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Abstract. We consider collusion in path procurement auctions, where payments
are determined using the VCG mechanism. We show that collusion can increase
the utility of the agents, and in some cases they can extract any amount the pro-
curer is willing to offer. We show that computing how much a coalition can gain
by colluding is NP-complete in general, but that in certain interesting restricted
cases, the optimal collusion scheme can be computed in polynomial time. We ex-
amine the ways in which the colluders might share their payments, using the core
and Shapley value from cooperative game theory. We show that in some cases
the collusion game has an empty core, so although beneficial manipulations ex-
ist, the colluders would find it hard to form a stable coalition due to inability to
decide how to split the rewards. On the other hand, we show that in several com-
mon restricted cases the collusion game is convex, so it has a non-empty core,
which contains the Shapley value. We also show that in these cases colluders can
compute core imputations and the Shapley value in polynomial time.

1 Introduction

Collusionis an agreement between agents to defraud in order to obtain an unfair advan-
tage [22]. We examine collusion in path procurement auctions (PPAs), where a buyer
procures a path from a sources to a targett in a graphG = 〈V,E〉. Each edgeei ∈ E
is owned byai, who incurs a costci when her edge is used. The costci is known
only toai. The buyer must compensate edges on the chosen path for their costs. Given
the private costs, a mechanism can find the minimal costs − t-path. The mechanism
can ask eachai for the minimal amount it would be willing to receive to allow us-
ing ei. If ai answers (bids) truthfully, this is her costci. However, the costs are the
agents’ private information and they may bid strategically to increase their payment.
VCG mechanisms [23, 10, 13] are used to incentivise agents to reveal their true costs.
VCG has desirable properties, but is susceptible to collusion. Though any single agent
is incentivised to bid truthfully,severalagents maycoordinatebids and split the gains
from manipulating. We show how agents might collude and share the gains in VCG
PPAs. Our model follows thecollusion gameof [4], but applied to PPAs.

1.1 Preliminaries

In VCG mechanisms we have an agent setN = {1, . . . , n}. The mechanism chooses an
alternative from the setK. Agents report a typeθi ∈ Θi, representing her preferences
overK, and each agenti has a valuationwi(k, θi) depending on the chosenk ∈ K. The



mechanism uses the choice rulek : Θ1 × ...×Θn → K, and agenti must also make a
paymentri to the mechanism, according to a payment ruleti : Θ1× ...×Θn → R. We
assume quasi-linear utilityui(k, pi, θi) = wi(k, θi)−ri. An agentimay manipulate and
report typeθ′i = si(θi), according to its strategysi. Groves mechanisms usek∗(θ′) =
argmaxk∈K

∑
i wi(k, θ′i) and payment rule:ri(θ′) = hi(θ′−i) −

∑
j 6=i wj(k∗, θ′j),

wherehi : Θ−i → R only depends on the reported types of agents other thani. We
consider the case of VCG, where:hi(θ′−i) =

∑
j 6=i wj(k∗−i(θ

′
−i), θ

′
j).

Our collusion analysis uses coalitional game theory. A transferable utility coali-
tional game is composed of a setN of n agents, and a characteristic function mapping
any agent subset (coalition) to a valuev : 2N → R, indicating the total utility these
agents achieve together. The function only defines the gains a coalition achieves, not
how to distribute them. Animputation(p1, . . . , pn) divides the the gains among the
agents, wherepi ∈ R, such that

∑n
i=1 pi = v(N). We callpi the payoff of agenti, and

denotep(C) =
∑

i∈C pi. A key issue is choosing the appropriate imputation. A basic
imputation requirement isindividual rationality: for any i ∈ N , pi ≥ v({i}). Other-
wise, agenti is incentivized to work alone. Similarly, coalitionB blocksimputationp
if p(B) < v(B), sinceB’s members are better off working on their own. A solution
concept focusing on this is thecore[12]: the set of all imputationsp not blocked by any
coalition, so for anyC ⊆ N we have:p(C) ≥ v(C).

Another solution concept is the Shapley value [20] which defines asingle value
division. It focuses onfairness, rather than stability. The Shapley value fulfills im-
portant fairness axioms [20, 25] and has been used to fairly share gains or costs. The
Shapley value of an agent depends on its marginal contribution to possible coalition
permutations. We denote byπ a permutation (ordering) of the agents, and byΠ the
set of all possible such permutations. Given permutationπ ∈ Π = (i1, . . . , in), the
marginal worth vectormπ[v] ∈ Rn is defined asmπ

i1
= v({i1}) and for k > 1

asmπ
ik

[v] = v({i1, i2, . . . , ik}) − v({i1, i2, . . . , ik−1}). The convex hull of all the
marginal vectors is called theWeber Set. Weber showed [24] that the Weber set of any
game contains its core. The Shapley value is the centroid of the marginal vectors.

