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Abstract. We consider collusion in path procurement auctions, where payments
are determined using the VCG mechanism. We show that collusion can increase
the utility of the agents, and in some cases they can extract any amount the pro-
curer is willing to offer. We show that computing how much a coalition can gain
by colluding is NP-complete in general, but that in certain interesting restricted
cases, the optimal collusion scheme can be computed in polynomial time. We ex-
amine the ways in which the colluders might share their payments, using the core
and Shapley value from cooperative game theory. We show that in some cases
the collusion game has an empty core, so although beneficial manipulations ex-
ist, the colluders would find it hard to form a stable coalition due to inability to
decide how to split the rewards. On the other hand, we show that in several com-
mon restricted cases the collusion game is convex, so it has a non-empty core,
which contains the Shapley value. We also show that in these cases colluders can
compute core imputations and the Shapley value in polynomial time.

1 Introduction

Collusionis an agreement between agents to defraud in order to obtain an unfair advan-
tage [22]. We examine collusion in path procurement auctions (PPAs), where a buyer
procures a path from a sourgé¢o a target in a graphG = (V, E). Each edge; € F

is owned bya;, who incurs a cost; when her edge is used. The castis known

only toa;. The buyer must compensate edges on the chosen path for their costs. Given
the private costs, a mechanism can find the minimal gostt-path. The mechanism

can ask each; for the minimal amount it would be willing to receive to allow us-

ing e;. If a; answers (bids) truthfully, this is her cost However, the costs are the
agents’ private information and they may bid strategically to increase their payment.
VCG mechanisms [23, 10, 13] are used to incentivise agents to reveal their true costs.
VCG has desirable properties, but is susceptible to collusion. Though any single agent
is incentivised to bid truthfullyseveralagents mayoordinatebids and split the gains

from manipulating. We show how agents might collude and share the gains in VCG
PPAs. Our model follows theollusion gameof [4], but applied to PPAs.

1.1 Preliminaries

In VCG mechanisms we have an agentSet {1,...,n}. The mechanism chooses an
alternative from the sek’. Agents report a typé; € ©,, representing her preferences
over K, and each agentas a valuatiom; (k, 6;) depending on the chosénc K. The



mechanism uses the choice ridle ©; x ... x ©,, — K, and agent must also make a
paymentr; to the mechanism, according to a payment tule®; x ... x ©,, — R. We
assume quasi-linear utility; (k, p;, ;) = w;(k, 8;)—r;. An agent may manipulate and
report typed; = s;(6;), according to its strategy;. Groves mechanisms u&(f’) =
argmaxkex y; wi(k,0;) and payment ruler;(0') = h;(0_;) — >_,; w;(k*,0}),
whereh; : ©_; — R only depends on the reported types of agents other th¥re
consider the case of VCG, where(6" ;) = >_ ., w;(k*;(6";),0).

Our collusion analysis uses coalitional game theory. A transferable utility coali-
tional game is composed of a g€tof n agents, and a characteristic function mapping
any agent subset (coalition) to a value 2V — R, indicating the total utility these
agents achieve together. The function only defines the gains a coalition achieves, not
how to distribute them. Anmputation(p, ..., p,) divides the the gains among the
agents, wherg; € R, such thad""" , p; = v(V). We callp; the payoff of agent, and
denotep(C) = >, pi- A key issue is choosing the appropriate imputation. A basic
imputation requirement imdividual rationality: for anyi € N, p; > v({i}). Other-
wise, agent is incentivized to work alone. Similarly, coalitioR blocksimputationp
if p(B) < v(B), sinceB’s members are better off working on their own. A solution
concept focusing on this is tlwwre[12]: the set of all imputations not blocked by any
coalition, so for anyC' C N we havep(C) > v(C).

Another solution concept is the Shapley value [20] which definemgle value
division. It focuses orfairness rather than stability. The Shapley value fulfills im-
portant fairness axioms [20, 25] and has been used to fairly share gains or costs. The
Shapley value of an agent depends on its marginal contribution to possible coalition
permutations. We denote by a permutation (ordering) of the agents, andBythe
set of all possible such permutations. Given permutation II = (i1,...,i,), the
marginal worth vectorm™[v] € R" is defined asn] = v({i1}) and fork > 1
asmf [v] = v({i1,%2,...,ix}) — v({i1,%2,...,ik—1}). The convex hull of all the
marginal vectors is called th&eber SetWeber showed [24] that the Weber set of any
game contains its core. The Shapley value is the centroid of the marginal vectors.

