
Contract Complexity

Moshe Babaioff
Microsoft Research

Mountain View, CA 94043
moshe@microsoft.com

Eyal Winter∗

Department of Economics
The Hebrew University
Jerusalem, Israel 91905
mseyal@mscc.huji.ac.il

April 29, 2014

Abstract

We study the complexity required for the implementation of multi-agent contracts
under a variety of solution concepts. A contract is a mapping from strategy profiles to
outcomes. Practical implementation of a contract requires it to be ”simple”, an illusive
concept that needs to be formalized. A major source of complexity is the burden involving
verifying the contract fulfillment (for example in a court of law). Contracts which specify
a small number of outcomes are easier to verify and are less prone to disputes. We
therefore measure the complexity of a contract by the number of outcomes it specifies.
Our approach is general in the sense that all strategic interaction represented by a normal
form game are allowed. The class of solution concepts we consider is rather exhaustive
and includes Nash equilibrium with both pure and mixed strategies, dominant strategy
implementation, iterative elimination of dominated strategies and strong equilibria.

Some interesting insights can be gained from our analysis: Firstly, our results indicate
that the complexity of implementation is independent of the size of the strategy spaces
of the players but for some solution concepts (but not all) grows with the number of
players. Second, the complexity of unique implementation is sometimes slightly larger,
but not much larger than non-unique implementation. Finally and maybe surprisingly,
for most solution concepts implementation with optimal cost usually does not require
higher complexity than the complexity necessary for implementation at all.
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1 Introduction

The practical implementation of contracts critically depends on their complexity. ”Simple”
contracts require both signatories and the arbitrator to provide less evidence for the purpose
of the contract verification. Simple contracts reduce the cost of implementation and increase
the signatories’ trust in the contract effectiveness. However, since Holmstrom [1982] the
literature studying the simplicity in contracting environments has been rather limited. This
is probably so as the notion of ”simple” is rather illusive. In this paper we wish to study
this issue in a general framework of multi-agent contracting. Our main objective is to study
the tradeoff between the complexity needed to implement an arbitrary outcome through a
contract, on one hand, and the equilibrium notion applied, on the other hand. Moreover, we
would like to understand the tradeoff between complexity and the total payments made to
the agents.

Our framework will be rather abstract and will lack a specific context: A principal who
wishes to influence agents to play a specific profile of actions can use positive transfers to
affect the structure of incentives. The exogenous strategic environment is given by an n-
person normal form game and the principal’s transfers affect preferences in a qausi-linear
manner. The contract maps conditions regarding the profile played to a vector of positive
transfers to the agents. There is clearly more than a single way to define the complexity of
a contract. For example, one might consider the computational complexity of the contract,
or its Kolmogorov complexity [1998]. We focus on the ”evidence complexity” as explained
below.

Generally, a contract might specify for every profile played, a different vector of transfers.
Such a contract seems rather complex in the following sense. If the signatories would like
to argue that a specific outcome (vector of payments) should have been made, they need
to bring evidence regarding the profile played. Clearly, the same piece of evidence cannot
be used to argue for different outcomes. Thus, the number of different pieces of evidence
that are necessary and sufficient to argue about every profile played should be equal to the
number of possible outputs of the contract. We measure the complexity of a contract by the
number of possible outputs of the contract. Note that as the mapping between profiles played
and outcomes is deterministic, such a mapping induces a partition over the set of strategy
profiles, and our complexity measure counts the number of elements in the partition, thus we
call it the partition complexity of the contract.

To further explain the motivation behind our definition of complexity we first note that
the more refined the contract partition is, the less evidence a signatory is required to bring in
order to verify the contract’s fulfillment (vis a vis himself or the court). For example assume
that the principal contracts with two workers to jointly perform a project on his behalf with
each agent being responsible for one task, and the two task are similar. A contract that
specifies payment only as a function of the number of tasks performed (i.e., 0, 1, or 2) is
properly simpler than a contract that also makes contingencies on the identity of the agent
whose task ended successfully. The contract partition that corresponds to the latter contract
is a refinement of the partition of the first one. Furthermore, the latter contract is more
complex than the former. If only one agent completed his task successfully one would need
to bring evidence regarding who this agent was and who failed, but with the former contract
it is enough to bring evidence proving that only one agent completed his task successfully
and no evidence concerning the person’s identity is needed.
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While coarser contract partitions are simpler they are more limited in terms of the incen-
tives that they set up for agents to play the strategy profile that the principal desires them
to play. This is precisely the tradeoff that we wish to investigate in this paper; namely, the
tradeoff between the simplicity of contracts and what they can achieve in terms of incentives.

