underline the dif-
ficulty of obtaining good predictions of the number of clicks
received by a given ad, and shows that both models provide
satisfactory estimations, particularly for the ads frequently
shown.

5.3 Implementation and Performances
While our estimation results confirm that the accuracy of

our estimation method is comparable to Athey-Nekipelov’s,
our analytical model has a significant advantage over their
ICC method: its speed.

The analytical model was implemented in F#. Most of
the computing time was spent loading the auction data, the
processing of these data was done in parallel of the loading.
The total time spent loading and processing 132 million auc-
tions was around 1 hour and a half with a single 8-core com-
puter. Once the data processed, estimating the valuations,
total number of clicks received and total price paid using
the analytical model took less than 15 minutes, which is less
than 0.1 second per ad. As a comparison, the replays of auc-
tions and estimations using Athey-Nekipelov’s ICC method
was implemented in F# as well and took around half a day
running on several HPC nodes.

The great advantage of our model over Athey-Nekipelov’s
is that ours is tractable on a large scale, and could even be
implemented to give predictions for all of Bing’s or Google’s
ads. Indeed, it would suffice to keep records for each ad of
the distributions of the number of opponents and their rel-
ative weighted bids - which can be done online by updating
them at each auction - to give in less than a second the pre-
diction of the number of clicks and the total price depending
on the chosen bid, while replaying all past auctions would
take several minutes.

Using this, it would be possible to give the advertisers a
precise feedback on their ad campaign, by providing them
estimates of their click and price curves, so that they could
chose their bid optimally, and the search engine would know
as an extra their valuation using the analytical equation (7).

6. COMPARISON WITH OTHER MODELS
In this section we give theoretical comparisons between

our model with Athey and Nekipelov’s [3] first, and with
Gomes and Sweeney’s model [8].



6.1 Comparison with Athey and Nekipelov
Under some assumptions, it is possible to give a theoreti-

cal bound on the difference between the expected allocation,
price and utility of players predicted by our analytical model
and the Athey-Nekipelov model.
Athey and Nekipelov consider a set of N +1 players, that

we will number from 0 to N , participating in several auc-
tions, with fixed private valuations vi and submitting public
bids bi. When an auction is run, a random set C of players
is chosen to participate, and each player receives a random
weight wi according to a given distribution. All auctions
are assumed to be independent from each other. Athey and
Nekipelov assume that every player has full knowledge of
the distribution of the set C and the weights wi.
From a player’s point of view, say Player 0, the set C0 of

his opponents in a given auction in which she participates
is a random variable with known distribution, and thus the
set of relative weighted bids to which Player 0’s bid will be
confronted is a random variable BAN = (biwi/w0)i∈C0 with
known distribution.
In the version of our model generalized to an uncertain

number of opponents (Section 4.3), Player 0 is facing a ran-
dom opponent bid vector with known distribution obtained
as BPK = (b1, . . . , bN ) where N is a random variable with
distribution p and b1, . . . , bN i.i.d. random variables with
c.d.f. F .
Thus, both our analytical model and Athey-Nekipelov’s

fall under the same general framework, were Player 0 is fac-
ing a random vector of opponent bids B taking values in
E =

⋃N
n=0 R

n, with known probability distribution.
Using this we obtain the following result, whose proof is

given in [11]:

Proposition 6.1. Let us assume that the set C0 is drawn
uniformly across the subsets of {1, . . . , N} of size n, and
that the weights wi are drawn independently. We define the
bid c.d.f. F as: ∀b, F (b) = 1

n

∑N
i=1 Pw(biwi < b0w0), and

take BAN and BPK as defined previously from these param-
eters. Let EB(ϕ(b)) denote the expected utility of player 0
when bidding b against the random vector of bids B. Sim-
ilarly, let EB(p(b)ϕ(b)) denote her expected total price and
EB(U(v, b)) = EB((v−p(b))ϕ(b)) denote her expected utility.
Then,

|EBAN (ϕ(b))− EBPK (ϕ(b))| ≤ n(n− 1)

2N

|EBAN (p(b)ϕ(b))− EBPK (p(b)ϕ(b))| ≤ n(n− 1)

2N
b

|EBAN (U(v, b))− EBPK (U(v, b))| ≤ n(n− 1)

2N
v

In particular, when the total number of players N grows
to infinity and the number of players per auction n remains
bounded, the difference between the estimations of the two
models tends to zero.