Definition 1. The Shapley value is the payoff vector:φ[v] = 1
n!

∑
π∈Π mπ[v].

Our analysis is based on the notion of convex games. For convex games it is known
[21] that the core is non-empty, and that the Weber Set is identical to the core. The
Shapley value is a convex combination of the marginal vectors and lies in the Weber
Set, so in convex games, the Shapley value lies in the core.

Definition 2. A game is convex if:∀A,B ⊆ I, v(A∪B) ≥ v(A) + v(B)− v(A∩B).

2 Collusion in VCG Path Procurement Auctions

Consider a PPA in a graphG = 〈V,E〉, where the buyer procures edgesP ⊆ E forming
ans − t-path from a set of agents, each owning an edge in the graph. We identify an
agentai with her edgeei ∈ E. Each agent has a costci associated with her edge and the
mechanism asks eachai to provide a bidbi for using the edge. If the agent is truthful,



she would reportci. Given the edges’ true costs, one can find the minimal costs − t-
path, but the costs are private information. The canonical solution to induce truthfulness
is the VCG mechanism. As discussed in Section 1.1, using VCG prices makes truthful
cost revelation the dominant strategy, and results in procuring the cheapest path. Given
the edge costs, this path can easily be computed in polynomial time.

Observation 1 (Computing VCG Prices) LetG = 〈V,E〉 be a path procurement do-
main, with costci for edgeei ∈ E, and letbi be the bid ofei. Denote the minimal
cost path (according to the declaredbi’s) as(ei1 , ei2 , . . . , eix) (of x edges), and let the
optimal path not includingei be ej1 , ej2 , . . . , ejy (of y edges). Ifei is on the chosen
path, the payment toei’s owner ispi =

∑y
s=1 bjs

−
∑x

s=1 bis
+ bi, otherwisepi = 0.

2.1 Colluding in VCG Path Procurement Auctions

We begin with collusion examples. Denote the payment to agentai when all the agents
bid truthfully (i.e.ai bids her true cost sobi = ci) aspi. Given a set of edgesC ⊆ E, we
denote the VCG payments of all of them under truthful revelation asp(C) =

∑
ei∈C pi.

Fig. 1.Left: domain for Examples 1, 2, 3. Right: domain for Example 4.

Example 1 (Collusion on the cheapest path).Consider the graph on the left of Figure 1,
with two s − t-paths:r1 = 〈s, u, w, t〉 with costsc3 = 1, c4 = 1, c5 = 1 andr2 =
〈s, q, t〉 with edge costsc1 = 2, c2 = 2. The cheapest path isr1 with cost cr1 =
1+1+1 = 3, and the second cheapest path isr2 with costcr2 = 2+2 = 4. Consider the
agents onr1: C = 〈e3, e4, e5〉. If all the edges truthfully declare their costs (soai bids
bi wherebi = ci), applying Observation 1 we obtain payments:p3 = 2, p4 = 2, p5 = 2.
Thus, we havep(C) = 2 + 2 + 2 = 6. Suppose each of the agents inC reports having
no cost, biddingb′3 = b′4 = b′5 = 0. This manipulation does not change the chosen
path, as the cheapest path remainsr1. However, the payments do change. Denote the
payments when the agents inC bid untruthfully (sob′3 = b′4 = b′5 = 0) and the agents
in I \ C bid truthfully (so b′1 = c1 = 2, b′2 = c2 = 2) as p′ = 〈p′1, p′2, . . . , p′6〉.
Recomputing VCG payments forb′ we obtainp′3 = p′4 = p′5 = 4. Thus each member



of C benefits from this manipulation, and the total payments for theC becomep′(C) =∑
ei∈C p

′
i = 12. Note the actual costs of the agents inC have not changed, but total

payments increased by12 − 6 = 6. The cost of the coalitionC whenr1 is chosen is
c1 + c2 + c3 = 1 + 1 + 1 = 3, so through this manipulation, the coalition moves from
a utility of p(C)−

∑
i∈C ci = 6− 3 = 3 to p′(C)−

∑
i∈C ci = 12− 3 = 9.