Not every two contracts are compared by the simplicity criterion which is based on refining
and coarsening of partitions. However, one can consider the number of components in the
contract partition as a proxy for the refinement comparison. It is the most natural extension
of the partial order induced by the refinement relation, to a complete order on the entire class
of partitions. In most of our results when we compare contracts for their simplicity these
contracts will be comparable by means of the partial order of refinement. In the exceptional
cases in which these partitions are incomparable we will compare them by means of the
complete order extension (i.e., the number of components of the partitions).

Our Results: We investigate how the complexity of the contract relates to the solution
concept the principal is interested in implementing. Our analysis covers almost all the well
known non-cooperative solution concepts. This includes: Nash equilibrium in both pure
and mixed strategies, dominant strategy implementation, iterative elimination of dominated
strategies, (non-equilibrium) undominated strategies and strong equilibrium. We will be
referring to the last concept as a coalitional solution and to the rest as individual solutions.1

For all these solution concepts we will be concerned with both unique implementation
(in which the principal’s desired outcome is sustained as a unique equilibrium outcome) and
non-unique implementation. Finally, for each solution concept and for each type of imple-
mentation (unique or non-unique) we will be concerned with both feasible implementation as
well as optimal implementation. In a feasible implementation the principal is not concerned
about the payments that he transfers to agent to sustain his desirable outcome. In contrast,
in an optimal implementation the principal is constrained not to pay more than he would have
if there was no constraint on the complexity of contracts. Put differently, the principal is in
pursue of the simplest contract whose cost is identical to the cost of the contract in which he
is allowed to make contingencies on each strategy profile. Clearly, feasible implementation
requires (weakly) less complexity than optimal implementation and controlling for these two
types of implementations, unique implementation require (weakly) more complex contracts
than non-unique implementation.

Roughly, our results can be summarized as follows. For weak individual solution solution
concepts (like Nash and undominated strategies), the complexity of optimal implementation
is only 2, as simple as possible. Implementation as a unique pure Nash equilibrium requires
slight higher complexity of 3, and this complexity is sufficient for optimal implementation.
Once moving to more demanding solution concepts, like iterative elimination of dominated
strategies, the complexity of feasible implementation grows to become linear in the number
of agents (complexity of n + 1 when n is the number of agents). The same complexity is
sufficient for dominant strategy implementation, but not for optimal implementation - such
implementation has strictly higher complexity, but not much higher (still linear). For strong
Nash equilibrium, a coalitional solution concept, we show that optimal implementation is
simple, a complexity of 2 is sufficient. Such a low complexity is also sufficing for feasible
implementation of unique strong Nash equilibrium. We leave open the complexity of an

1The distinction concerns on the type of deviation on which the equilibrium concept is built i.e. coalitional
deviations vs. individual deviations.
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optimal implementation of a profile as a unique strong Nash equilibrium.
Let us discuss some insights from the results. First our results indicate that the complexity

of implementation is independent of the size of the strategy spaces of the players but for some
solution concepts it grows (linearly) with the number of players. Interestingly, the contracts
we present have the property that the principal needs to know very little about the game
even if he would like to implement a profile in dominant strategies with optimal cost. All
he needs to know is a bound on the payoffs of the game, and the payments needed for Nash
implementation. All other details, like the exact space of strategies and the exact payoffs, are
not needed. This means that unforeseeable actions that do not carry substantial payoffs to
the parties cannot disrupt the effectiveness of the contracts. Additionally, the incompleteness
of these contracts under such unforeseeable actions does not affect their optimality. Thus,
these contracts are quite robust, and can be used even if the actually game is not exactly the
one the principal believe the agents are playing.2

Second, our results indicate that insisting on unique implementation does not increase the
complexity substantially. For individual solution concepts this is the case for both feasible
and optimal implementation. The only exception is pure Nash equilibrium, but the increase
in complexity is minor. For (mixed) Nash equilibrium the question remains open. For strong
Nash equilibrium the uniqueness requirement does not imply an increase in complexity for
feasible implementation (and the question for optimal implementation remains open).

Finally, our results provide important insight regarding the comparison between feasible
and optimal implementation. Apriori one might expect a trade-off between the cost of the
contract (the total payment awarded to agents) and its complexity. One might expect that
reducing the complexity of a contract might come at the expense of higher power incentives
offered to agents. Surprisingly this is generally not the case for individual solution concepts.
Our findings do not indicate such a tradeoff, except of a slight increase in complexity for
optimal implementation in dominant strategies. In fact, for most solution concepts and for
both feasible and optimal implementations, a contract with minimal complexity for feasible
implementation also achieves the first best, and hence also provides an optimal implementa-
tion. i.e., it’s cost does not exceed the cost of a contract in which the principal can verify any
strategy profile. Exceptional in this respect is the coalitional solution of unique strong Nash
equilibria for which we haven’t be able to establish this comparison though we conjecture
that some tradeoff between complexity and cost does exist.