As we showed previously, the utility curve of a player
may not be quasi-concave in her bid (even with realistic
parameter choices). The proposition thus implies that the
utility curves are not always quasi-concave under Athey-
Nekipelov’s model either. Therefore their theorem showing
existence and uniqueness of a Nash equilibrium under cer-
tain conditions (one of them being that the utility curves
are quasi-concave) do not apply in general.

6.2 Comparison with Gomes and Sweeney
In [8], Gomes and Sweeney consider a Bayesian model

where N players with random i.i.d. valuations with density
fv(v) and corresponding c.d.f. Fv(v) compete in a single
GSP auction with no reserve price (we therefore assume r =
0 in this section).

They study the existence of symmetric efficient equilib-
rium where each player chooses her bid according to a strictly
increasing optimal bid function b = β(v). An equilibrium is
said to be efficient if a player with a higher valuation than
another player always obtains a higher slot than her. This
implies that the bid function β(v), if it exists, has to be
strictly monotone. They show that, when it exists, the op-
timal bid function β(v) must verify a closed form equation.

The following proposition, whose proof is given in [11],
states that under such circumstances, their equation can be
derived directly from our equation (4):

Proposition 6.2. If the optimal bid function β(v) exists
and is continuous and strictly monotone (and thus invert-
ible), then the opponent bid vector for a given player is a
vector of N − 1 i.i.d. bids with c.d.f. F (b) = Fv(β

−1(b)). It
must thus verify (4):

v = β(v)+ (10)∑N−2
k=0

(
N−2
k

)
sk+1(1− F (β(v)))k

∫ β(v)

0
F (t)N−k−2dt∑N−2

k=0

(
N−2
k

)
(sk − sk+1)(1− F (β(v)))kF (β(v))N−k−2

,

which can be turned into:

β(v) = v − (11)

N∑
k=2

(
N−2
k−1

)
sk−1(1− Fv(v))

k−2
v∫
0

(v − β(x))Fv(x)
N−k−1fv(x)dx∑N−1

k=1

(
N−2
k−1

)
sk−1(1− Fv(v))k−1Fv(v)N−k−1

which corresponds to equation (1) of [8], up to notations
(Gomes and Sweeney number their slots from 1 to S < N ,
while we number ours from 0 to K > N , but we can take
sk = 0 for k ≥ S).

Although our equation (4) and Gomes-Sweeney’s related
equation (10) are close typographically, the two models have
many differences, ranging from the assumptions used in them
to the nature of the solutions obtained and their interpreta-
tion.

Assumptions. First, our model focuses on the incentives
of a single player against a fixed randomized profile of op-
ponents, while Gomes and Sweeney consider the behavior
of several players in a symmetrical equilibrium. Given the
highly dynamic aspect of these auctions and the very impor-
tant number of advertiser participating in them, it is unclear
how such equilibrium could happen in practice, while a best
response approach seems more suitable.

Second, randomness does not arise from the same assump-
tions and do not apply to the same variables in the two mod-
els. In Gomes and Sweeney, randomness applies to the valu-
ations and comes from an uncertainty in the players beliefs,
while in our model, randomness is applied directly to the
weighted bids and arises from the inherent variability of the
weights. In particular, the Gomes-Sweeney model does not
take into account the weights attributed to each player, and
although their model is easy to generalize to fixed weights
(a renormalization would allow to take the weights equal to
1), it cannot be generalized to randomized weights.



Solutions of the equations. The two models also differ
in the nature of the solutions of their equations. The un-
known of equation (11) is the whole function β(v), while the
unknown of (4) is just a tuple (v, b∗). Therefore, our equa-
tion is much simpler to solve, since v is uniquely determined
by b∗, while Gomes and Sweeney show that the solutions of
their equation can be computed as the limit of an recursively
defined sequence of functions β(n)(v).
Moreover, when the distributions of the bids or values

(depending on the model) are smooth, the solution curve
of (11) is a continuous mapping from the values to the bids
while the solution curve of (4) is a continuous mapping from
the values to the bids. As observed earlier, the optimal
bid function bopt(v) may thus present a discontinuity in our
model, while it is continuous in the Gomes-Sweeney model.
Interpretations. Because of the different nature of the so-

lutions, each model leads to a different interpretation. While
Gomes and Sweeney shows that no symmetric efficient equi-
librium is possible if the slot-CTRs are too close to each
other, we give several examples where the utility curve of a
player is not quasi-concave in her bid, resulting in a discon-
tinuity of the optimal bid curve. Because of this, we believe
that even asymmetric and inefficient Nash equilibria may
not always exist in practice.