Example 2 (Collusion on a s-t cut).Examine the left of Figure 1 again, but consider
the case whereC = 〈e1, e3〉 collude, ande2, e4, e5 bid truthfully. Under truthfully
declarations, the chosen path isr1 with payments:p1 = p2 = 0, p3 = p4 = p5 = 2.
We havep(C) = p1 + p3 = 2, and sincer1 is chosen,e3 incurs a costc3 = 1 so
the utility of the coalitionC is p(C) −

∑
i∈C∩r1

ci = 2 − c3 = 2 − 1 = 1. Now
suppose the colluders inC manipulate and bidb′1 = h (for a high numberh > 2, say
h = 100), andb′3 = 0 1, while e2, e4, e5 bid truthfully. Again, the manipulation does
not change the chosen path which is stillr1, but the payments do change. Again, we
denote the payments when the agents inC bid untruthfully (b′1 = h, b′3 = 0) and the
agents inI \C bid truthfully asp′ = 〈p′1, p′2, . . . , p′5〉. Recomputing the VCG payments
underp′ we getp′1 = 0, p′3 = h + 2 − 2 = h. Thus,p(C) = h. Sincer1 is still
the chosen path,e3 still incurs the costc3. Thus the new utility of the coalitionC is
p(C)−

∑
i∈C∩r1

ci = h− 1. Since the payment of the coalition depends on its chosen
value forh, its utility is unbounded. One might claim that sincea1 did not increase her
utility, she might not be willing to collude (lie fora3). To geta1 to cooperate,a3 can
easilycompensatea1 via a monetary transfer. Without such a monetary transfers, all
the payment goes toe3. However, using such a transfer, the utility of the coalition of
colluders,p(C)−

∑
i∈C∩r1

ci = h− 1, can be shared betweene1 ande3 in any.

Example 3 (Collusion on the non-optimal path).Consider the left of Figure 1, with
the optimal pathr1 and the second cheapest pathr2. SupposeC = 〈e1, e2〉 collude
(edges of a non-optimal path), ande3, e4, e5 bid truthfully. Under truthful declarations
the chosen path isr1, andp1 = p2 = 0 (asr1 = 〈e3, e4, e5〉 is chosen and notr2 =
〈e1, e2〉), so we havep(C) = 0, and the utility ofC is 0. If C manipulates by bidding
b′1 = b′2 = 0, the chosen path isr2 rather thanr1, and the payments arep′1 = p′2 = 3,
so we havep′(C) = 6. However, sincer2 is chosen, edgese1, e2 incur the costs of
c1 = c2 = 2, so the coalition’s utility isp(C) −

∑
i∈C ci = 6 − 4 = 2. Thus, this

manipulation givesC a utility of 2, rather than0. Without transfers, this utility is shared
equally betweene1 ande2, but it can be shared in any way using transfers.

Example 2 is troublesome, as the colluders achieve unbounded payment from the
mechanism2. Example 3 shows that even agents on a non-optimal path can manipulate.
We now show an example where beneficial manipulations exist, but due to the network
structure, the colluders cannot find a stable way to share the gains from manipulating.

Example 4 (Empty Core).Consider Figure 1 on the right. The cheapest path isr1 =
〈e1, e2〉 with cost8, the second cheapest path isr2 = 〈e5〉 with cost10, and the third

1 For this case,e3 may as well report its true cost. However, if the coalition has other edges on
the cheapest path (e.g.e4 or e5), this increases their payment as well.

2 Colluders who can disconnects andt get any amount the procurer has. This is not surprising
as the good sold iss− t connectivity, and the colluders’ cartel controls all the supply.



cheapest isr3 = 〈e3, e4〉 with cost12. Under truthful declarationsr1 is chosen, and
the payments arep1 = p2 = 6 (other payments are0). CoalitionCt = 〈e1, e2〉 can
manipulate similarly to Example 1 by biddingb′1 = b′2 = 0 to achievep′(Ct) = 10 +
10 = 20. This raises the utility ofCt from 12 − 8 = 4 to 20 − 8 = 12. However,
CoalitionCb = 〈e3, e4〉 can manipulate similarly to Example 3 by biddingb′3 = b′4 = 0
to achieve ap′(Cb) = 8 + 8 = 16 3. This raises the utility ofCb from 0 to 16− 12 = 4.

Consider the case whereC = Ct ∪Cb = {e1, e2, e3, e4} collude.C doesn’t control
e5 so its payment cannot exceed10 per edge. Either〈e1, e2〉 or 〈e3, e4〉 or 〈e5〉 is chosen,
so the total payment forC cannot exceed20. The minimal costC incurs to get any
payment is4+4 (routing through〈e1, e2〉). ThusC ’s utility is bounded by20−8 = 12,
similarly toCt, and achievable the same way. Thus,Cb adds no value to coalitionCt.
Consider what happens whenC = {e1, e2, e3, e4} try to agree on what to bid and how
to share the gains. The optimal collusion bids for them get them a utility of12. Edges
e1, e2 (of Ct) might claim they deserve all this utility, as they can achieve this utility on
their own. However,e3, e4 (of Cb) would claim they deserve at least4, as they achieve
4 on their own. This results in an unstable coalition and in threats between the coalition
members4. Section 3 characterizes this as a collusion game with an empty core.

In Example 4 , though the colluders have a beneficial manipulation, they find it hard
to form a coalition due to inability to decide how to share the reward. We characterize
such situations using the collusion game. Despite hopes of having such instability mit-
igate collusion, we show that for natural coalitions the colluders can always share the
gains in a stable way. We focus on coalitions where all colluders are on the cheapest
path (as in Example 1) or a non-optimal path (as in Example 3).