Definition 1. The Shapley value is the payoff vectofo] = 5 > - m™[v].

Our analysis is based on the notion of convex games. For convex games it is known
[21] that the core is non-empty, and that the Weber Set is identical to the core. The
Shapley value is a convex combination of the marginal vectors and lies in the Weber
Set, so in convex games, the Shapley value lies in the core.

Definition 2. A game is convex i¥A,B C I,v(AUB) > v(A) +v(B) —v(AN B).

2 Collusion in VCG Path Procurement Auctions

Considera PPAin agraghi = (V, E'), where the buyer procures edges- E forming

ans — t-path from a set of agents, each owning an edge in the graph. We identify an
agenta; with her edges; € E. Each agent has a castassociated with her edge and the
mechanism asks eaef) to provide a bidch; for using the edge. If the agent is truthful,



she would report;. Given the edges’ true costs, one can find the minimal gost-

path, but the costs are private information. The canonical solution to induce truthfulness
is the VCG mechanism. As discussed in Section 1.1, using VCG prices makes truthful
cost revelation the dominant strategy, and results in procuring the cheapest path. Given
the edge costs, this path can easily be computed in polynomial time.

Observation 1 (Computing VCG Prices) LetG = (V, E) be a path procurement do-
main, with coste; for edgee; € E, and letb; be the bid ofe;. Denote the minimal
cost path (according to the declarégds) as(e;,, e;,, ..., e;,) (0f z edges), and let the
optimal path not including:; bee;,,ej,,...,e;, (of y edges). Ife; is on the chosen
path, the payment te;'s owner isp; = Z:Z:l bj, — Zle b;. + b;, otherwisep, = 0.

2.1 Colluding in VCG Path Procurement Auctions

We begin with collusion examples. Denote the payment to agemhen all the agents
bid truthfully (i.e.a; bids her true cost sly = ¢;) asp;. Given a set of edges C E, we
denote the VCG payments of all of them under truthful revelation@y = > .. pi.

Fig. 1. Left: domain for Examples 1, 2, 3. Right: domain for Example 4.

Example 1 (Collusion on the cheapest pa@ynsider the graph on the left of Figure 1,
with two s — ¢t-paths:r; = (s, u,w,t) with costscg = 1,¢4 = 1,¢5 = 1 andry =
(s,q,t) with edge costs; = 2,co = 2. The cheapest path is with coste,, =
14+1+1 = 3, and the second cheapest pathisiith costc,, = 242 = 4. Consider the
agents orr: C' = (e3, eq, e5). If all the edges truthfully declare their costs (gabids

b; whereb; = ¢;), applying Observation 1 we obtain paymemis= 2, py = 2,p5 = 2.
Thus, we have(C) = 2 + 2 + 2 = 6. Suppose each of the agentginreports having

no cost, biddingy; = b, = b = 0. This manipulation does not change the chosen
path, as the cheapest path remainsHowever, the payments do change. Denote the
payments when the agentsdhbid untruthfully (sob; = b, = b = 0) and the agents

in I'\ C bid truthfully (sob] = ¢1 = 2,b5, = co = 2) asp’ = (p},ph,...,06)-
Recomputing VCG payments fof we obtainp; = p, = pt = 4. Thus each member



of C benefits from this manipulation, and the total payments focttecome’ (C) =
>-c.ec Pi = 12. Note the actual costs of the agents(irhave not changed, but total
payments increased Y. — 6 = 6. The cost of the coalitiod®’ whenr; is chosen is
c1+co+ec3 =141+ 1 =3, so through this manipulation, the coalition moves from
autility of p(C) = >, .o =6-3=31t0p (C) = > ,ccci =12-3=09.

Example 2 (Collusion on a s-t cutExamine the left of Figure 1 again, but consider
the case wher€' = (e1,e3) collude, andesy, eq, e5 bid truthfully. Under truthfully
declarations, the chosen pathriswith paymentsp; = ps = 0,p3 = ps = p5 = 2.