7. CONCLUSION AND FURTHER WORK
We have developed a new analytical model of GSP auc-

tions centered on the behavior of one single player facing
multiple unknown opponents who submit random bids. This
approach has been inspired by a conclusion drawn from real
auction data, which showed that most ads enter many auc-
tions with the same bid, facing multiple opponents whose
identities differ from one auction to the other, and with
highly irregular weights attributed to the bids.
Using this model, we were able to derive simple, yet very

general, closed form expressions for the expected number of
clicks, total price and utility of the considered player, us-
ing only information on the distribution of the number of
opponents and of their relative weighted bids. We also ex-
pressed exactly the relation between the optimal bid and the
player’s valuation, highlighting the fact that in some cases
encountered in practice, the optimal bid jumps discontin-
uously from one value to the other when the valuation in-
creases. However, we noticed that this discontinuity tends
to disappear when the number of opponents or the reserve
price (i.e. the competition) increases.
The main advantage of this model is its very low computa-

tional and memory cost, compared to replaying all auctions.
Because of this, it will be practical to give better feedback to
advertisers by providing them with personalized estimates of
their click and price curves, thus helping them to chose their
bids more efficiently.
In our analysis, we have assumed that the weights come

from independent stochastic processes. In practice, as we
alluded to, the actual CTR and its estimated weight is af-
fected by the“type”of the searcher, and advertisers can take
this into account when bidding. A simple example of this
is demographic targeting, where certain demographics are
valued more highly by certain advertisers, and such adver-
tisers can automatically or manually adjust their bids for
search queries coming from favored locations. In addition,
keywords associated with the same ad or campaign are not

independent. The extension of our model to cater for these
interesting and practical scenarios is for future work.

8. REFERENCES
[1] Abrams, Z., and Ghosh, A. Auctions with revenue

guarantees for sponsored search. In Proceedings of the
3rd International Workshop on Internet and Network
Economics (2007), WINE’07.

[2] Aggarwal, G., Goel, A., and Motwani, R.

Truthful auctions for pricing search keywords. In
Proceedings of the 7th ACM conference on Electronic
Commerce (2006), EC ’06.

[3] Athey, S., and Nekipelov, D. A structural model
of sponsored search advertising auctions. In Sixth Ad
Auctions Workshop (2010), adauctions2010.

[4] Borgs, C., Chayes, J., Immorlica, N., Jain, K.,

Etesami, O., and Mahdian, M. Dynamics of bid
optimization in online advertisement auctions. In
Proceedings of the 16th international conference on
World Wide Web (2007), WWW ’07.

[5] Cary, M., Das, A., Edelman, B., Giotis, I.,

Heimerl, K., Karlin, A. R., Mathieu, C., and

Schwarz, M. Greedy bidding strategies for keyword
auctions. In Proceedings of the 8th ACM conference on
Electronic commerce (2007), EC ’07.

[6] Edelman, B., Ostrovsky, M., and Schwarz, M.

Internet advertising and the generalized second price
auction: Selling billions of dollars worth of keywords.
American Economic Review (2007), 242–259.

[7] Edelman, B., and Schwarz, M. Optimal auction
design and equilibrium selection in sponsored search
auctions. American Economic Review (2010).

[8] Gomes, R. D., and Sweeney, K. S. Bayes-nash
equilibria of the generalized second price auction. In
Proceedings of the 10th ACM conference on Electronic
Commerce (New York, NY, USA, 2009), EC ’09.

[9] Jansen, B. J., and Mullen, T. Sponsored search:
an overview of the concept, history, and technology.
Int. J. Electronic Business 6, 2 (2008), 114–131.

[10] Menache, I., Ozdaglar, A., Srikant, R., and

Acemoglu, D. Dynamic online-advertising auctions
as stochastic scheduling. In Workshop on the
Economics of Networks, Systems and Computation
(2009), NetEcon ’09.

[11] Pin, F., and Key, P. Stochastic variability in
sponsored search auctions: Observations and models.
Technical Report MSR-TR-2011-40, Microsoft
Research, March 2011.

[12] Varian, H. R. Position auctions. International
Journal of Industrial Organization (2007), 1163–1178.

[13] Vorobeychik, Y., and Reeves, D. M. Equilibrium
analysis of dynamic bidding in sponsored search
auctions. In Proceedings of the 3rd international
Workshop on Internet and Network Economics (2007),
WINE’07, Springer-Verlag.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