2.2 Collusion Schemes

We consider optimal manipulations in VCG PPAs. Such collusion requires trust among
the colluders, as they must coordinate and since in many domains collusive behavior is

3 These are the payments where onlye3, e4 collude, soe1, e2 truthfully declares their cost,
so under the collusion, the VCG mechanism chooses〈e3, e4〉 as the “cheapest” path, and
computes the payments using the alternative path〈e1, e3〉 of cost8.

4 Agentse3, e4 might threaten to bidb′
3 = b′

4 = 0 creating two zero cost paths, so the result
would depend on how the mechanism breaks ties. In this case, the agents on the winning path
would get a zero payment. If coalition{e1, e2, e3, e4} breaks down intotwocoalitions{e1, e2}
and{e3, e4} (each pair bidding in a coordinated manner), we have a normal form game. Each
pair chooses the total cost of the path, the pair with lower cost winning and obtaining a total
reward of the difference between the paths’ costs plus its declared cost. A pure strategy Nash
equilibrium is where the truly cheap path bids zero, and the truly expensive path bids highly
enough to guarantee the cheap path a positive utility: the total payment to the cheap path is
k(h− l) + l wherek is the number of edges on it andh andl are the declared path prices, so
whenh is high enough this exceeds the cheap path’s true cost. If these are theonly two paths,
there is another Nash equilibrium: the cheap path bids highly,H, and the expensive path bids
zero: the expensive path has a positive utility when winning and the cheap path can only win
by bidding zero, in which case it would have a negative utility. When analyzing the core of the
collusion game, we assume members dropping out donot form a new cartel and bid truthfully.
Even under this easier assumption, some collusion games have empty cores.



forbidden (the colluders face dire consequences if caught). We first show that in general,
given a colluder coalitionC, finding the optimal collusion or the utility of a colluder
coalition when it optimally manipulates for a coalition is NP-complete.

Theorem 1. Computing the optimal coalition manipulation in a VCG PPA is NP-Complete.

Proof. Computing the optimal manipulation value isin NP (up to any desired degree
of numerical accuracy), since we can non-deterministically choose bids and check if
we have a manipulation achieving the target utility. To show NP-hardness, we reduce
from LONGEST-PATH (LP), where we are given a graphG = 〈V,E〉 and are asked
to return the length of the longest simple path in it, known to be NP-Complete. Given
the LP instanceG = 〈V,E〉, we create a graphG′ = 〈V ∪ {s, t}, E′〉, which contains
a copy ofG and two other vertices:s which serves as the source andt which serves
as the target of the PPA. All ofG’s edges are also replicated. Also, the sources is
connected to the all the vertices inG, and any vertex isG is connected to the targett.
We denote all edges(s, v) wherev ∈ V asS, and all edges(u, t) whereu ∈ V asT .
We create an edgeeH , connectings andt. All edges have a cost ofce = 1 except edges
in S ∪ T ∪ {eH}. Edges inS ∪ T have zero cost, andeH has a costH whereH is a
very high number (for exampleH > |E|2). The target coalition for which we find an
optimal manipulation isC = E′ \ eH = S ∪ T ∪ E, all edges excepteH .

Denote byL = (l1, . . . , lq) the longest simple path inG, and its length byq. Coali-
tion C containsL, and so it can have all the edges inL ∪ S ∪ T bid zero, and all the
other edges inC bidH + 1. Then, the cheapest path is(s, l1, . . . , lq, t) with a declared
cost of zero, so this path is chosen. Under this manipulation, the second cheapest path
is (s, t) with costH, so each edge is paidH, and the coalition is paidp(C) = (q+2)H
(there areq edges on the longest path inG, and the edges(s, l1) and(lq, t)). The coali-
tion incurs the true cost of 1 on itsq edges inL, soC has a total cost ofq. Thus, this
manipulation obtainsC a utility of u∗(C) = (q + 2)H − q. It is easy to see thatu∗(C)
is the maximal utilityC can obtain: the cheapest path must have a total cost of at most
H or eH would be the chosen path, so any edge can be paid at mostH, and sinceL is
the longest simple path inG it is impossible to have more thanq edges ofG on the path
the mechanism chooses. Sinceu∗(C) = (q + 2)H − q and since we choose the value
of H in the reduction, givenu∗(C) we can extractq, the length of the longest simple
path inG. This proves we cannot compute the optimal manipulation bids, since given
this manipulation we can compute the chosen path and VCG prices and since we know
the true edge costs this allows computingu∗(C).