We havep(C) = p; + ps = 2, and sincer; is chosengs incurs a cost; = 1 so

the utility of the coalitionC' is p(C) — > icony, 6 = 2 —c3 = 2 -1 = 1. Now
suppose the colluders ifi manipulate and bid; = h (for a high numberh > 2, say

h = 100), andby = 0, while ey, e4, e5 bid truthfully. Again, the manipulation does
not change the chosen path which is stjl] but the payments do change. Again, we
denote the payments when the agent€’ibid untruthfully ¢; = h,d; = 0) and the
agentsin/ \ C bid truthfully asp’ = (p}, p%, .. ., p5). Recomputing the VCG payments
underp’ we getp} = 0,py = h+ 2 — 2 = h. Thus,p(C) = h. Sincer; is still

the chosen pattes still incurs the costs. Thus the new utility of the coalitiod' is
p(C) = > iccnr, ¢ = b — 1. Since the payment of the coalition depends on its chosen
value forh, its utility is unbounded. One might claim that singcedid not increase her
utility, she might not be willing to collude (lie fo#i3). To geta; to cooperateqs can
easilycompensate; via a monetary transfer. Without such a monetary transfers, all
the payment goes te;. However, using such a transfer, the utility of the coalition of

colludersp(C) — > icon,, ¢i = h — 1, can be shared betweenpande in any.

Example 3 (Collusion on the non-optimal patonsider the left of Figure 1, with
the optimal path-; and the second cheapest path SupposeC = (e1, e3) collude
(edges of a non-optimal path), angl e4, e5 bid truthfully. Under truthful declarations
the chosen path ig;, andp; = p2 = 0 (asr; = (es, eq, e5) is chosen and not, =
(e1,e2)), so we havep(C) = 0, and the utility ofC is 0. If C manipulates by bidding
by = b, = 0, the chosen path is, rather than, and the payments agg = p, = 3,
so we havey’(C) = 6. However, since-, is chosen, edges,, e5 incur the costs of
c1 = ¢z = 2, so the coalition’s utility isp(C) — > ,coci = 6 —4 = 2. Thus, this
manipulation give€’ a utility of 2, rather tharf). Without transfers, this utility is shared
equally betweem; ande,, but it can be shared in any way using transfers.

Example 2 is troublesome, as the colluders achieve unbounded payment from the
mechanisri Example 3 shows that even agents on a non-optimal path can manipulate.
We now show an example where beneficial manipulations exist, but due to the network
structure, the colluders cannot find a stable way to share the gains from manipulating.

Example 4 (Empty Corefonsider Figure 1 on the right. The cheapest path is-
(e1, e2) with cost8, the second cheapest pathris= (e5) with cost10, and the third

! For this casegs may as well report its true cost. However, if the coalition has other edges on
the cheapest path (e . or e5), this increases their payment as well.

2 Colluders who can disconneetndt get any amount the procurer has. This is not surprising
as the good sold is — ¢ connectivity, and the colluders’ cartel controls all the supply.



cheapest is3 = (e3,e4) with cost12. Under truthful declarations, is chosen, and

the payments arp; = po = 6 (other payments ar@). CoalitionC; = (eq, e3) can

manipulate similarly to Example 1 by bidding = b, = 0 to achievey’(C;) = 10 +

10 = 20. This raises the utility of”; from 12 — 8 = 4 to 20 — 8 = 12. However,

CoalitionC}, = (es, e4) can manipulate similarly to Example 3 by biddibig= v, = 0

to achieve @'(Cy,) = 8 + 8 = 16 °. This raises the utility o€, from0to 16 — 12 = 4.
Consider the case whefeé= C, UC,, = {e1, €2, €3, ¢4} collude.C doesn't control

e5 SO its payment cannot excegtiper edge. Eithefey, e2) or (es, e4) Or (e5) is chosen,

so the total payment fof’ cannot excee@0. The minimal costC' incurs to get any

payment ist+4 (routing throughle;, e2)). ThusC's utility is bounded by20—8 = 12,

similarly to C;, and achievable the same way. Th(d%,adds no value to coalitio@;.

Consider what happens whéh= {e1, e3, e3, e4 } try to agree on what to bid and how

to share the gains. The optimal collusion bids for them get them a utilit2.oEdges

e1, eo (of Cy) might claim they deserve all this utility, as they can achieve this utility on

their own. Howeveres, e4 (of Cp,) would claim they deserve at leaktas they achieve

4 on their own. This results in an unstable coalition and in threats between the coalition

member¢. Section 3 characterizes this as a collusion game with an empty core.

In Example 4 , though the colluders have a beneficial manipulation, they find it hard
to form a coalition due to inability to decide how to share the reward. We characterize
such situations using the collusion game. Despite hopes of having such instability mit-
igate collusion, we show that for natural coalitions the colluders can always share the
gains in a stable way. We focus on coalitions where all colluders are on the cheapest
path (as in Example 1) or a non-optimal path (as in Example 3).