The hardness result of Theorem 1 forces us to examine restricted cases of the ma-
nipulation problem. In the extreme case whereall the edges collude, they can guarantee
any payment the procurer can pay5. In typical domains, the set of colluders is unlikely
to be all the edges or an arbitrary edge subset. A more reasonable colluder set can be a
set of neighboring or close edges, or several edges that are all on a singles− t path. We
examine cases where we can tractably compute the optimal manipulation. Example 1 is
an example of a simple case, where all colluders are on the cheapests− t path, and the

5 We later show that it suffices for the colluders to be able to disconnects andt.



second cheapest path runs in parallel to the cheapest path. Example 3 shows the second
simple case, where all colluders are on a non-optimals− t path, which runs in parallel
to the cheapest path, and can underbid the truly optimal path.

Consider the case where all colluders are on the cheapest path.C is a simple coali-
tion on the cheapest pathif these hold for allei ∈ C: edgeei is on the cheapests − t
path; when removingei, the cheapests− t-path contains no edgeej ∈ C. Similarly,C
is a simple coalition on a non-optimal pathif the following hold: all edgesei ∈ C are
a non-optimals− t path,r; the cheapest pathr∗ does not intersectr, sor∗ ∩ r = ∅; r
becomes cheapest whenb′i = 0 for all ei ∈ C:

∑
ei∈r\C ci <

∑
ei∈r∗ ci.

The following theorems are regarding a VCG PPA, where edgeei bids bi and has
costci, and whereC is a simple coalition on the cheapest pathr1. We assume that all
non-coalition members bid truthfully, so forei ∈ I \ C we havebi = ci.

Theorem 2 (Simple Cheapest Path Collusion).Let C be a simple coalition of col-
luders on the cheapest pathr1. The optimal collusion, maximizing paymentspi of any
ei ∈ C (andC ’s paymentp(C) =

∑
ei∈C pi) is zero bids:bi = 0 for all ei ∈ C.

Proof. Denote the cheapest path under truthful declarations asr1, and the cheapest path
under truthful declarations that does not contain any edge inC asr2. Consider an edge
ei ∈ C that increases its bid beyondci. This increases the cost ofr1 under declared
bids. If several agents inC declare such increased costs so that the cost ofr1 under
these modified costs is more than the cost ofr2, the pathr2 will be chosen, resulting in
a payment of 0 to all agents inC. Since VCG is individually-rational, this manipulation
is not beneficial to the colluders. Thus, it suffices to focus on manipulations where the
bids of edges inC are such that the cost ofr1 is at most the cost ofr2, so the procured
path isr1. Eliminating any edgeei ∈ C disallows the use ofr1, and for anyei ∈ C we
denote byr−i the cheapest path when eliminatingei. SinceC is a simple coalition on
the cheapest path we haver−i ∩C = φ. Thus forei, ej ∈ C we haver−i = r−j . Since
ei, ej are arbitrary edges inC, this means that the cheapest path after eliminating any
edge inC is the same pathr. This pathr cannot contain any edgeei ∈ C, so it is simply
the cheapest path that does not contain any edge inC, r2. Denote the edges inr = r2
asr2 =

〈
ej1 , ej2 , . . . , ejy

〉
(y edges). Denote the edges ofr1 asr1 = 〈ei1 , ei2 , . . . , eix〉

(x edges, containing the edges ofC). We assume all agents inr2 bid truthfully, and
denote the total cost ofr2 asc(r2). Thus, the formula of Observation 1 can be written
as:pi =

∑y
s=1 bjs

−
∑x

s=1 bis
+ bi = c(r2) −

∑x
s=1,eis 6=i bis

. Note that the agents
in C control the bids{bi|ei ∈ C}, and since eachbi must be non-negative (the cost
of using edgeei), eachpi is maximized when the bids are minimal. Thus, the optimal
manipulation is biddingbi = 0 for all ei ∈ C.

Theorem 3 (Simple Non-Optimal Path Collusion).Let C be a simple coalition of
colluders on the non optimal pathr. The optimal collusion, which maximizes all the
paymentspi of any coalition member (andC total paymentp(C) =

∑
ei∈C pi) is zero

bids: bi = 0 for all ei ∈ C.

Proof. The proof is almost identical to Theorem 3. We denote the non optimal pathr
which contains all the colluders as〈ei1 , ei2 , . . . , eix

〉, denote the cheapest path (under
true costs) asr∗, and obtain:pi = c(r∗)−

∑x
s=1,eis 6=i bis .



Theorem 4 (Cut Collusion).LetC be a coalition whose removal disconnectss andt,
andh > 0 be some value. The colluders can bid so that

∑
ei∈C pi > h.

Proof. At least oneex ∈ C must be used in the chosens− t path, asC is ans− t cut.
VCG is individually rational so if alle ∈ C bid b′i = h, for ex we havepi > h.