2.2 Collusion Schemes

We consider optimal manipulations in VCG PPAs. Such collusion requires trust among
the colluders, as they must coordinate and since in many domains collusive behavior is

3 These are the payments where only e, collude, soes, ey truthfully declares their cost,
so under the collusion, the VCG mechanism chooggses) as the “cheapest” path, and
computes the payments using the alternative paihes) of cost8.

4 Agentses, e4 might threaten to bid = b = 0 creating two zero cost paths, so the result
would depend on how the mechanism breaks ties. In this case, the agents on the winning path
would get a zero payment. If coalitiqm , ez, es, e4 } breaks down intdwocoalitions{e, ez }
and{es, es} (each pair bidding in a coordinated manner), we have a normal form game. Each
pair chooses the total cost of the path, the pair with lower cost winning and obtaining a total
reward of the difference between the paths’ costs plus its declared cost. A pure strategy Nash
equilibrium is where the truly cheap path bids zero, and the truly expensive path bids highly
enough to guarantee the cheap path a positive utility: the total payment to the cheap path is
k(h — 1) + l wherek is the number of edges on it andand! are the declared path prices, so
whenh is high enough this exceeds the cheap path’s true cost. If these amelyitero paths,
there is another Nash equilibrium: the cheap path bids highjyand the expensive path bids
zero: the expensive path has a positive utility when winning and the cheap path can only win
by bidding zero, in which case it would have a negative utility. When analyzing the core of the
collusion game, we assume members dropping outadéorm a new cartel and bid truthfully.

Even under this easier assumption, some collusion games have empty cores.



forbidden (the colluders face dire consequences if caught). We first show that in general,
given a colluder coalitior”, finding the optimal collusion or the utility of a colluder
coalition when it optimally manipulates for a coalition is NP-complete.

Theorem 1. Computing the optimal coalition manipulation in a VCG PPA is NP-Complete.

Proof. Computing the optimal manipulation valueilrsNP (up to any desired degree
of numerical accuracy), since we can non-deterministically choose bids and check if
we have a manipulation achieving the target utility. To show NP-hardness, we reduce
from LONGEST-PATH (LP), where we are given a gragh= (V, E) and are asked
to return the length of the longest simple path in it, known to be NP-Complete. Given
the LP instanc& = (V, E), we create a grapy’ = (V U {s,t}, E’), which contains
a copy ofG and two other vertices: which serves as the source andhich serves
as the target of the PPA. All af’s edges are also replicated. Also, the soutds
connected to the all the vertices@ and any vertex igs is connected to the target
We denote all edges, v) wherev € V asS, and all edgesu, t) whereu € V asT.
We create an edgey, connectings andt. All edges have a cost ef = 1 except edges
in SUT U {ex}. Edges inS U T have zero cost, angly has a cosH whereH is a
very high number (for exampl& > |E|?). The target coalition for which we find an
optimal manipulation i€ = E' \ ey = SUT U E, all edges excepty.

Denote byL = (I3, .. .,l,) the longest simple path i@, and its length by. Coali-
tion C containsL, and so it can have all the edges/iru .S U T bid zero, and all the
other edges i’ bid H + 1. Then, the cheapest path(is /1, . . ., I,, t) with a declared
cost of zero, so this path is chosen. Under this manipulation, the second cheapest path
is (s, t) with costH, so each edge is paid, and the coalition is paid(C) = (¢+2)H
(there arey edges on the longest pathdh and the edge§, I1) and({,, t)). The coali-
tion incurs the true cost of 1 on itsedges inL, soC' has a total cost af. Thus, this
manipulation obtaing’ a utility of u*(C') = (¢ + 2)H — ¢. Itis easy to see that*(C)
is the maximal utilityC' can obtain: the cheapest path must have a total cost of at most
H or ey would be the chosen path, so any edge can be paid atihcstd sincel. is
the longest simple path i@ it is impossible to have more thgredges of7 on the path
the mechanism chooses. Sincg§C) = (¢ + 2)H — ¢ and since we choose the value
of H in the reduction, given.* (C) we can extracy, the length of the longest simple
path inG. This proves we cannot compute the optimal manipulation bids, since given
this manipulation we can compute the chosen path and VCG prices and since we know
the true edge costs this allows computirgC').

The hardness result of Theorem 1 forces us to examine restricted cases of the ma-
nipulation problem. In the extreme case whallehe edges collude, they can guarantee
any payment the procurer can payn typical domains, the set of colluders is unlikely
to be all the edges or an arbitrary edge subset. A more reasonable colluder set can be a
set of neighboring or close edges, or several edges that are all on assingfath. We
examine cases where we can tractably compute the optimal manipulation. Example 1 is
an example of a simple case, where all colluders are on the cheapegiath, and the

5 We later show that it suffices for the colluders to be able to discornnaatiz.



second cheapest path runs in parallel to the cheapest path. Example 3 shows the second
simple case, where all colluders are on a non-optisnalt path, which runs in parallel
to the cheapest path, and can underbid the truly optimal path.

Consider the case where all colluders are on the cheapestpath. simple coali-
tion on the cheapest paththese hold for alke; € C: edgee; is on the cheapest— t
path; when removing;, the cheapest— ¢-path contains no edgg < C. Similarly, C
is a simple coalition on a non-optimal paththe following hold: all edgeg; € C are
a non-optimak — ¢ path,r; the cheapest patti does not interseat, sor* Nr = §; r
becomes cheapest when=Oforalle; € C:3°, ,\cci <>, ¢ i

The following theorems are regarding a VCG PPA, where eddrdsb; and has
costc;, and whereC' is a simple coalition on the cheapest pathWe assume that all
non-coalition members bid truthfully, so fey € 7 \ C we haveb; = ¢;.

Theorem 2 (Simple Cheapest Path Collusion)Let C' be a simple coalition of col-
luders on the cheapest path. The optimal collusion, maximizing paymepisof any
e; € C (andC’s paymenp(C) = 3, - p:) is zero bidsh; = 0 forall e; € C.

Proof. Denote the cheapest path under truthful declarations,asd the cheapest path
under truthful declarations that does not contain any edgéasr,. Consider an edge
e; € C that increases its bid beyong. This increases the cost of under declared
bids. If several agents i declare such increased costs so that the cost oinder
these modified costs is more than the cost,othe pathr; will be chosen, resulting in

a payment of 0 to all agents @i. Since VCG is individually-rational, this manipulation
is not beneficial to the colluders. Thus, it suffices to focus on manipulations where the
bids of edges irC” are such that the cost of is at most the cost of;, so the procured
path isr;. Eliminating any edge; € C disallows the use of;, and for any,; € C' we
denote byr_; the cheapest path when eliminatiag SinceC is a simple coalition on
the cheapest path we have; N C = ¢. Thus fore;, e; € C we haver_; = r_;. Since

e;, e; are arbitrary edges i@, this means that the cheapest path after eliminating any
edge inC'is the same path. This path- cannot contain any edge € C, so it is simply
the cheapest path that does not contain any edg@g in. Denote the edges in= ro
asry = (ej,,€j,, ..., €;,) (y edges). Denote the edgesofasr, = (e;,, i, ..., €;,)

(x edges, containing the edges@j. We assume all agents i3 bid truthfully, and
denote the total cost of, asc(r3). Thus, the formula of Observation 1 can be written
asip; = 3oy bj, — Yoy bi, + b = c(r2) — 330, ., 4 bi,. Note that the agents
in C control the bids{b;|e; € C}, and since each; must be non-negative (the cost
of using edge:;), eachp; is maximized when the bids are minimal. Thus, the optimal
manipulation is bidding; = 0 foralle; € C.

Theorem 3 (Simple Non-Optimal Path Collusion).Let C be a simple coalition of
colluders on the non optimal path The optimal collusion, which maximizes all the
paymentg; of any coalition member (an@' total paymenp(C) = > . p:) is zero
bids:b; = 0forall e¢; € C.

Proof. The proof is almost identical to Theorem 3. We denote the non optimalrpath
which contains all the colluders &s;,,¢;,, ..., e;, ), denote the cheapest path (under

T

true costs) as*, and obtainp; = c(r*) — > (_, .. 4, bi..



Theorem 4 (Cut Collusion).LetC' be a coalition whose removal disconnegisndt,
andh > 0 be some value. The colluders can bid so that _ . p; > h.

Proof. At least onez, € C must be used in the chosen- t path, ag’ is ans — ¢ cut.
VCG is individually rational so if alk € C bid b} = h, for e, we havep; > h.