3 The Collusion Game

Consider a PPA overG = 〈V,E〉 with sources and targett. We examine a sub-
setC ⊆ N , who may decide to collude. Under truthful bidding, VCG chooses path
r1 = 〈ei1 , ei2 , . . . , eix

〉 and paymentspt
1, . . . , p

t
n

6. If the agents inC decide to collude,
they can form a coalition and use a collusion scheme, such as those of Section 2.1.
Denote the chosen path under the optimal manipulation asr∗ = 〈e∗1, . . . , e∗z〉 and the
payments under the manipulationp∗1, . . . , p

∗
n. Some manipulations, such as the optimal

manipulation for simple collusion on the cheapest path, do not change the chosen path,
sor∗ = r1, but increase the payments to coalition members sop∗i ≤ pt

i for anyi ∈ C.
Other schemes, such as collusion on a non-optimal path, change the selected path, so
r∗ 6= r1. The coalition members gain payments, but the members on the chosen path,
C ∩ r∗, also incur the cost of their edges. Thus, the utility of the colluder coalitionC
is: u∗(C) =

∑
i∈C p

∗
i −

∑
i∈C∩r∗ ci. Using monetary transfers, the coalition’s utility

can be distributed among its members in any way they choose. We define a coalitional
game, based on the total utility a coalition of colluders generates its members.

Definition 3 (Path Procurement Collusion Game).Given a VCG PPA, the value
v(C) of a coalitionC ⊆ N is: v(C) = u∗(C). In order to manipulate the collud-
ers must trust each other, or sign a certain enforceable contract, so the coalitionC is
typically be restricted to only a certain subset of the agents.

Given the above definition, Theorem 1 simply says that in general it is hard to even
compute the value of a coalition in the collusion game. However, Theorem 2, Theo-
rem 3 and Theorem 4 all show that for important restricted cases, finding the optimal
manipulation is trivial. The above definition of the game also allows us to apply solution
concepts to decide how the colluders might share their rewards. The core characterizes
stability, where no subset of the coalition is incetivised to operate on its own. The
Shapley value characterizes afair allocation of the reward, reflecting each member’s
contribution. Having defined the collusion game, the theme of Example 4 is simple —
this network structure results in the collusion game having anempty core7.

One might hope that most network structures result in empty cores, so the colluders
would not have a stable way of sharing the reward. If this were the case, the problem
of collusion would be mitigated since despite the existence of profitable manipulations,
the colluders would fight amongst themselves regarding the monetary transfers, and
never form a lasting coalition. Unfortunately, we show that for the common cases of

6 The subscriptt stands for truthful.
7 Example 4 has disjointCt andCb wherev(Ct∪Cb) = v(Ct) butv(Cb) > 0 sop(Ct∪Cb) =
p(Ct) + p(Cb) ≤ v(Ct). One core constraint isp(Ct) ≥ v(Ct) so p(Ct) = v(Ct) =
v(Ct ∪ Cb) andp(Cb) = 0. Another isp(Cb) ≥ v(Cb) > 0, so some core constraints fail.



simple collusion (along the cheapest path or along a non-optimal path), the game always
has a nonempty core, and there is a polynomially computable core imputation. Also,
regardingfairness, we show that the Shapley value, considered “fair”, is also in the core
and easy to compute. Thus, the colluders can share the gains in a stable and fair manner
8, making collusion a significant problem in such auctions. Our results are based on
showing the game is convex. We show convexity by examining the payment of a simple
coalitionC (on the cheapest path or on a non-optimal path). Denote the cheapest path
asr1 and the cheapest path that contains no edges inC asr2. Denote the non colluders
on the cheapest pathr1 asTr1 = r1 \C. Denote the cost of a pathr asc(r) =

∑
i∈r ci,

and the cost of the edges inTr1 asc(Tr1) =
∑

i∈Tr1
ci.

Lemma 1 (Shortest Path Collusion Payments).LetC be a simple coalition of col-
luders on the cheapest path. The total payment to the colluders under the optimal ma-
nipulation isP ∗(C) = |C|(c(r2)− c(Tr1)).

Proof. From Theorem 2, any colluderi ∈ C would bid bi = 0. Thus, the formula
of Observation 1 is simplified topi = c(r2) − c(Tr1) (independent of the colluder’s
identity). Since there are|C| colluders we obtainP ∗(C) = |C|(c(r2)− c(Tr1)).

For collusion on a non-optimal path, we denote the optimal (cheapest) path asr1 and
non optimal path that containsC asr. We denote the non colluders onr asTr = r \C.
The total cost of the edges inTr is c(Tr) =

∑
i∈Tr

ci.

Lemma 2 (Non-Optimal Path Collusion Payments).LetC be a simple coalition of
colluders on a non-optimal path. The total payment to the colluders under the optimal
manipulation isP ∗(C) = |C|(c(r1)− c(Tr).