3 The Collusion Game

Consider a PPA ove = (V, E) with sources and targett. We examine a sub-
setC' C N, who may decide to collude. Under truthful bidding, VCG chooses path

71 = (€, €y, - - -, €, ) and paymentst . ... pt ©. If the agents irC decide to collude,

they can form a coalition and use a collusion scheme, such as those of Section 2.1.
Denote the chosen path under the optimal manipulatiori as (e}, ...,e%) and the
payments under the manipulatipf, . . ., p;. Some manipulations, such as the optimal
manipulation for simple collusion on the cheapest path, do not change the chosen path,
sor* = ry, but increase the payments to coalition memberg;sg p! for anyi € C.

Other schemes, such as collusion on a non-optimal path, change the selected path, so
r* = r1. The coalition members gain payments, but the members on the chosen path,
C N r*, also incur the cost of their edges. Thus, the utility of the colluder coaliion
is:u*(C) = Y icoPi — D icone~ Ci- Using monetary transfers, the coalition’s utility

can be distributed among its members in any way they choose. We define a coalitional
game, based on the total utility a coalition of colluders generates its members.

Definition 3 (Path Procurement Collusion Game).Given a VCG PPA, the value
v(C) of a coalitonC C N is: v(C) = w*(C). In order to manipulate the collud-
ers must trust each other, or sign a certain enforceable contract, so the coalitisn

typically be restricted to only a certain subset of the agents.

Given the above definition, Theorem 1 simply says that in general it is hard to even
compute the value of a coalition in the collusion game. However, Theorem 2, Theo-
rem 3 and Theorem 4 all show that for important restricted cases, finding the optimal
manipulation is trivial. The above definition of the game also allows us to apply solution
concepts to decide how the colluders might share their rewards. The core characterizes
stability, where no subset of the coalition is incetivised to operate on its own. The
Shapley value characterizedair allocation of the reward, reflecting each member's
contribution. Having defined the collusion game, the theme of Example 4 is simple —
this network structure results in the collusion game havingrapty core'.

One might hope that most network structures result in empty cores, so the colluders
would not have a stable way of sharing the reward. If this were the case, the problem
of collusion would be mitigated since despite the existence of profitable manipulations,
the colluders would fight amongst themselves regarding the monetary transfers, and
never form a lasting coalition. Unfortunately, we show that for the common cases of

6 The subscript stands for truthful.

" Example 4 has disjoin; andC;, wherev(C;UCy,) = v(C) butv(Cy) > 0sop(CUCS) =
p(Ct) + p(Cy) < v(Ct). One core constraint is(Cy) > v(Ct) sop(Cy) = v(Cy) =
v(Cy U Cy) andp(Cy) = 0. Another isp(Ch) > v(Cp) > 0, S0 some core constraints fail.



simple collusion (along the cheapest path or along a non-optimal path), the game always
has a nonempty core, and there is a polynomially computable core imputation. Also,
regardingfairness we show that the Shapley value, considered “fair”, is also in the core
and easy to compute. Thus, the colluders can share the gains in a stable and fair manner
8 making collusion a significant problem in such auctions. Our results are based on
showing the game is convex. We show convexity by examining the payment of a simple
coalition C (on the cheapest path or on a non-optimal path). Denote the cheapest path
asr; and the cheapest path that contains no edgésasr,. Denote the non colluders

on the cheapest path as7,, = r1 \ C. Denote the cost of a pathasc(r) = >, ci,

and the cost of the edgesTh, asc(7},) = ZieTm Ci

ier

Lemma 1 (Shortest Path Collusion Payments)Let C' be a simple coalition of col-
luders on the cheapest path. The total payment to the colluders under the optimal ma-
nipulation isP*(C) = |C|(c(r2) — ¢(T7,))-

Proof. From Theorem 2, any colludér € C would bid b; = 0. Thus, the formula
of Observation 1 is simplified tp; = ¢(r2) — ¢(T,) (independent of the colluder’s
identity). Since there arg”| colluders we obtaitP*(C) = |C|(c(r2) — ¢(T},)).

For collusion on a non-optimal path, we denote the optimal (cheapest) pathrd
non optimal path that contair$ asr. We denote the non colluders erasT, = r \ C.
The total cost of the edges#. is ¢(T;.) = ZZETT G-

Lemma 2 (Non-Optimal Path Collusion Payments)Let C' be a simple coalition of
colluders on a non-optimal path. The total payment to the colluders under the optimal
manipulation isP*(C) = |C|(c¢(r1) — ¢(T}).