Proof. The proof is similar to Lemma 1.

Theorem 5 (Convexity of the Collusion Game).The collusion game is convex for
simple coalitions (along the cheapest path or a non-optimal path).

Proof. We give the proof for a simple coalition along the cheapest path (the other case
is almost identical). An alternative definition of convex games is:∀S′ ⊆ S ⊆ I, ∀i /∈ S:
v(S′ ∪ {i}) − v(S′) ≤ v(S ∪ {i}) − v(S). We show this for simple coalition on the
cheapest path,S. Consider anyS′ ⊂ S, denoteS \ S′ = B, and leta be any agent in
r1 \ S. DenoteT = r1 \ S \ {a}. Denote|S| = h and |S′| = l (wherel ≤ h), and
denotec(r2) = x. Using Lemma 1 we can writev(S), v(S ∪ {a}), v(S′), v(S′ ∪ {a}).
We have:v(S ∪ {a}) = v(S′ ∪B ∪ {a}) = (h+ 1)(x− c(T ))− c(S′)− c(B)− ca;
v(S) = v(S′ ∪ B) = h(x − ca − c(T )) − c(S′) − c(B); v(S′ ∪ {a}) = (l + 1)(x −
c(B) − c(T )) − C(S′) − Ca; v(S′) = l(x − c(B) − ca − c(T )) − c(S′). Opening
parentheses and canceling terms we get:v(S ∪{a})− v(S) = x+h ·Ca− c(T )−Ca;
v(S′ ∪ {a})− v(S′) = x+ l ·Ca − c(T )−Ca − c(B). However,l ·Ca ≤ h ·Ca and
c(B) is non-negative, so we havev(S′ ∪ {i})− v(S′) ≤ v(S ∪ {i})− v(S).

8 “Fairness” here is for the colluders — the manipulations are devastating for the auctioneer.



Convexity of the collusion game has implications regarding how the colluders can
share the gains. Collusion causes the prices paid to the agents to rise, and monetary
transfers allow the colluders to share the utility in any way they desire. Under unstable
utility distributions the colluders’ coalition is likely to disintegrate, but convexity guar-
antees astabledistribution, so the colluders can distribute the gains so no subset of the
colluders would benefit from leaving the coalition. The colluders may also want to share
the utility in a fair manner, using the Shapley value. In general, even if there arestable
allocations, the Shapley value may be unstable. Unfortunately, for simple coalitions, a
stable allocation always exists, and the Shapley value is also stable.

Corollary 1. For simple coalitions (on the cheapest path or on a non-optimal path),
the collusion game has a non-empty core, containing the Shapley value.

Proof. The collusion game is convex (Theorem 5), so it has a non-empty core coincid-
ing with the Weber set. The Shapley value is in the Weber set so it is in the core.

A final barrier against collusion is computational complexity. Theorem 1 shows
that finding the optimal collusion is hard, but it is trivial for simple coalitions. Corol-
lary 1 guarantees the colluders a fair and stable allocation but it might be hard to com-
pute, even for simple coalitions. We show that for simple coalitions, the colluders can
tractably compute a simple core imputation or the Shapley value. Since the game is
convex, the Weber set is identical to the core. Given a permutationπ = 〈π1, . . . , πn〉
of the agents and an agentei, denote the predecessors ofi in π asF i

π. Denotemπ
i =

v(F i
π∪{ei})−v(Fi), and note this can be computed in polynomial time using Lemma 1

(or Lemma 2). The imputation〈mπ
1 ,m

π
2 , . . . ,m

π
n〉 is in the Weber set (the Weber set

is the convex hull of all these vectors for different permutationsπ), and so is a core
imputation. A naive way of computing the Shapley value, the centroid of such vectors,
requires performing this process for all agent permutationsπ, requiring exponential
time. We show a polynomial algorithm to compute Shapley value.

Theorem 6. For simple coalitions (on the cheapest path or on a non-optimal path), the
Shapley value can be computed in polynomial time.

Proof. The contribution of edgeei to coalitionC (whereei /∈ C), v(C ∪ {ei})− v(C)
only depends on|C|, not on who the specific members ofC are. Due to Lemma 1, we
havep∗(C) = |C|(c(r2) − c(TC

r1
)) whereTC

r1
= r1 \ C are the non-colluders on the

cheapest path. Denotec(r1) = x, c(r2) = y and
∑

i∈C ci = z. We havep∗(C∪{ei})−
p∗(C) = (|C|+1)(y− c(r1 \C \{ei}))−|C|(y− c(r1 \C)) = (|C|+1)(y−x+ z+
ci)− |C|(y−x+ z) = |C|(y−x+ z+ ci− y+x− z)+ (y−x+ z+ ci) = |C| · ci +
y− x+ z+ ci). Collusion on the cheapest path does not change the chosen path, so we
have:v(C ∪ {ei})− v(C) = −

∑
j∈C∪{ei} cj + p∗(C ∪ {ei}) +

∑
j∈C cj − p∗(C) =

−ci + |C| · ci + y − x+ z + ci = |C| · ci + y − x+
∑

i∈C ci.
Consider computing the Shapley value forei, φi(v) = 1

n!

∑
π∈Π v(F i

π ∪ {ei}) −
v(F i

π) (whereF i
π are the predecessors ofi in π). Denoteψi(v) =

∑
π∈Π v(F i

π∪{ei})−
v(F i

π). We can computeψi by iterating over the possiblenumbersof predecessorsi has
in π, |F i

π|. Let Πj be all permutationsπ ∈ Π such that|F i
π| = j (i.e. permutations

wherei has exactlyj predecessors. We can denote the total contribution thati has for



coalitions of sizej asMj =
∑

π∈Πj
v(F i

π ∪ {ei}) − v(F i
π). Thus we haveψi(v) =∑n−1

j=0 Mj . Thus we only need to computeMj in polynomial time (for0 ≤ j ≤ n− 1).
To computeMj =

∑
π∈Πj

v(F i
π ∪ {ei}) − v(F i

π) we can sum over all possible

predecessor sets fori wherei has exactlyj predecessors,F = {F i
π ⊆ N |π ∈ Πj},

where|F | =
(
n−1

j

)
. Under this notationMj =

∑
C∈F v(C ∪ {ei}) − v(C). We’ve

shown thatv(C ∪ {ei}) − v(C) = |C| · ci + y − x +
∑

i∈C ci, so we have:Mj =∑
C∈F |C| ·ci +y−x+

∑
i∈C ci. Since anyC ∈ F have the same size|C| = j, we get:

Mj = |F | · (j · ci + y − x) +
∑

C∈F

∑
i∈C ci. We denoteq =

∑
C∈F

∑
i∈C ci. Thus,

Mj =
(
n−1

j

)
· (j · ci + y− x) + q. Consider computingq. Given the coalitionC of size

|C| = m, denote the weightsci for all i ∈ C asW = 〈c1, . . . , ci−1, ci+1, . . . , cm〉 (W
is the set of the costs of all colluders exceptei). Thus,q is simply the sum of weights
in all subsets ofW of size j, i.e. q =

∑
S⊂W ||S|=j

∑
s∈S s. Any weightwi ∈ W

appears inq exactly
(
n−1
j−1

)
times, soq =

(
n−1
j−1

) ∑
cx∈W cx =

(
n−1
j−1

) ∑
ex∈C\{ei} cx.

Given a colluderei, we can easily compute
∑

ex∈C\{ei} cx in polynomial time, and thus

computeq in polynomial time. This allows us to computeMj =
(
n−1

j

)
·(j ·ci+y−x)+q

in polynomial time, for anyj. We can thus computeψi(v) =
∑n−1

j=0 Mj in polynomial
time, and thus compute the Shapley value of any agent in polynomial time.

4 Related Work

Auctions face untruthful selfish agents, so due to strategic behavior, a mechanism trying
to maximize welfare may reach a sub-optimal decision. Proper payment rules incetivize
agents to bid truthfully. A prominent scheme for doing so is the VCG mechanism [23,
10, 13]. Despite its advantages, VCG has many shortcomings [3], including vulnera-
bility to collusion [17]. Collusion can occur in many domains and many of its forms
are illegal [17]. Our model follows an analysis of multi-unit auctions [4], but for the
PPA domain [1]. We examine coalitional deviations, but as opposed to strong Nash
equilibrium [2], we convert the normal-form game to a cooperative game. We provide
an internal model of collusion, as opposed toexternal interventionsmodels [18, 6, 19].
We focus on the core [12] and Shapley value [20]. The Shapley value and other power
indices are typically hard to compute [16, 8], so our result for computing it in some
collusion games is interesting. For general collusion games, the colluders canapproxi-
mate[7, 16] the Shapley value in order to share their gains. Collusion is also related to
shills and false-identity attacks [26, 9, 5, 27], where a single agent pretends to be several
agents. A single edge in a VCG PPA can pretend to be several edges to increase pay-
ments. Our work is also related to of bidding rings and clubs [15, 14], but we assume
the colluders have full information on each other’s costs. Core selecting auctions [11]
are also related to our work, but we do not consider the auctioneer a participating agent,
and the core in our collusion game can be empty.

5 Conclusion

We analyzed collusion in VCG PPAs, and showed that such a domain is vulnerable to
collusion. Some questions remain open for future research. First, similar analysis can be



done for other auctions, such as combinatorial auctions or sponsored search auctions.
Second, due to the drawbacks of VCG for PPAs, what alternative mechanisms should
be used? Finally, what bids are likely to occur for domains with an empty core?
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