Proof. The proof is similar to Lemma 1.

Theorem 5 (Convexity of the Collusion Game).The collusion game is convex for
simple coalitions (along the cheapest path or a non-optimal path).

Proof. We give the proof for a simple coalition along the cheapest path (the other case
is almost identical). An alternative definition of convex game¥#:C S C I,Vi ¢ S:
v(S"U{i}) —v(S") < u(SU{i}) — v(S). We show this for simple coalition on the
cheapest pathf. Consider anys’ C S, denoteS \ S’ = B, and leta be any agent in
r1 \ S. DenoteT = r; \ S\ {a}. Denote|S| = h and|S’| = [ (wherel < h), and
denotec(re) = x. Using Lemma 1 we can write(.S), v(S U {a}),v(S"),v(S" U {a}).
We havew(S U {a}) =v(S"UBU{a}) = (h+1)(z —c(T)) — c(S') — c¢(B) — cq;
v(S) =v(S"UB) =h(x —cq — c(T)) —e(S") —e(B); v(S"U{a}) = (I 4+ 1)(z —
e(B) —e(T)) = C(S") — Cu; v(8') = l(x — e(B) — ¢q — ¢(T)) — ¢(S”). Opening
parentheses and canceling terms we gf:U {a}) —v(S) =z + h-C, — c(T) — Cy;
v(S"U{a}) —v(S)=2x+1-C, —c(T) — Co — ¢(B). However] - C, < h-C, and
¢(B) is non-negative, so we hawes’ U {i}) — v(S’) < v(SU{i}) — v(S5).

8 “Fairness” here is for the colluders — the manipulations are devastating for the auctioneer.



Convexity of the collusion game has implications regarding how the colluders can
share the gains. Collusion causes the prices paid to the agents to rise, and monetary
transfers allow the colluders to share the utility in any way they desire. Under unstable
utility distributions the colluders’ coalition is likely to disintegrate, but convexity guar-
antees &tabledistribution, so the colluders can distribute the gains so no subset of the
colluders would benefit from leaving the coalition. The colluders may also want to share
the utility in afair manner, using the Shapley value. In general, even if therstabte
allocations, the Shapley value may be unstable. Unfortunately, for simple coalitions, a
stable allocation always exists, and the Shapley value is also stable.

Corollary 1. For simple coalitions (on the cheapest path or on a non-optimal path),
the collusion game has a non-empty core, containing the Shapley value.

Proof. The collusion game is convex (Theorem 5), so it has a non-empty core coincid-
ing with the Weber set. The Shapley value is in the Weber set so it is in the core.

A final barrier against collusion is computational complexity. Theorem 1 shows
that finding the optimal collusion is hard, but it is trivial for simple coalitions. Corol-
lary 1 guarantees the colluders a fair and stable allocation but it might be hard to com-
pute, even for simple coalitions. We show that for simple coalitions, the colluders can
tractably compute a simple core imputation or the Shapley value. Since the game is
convex, the Weber set is identical to the core. Given a permutation(ry, ..., m,)
of the agents and an agent denote the predecessorsidh = as F:. Denotem] =
v(Fiu{e;})—v(F;), and note this can be computed in polynomial time using Lemma 1
(or Lemma 2). The imputatiom], m3,...,m7) is in the Weber set (the Weber set
is the convex hull of all these vectors for different permutatieiisand so is a core
imputation. A naive way of computing the Shapley value, the centroid of such vectors,
requires performing this process for all agent permutationsequiring exponential
time. We show a polynomial algorithm to compute Shapley value.

Theorem 6. For simple coalitions (on the cheapest path or on a non-optimal path), the
Shapley value can be computed in polynomial time.

Proof. The contribution of edge; to coalitionC (wheree; ¢ C), v(C U{e;}) — v(C)
only depends ofC'|, not on who the specific members@fare. Due to Lemma 1, we
havep*(C) = |C|(c(r2) — ¢(TF)) whereTS = ry \ C are the non-colluders on the
cheapest path. Denoter,) = z, c(r2) = yand)_, . ¢; = z. We havep* (CU{e;}) —
p*(C) = (IC]+ D)y — c(r \C\ {e:})) = |Cl(y — c(r:1 \ ©)) = (IC|+ 1) (y —z + 2+
)= Clly—z+2)=[Clly—z+ztci—y+r—2)+(y—v+z+c)=|Clc+
y —x + z + ¢;). Collusion on the cheapest path does not change the chosen path, so we
haverw(C'U{e;}) —v(C) = = X couqe,) 6 HP(CU{e}) + 3 ec ¢ —p™(C) =
i +|Cl ecity—xz+zt+e=Cl-city—x+ 00

Consider computing the Shapley value &5 ¢;(v) = 4> v(FL U {e;}) —
v(F?) (whereF? are the predecessorsioh 7). Denotey; (v) = > . ; v(Fiu{e;})—
v(F?). We can compute; by iterating over the possibleumbersof predecessorshas
in 7, |F|. Let I1; be all permutations: € II such thatF| = j (i.e. permutations
wherei has exactlyj predecessors. We can denote the total contribution:thas for



coalitions of sizej asM; = -, ;. v(F; U {e;}) — v(F}). Thus we havep;(v) =
Z;‘;Ol M;. Thus we only need to compui€; in polynomial time (for0 < j <n —1).
To computeM; = 3- .,y v(Fy U {e;}) — v(Fy;) we can sum over all possible
predecessor sets forwhere: has exactlyj predecessorsy = {F. C N|r € Il,},
where|F| = (";1) Under this notation/; = > .. v(C U {e;}) — v(C). We've
shown thatv(C U {e;}) — v(C) = |C| - ¢; +y — = + > ,cc cir SO We haveM; =
Yocer|Cl-city—x+) . ci. Since anyC € F have the same siz€'| = j, we get:
M; =|F|-(j-ci+y—2)+ Y ccp dicc Ci- We denotey = >~ > i ¢i- Thus,
M; = (”;1) -(j - ¢; +y — x) + q. Consider computing. Given the coalitiorC of size
|C| = m, denote the weights, forall i € C asW = {(c1,...,¢i—1,Cixt1,---Cm) (W
is the set of the costs of all colluders except Thus,q is simply the sum of weights
in all subsets ofi of sizej, i.e.q = 3 gy 5/=; 2oses S- ANy weightw; € W

: —1\ 4 -1 -1
appears iy exactly (’]?_1) tlme_s, sog = (?_1) S cw & = (?_1)2%60\{61} Co-
Given a colludee;, we can easily compufgezec\{ei} ¢, in polynomial time, and thus

computey in polynomial time. This allows us to compulé; = (";1) (jreity—x)+q

in polynomial time, for anyj. We can thus computg; (v) = Z;L;Ol M; in polynomial
time, and thus compute the Shapley value of any agent in polynomial time.

4 Related Work

Auctions face untruthful selfish agents, so due to strategic behavior, a mechanism trying
to maximize welfare may reach a sub-optimal decision. Proper payment rules incetivize
agents to bid truthfully. A prominent scheme for doing so is the VCG mechanism [23,
10, 13]. Despite its advantages, VCG has many shortcomings [3], including vulnera-
bility to collusion [17]. Collusion can occur in many domains and many of its forms
are illegal [17]. Our model follows an analysis of multi-unit auctions [4], but for the
PPA domain [1]. We examine coalitional deviations, but as opposed to strong Nash
equilibrium [2], we convert the normal-form game to a cooperative game. We provide
aninternal model of collusion, as opposed éaternal interventionsodels [18, 6, 19].

We focus on the core [12] and Shapley value [20]. The Shapley value and other power
indices are typically hard to compute [16, 8], so our result for computing it in some
collusion games is interesting. For general collusion games, the colludeappsoxi-
mate[7, 16] the Shapley value in order to share their gains. Collusion is also related to
shills and false-identity attacks [26, 9, 5, 27], where a single agent pretends to be several
agents. A single edge in a VCG PPA can pretend to be several edges to increase pay-
ments. Our work is also related to of bidding rings and clubs [15, 14], but we assume
the colluders have full information on each other’s costs. Core selecting auctions [11]
are also related to our work, but we do not consider the auctioneer a participating agent,
and the core in our collusion game can be empty.

5 Conclusion

We analyzed collusion in VCG PPAs, and showed that such a domain is vulnerable to
collusion. Some questions remain open for future research. First, similar analysis can be



done for other auctions, such as combinatorial auctions or sponsored search auctions.
Second, due to the drawbacks of VCG for PPAs, what alternative mechanisms should
be used? Finally, what bids are likely to occur for domains with an empty core?
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