Related Work: The complexity of contracts has been discussed in the economics litera-
ture mainly in the context of bilateral contracting. Much of this literature builds on the impor-
tant insight regarding incomplete contracts that was introduced in Williamson’s [1975, 1985]
two seminal books and later by Hart and Moore [1988]. According to this insight, contracts
are never complete because of the enormous complexity of all possible contingencies. Holm-
strom and Milgrom [1987] argue that ”price-only” contracts are often used in the real world
to avoid the complexity of efficient contracts.

Anderlini and Felli [1994] consider ”algorithmic” contracts i.e. contracts for which the
mapping from the states of the world to outcome can be computed in a finite number of steps.
Although not every contract satisfies this condition, they are able to show that every contract
can be approximated (in terms of signatories expected payoffs) by algorithmic contracts.
Melamad et al [1997] discuss the relation between contract complexity and delegation in a

2Additionally, computing the contract is easy.
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principal and 2-agent effort game. They show that delegation can reduce the complexity
of contracts. They define complexity in terms of the number of contingencies. Dye [1985]
considers context dependent complexity of contracts by introducing an explicit measure of
complexity. In contrast, Anderlini and Felli [1999] use complexity cost to explain contractual
incompleteness without referring to a specific measure of complexity. Instead they consider
the allocation of property rights among two agents and establish results that quantify over
a class of complexity cost functions to assess the tradeoff between complexity and efficiency.
Segal [1999] considers contracts complexity in the context of the holdup problem. Complexity
here is defined in terms of the number of future trading opportunities that are put into the
contracts.

Unlike the above literature our model and analysis attempt to capture a general con-
tracting environment based on an arbitrary n-person normal form game and a plethora of
equilibrium solution concepts. While the tradeoff between complexity and efficiency has been
discussed in the existing literature for various more specific environments, as far as we know,
the tradeoff between complexity and the strength of the solution concept has not been studied
before. One of our main objectives in this paper would be to find the least complex contract
that allows an arbitrary outcome to be implemented for each such solution concept.

Recently, Hart and Nisan [2013] have studied the menu complexity of auctions. A seller
aiming to maximize his revenue offers a menu to a buyer with a combinatorial valuation, and
the complexity of a menu is the number of different elements in the menu. Note that much
like our complexity measure, this measure also counts the number of different outcomes of the
mechanism. The performance of simple mechanisms (with only few outcomes) was recently
further studied by Li and Yao [2013] and Wang and Tang [2013].

Organization: In section 2 we set up the model list the definitions of the solution
concepts we are dealing with and present the well known example of team production with
two levels of effort, a game that will be useful for many of our results. In Section 3 we provide
our analysis for individual solution concepts. Our analysis for the coalitional solution concepts
is provided in Section 4. We conclude with comments in Section 5.

2 Model and Preliminaries

We are given a normal-form game G = (N,S, U) with a set N of n agents, space of strategies
S and utilities U . Agent i’s set of strategies (actions) is Si. The space S of strategy profiles
is S = S1 × . . . × Sn.

3 When the agents play the strategy profile s ∈ S, agent i’s utility in
the game is Ui(s). A principal is interested in implementing some arbitrary strategy profile
s∗ ∈ S via some solution concept E.

The principal is able to sign a contract with the agents. A contract can only specifying
non-negative payments from the principal to the agents (his inability to fine the agents is
known as the limited liability constraint). Formally, a contract C specifies for each profile
s ∈ S and each agent i ∈ N a payment Ci(s) ≥ 0 to the agent. Given the game G and
contract C, the induced game GC = (N,S, U + C) is a game with the same set of agents N
and same strategy space S, but the payoff for agent i when the agents are playing strategy
s ∈ S is now Ui(s) +Ci(s). This is so as agent i is also being paid Ci(s), on top of his utility
in the game G which was Ui(s).

3Note that representing an arbitrary game requires exponential space.
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Given a normal form game G, a solution concept E is defined by a set of strategy profiles
E(G) ⊆ S. We say that a contract C implements the profile s∗ via the solution concept E
if s∗ belongs to E(GC). We say that C implements s∗ as the unique profile satisfying the
solution concept E if E(GC) = {s∗}.

We are interested in understanding the minimal complexity of contracts that implement
an arbitrary desired profile s∗ via various solution concepts. We consider the following way
to represent a contract. A contract C is defined by a partition P of the space of strategies S
to a disjoint union of k pieces (P1, P2, . . . , Pk), and for each element of the partition (part)
the contract specifies the payment to each agent if the strategy profile belongs to that part:
Formally, for each part Pj in the partition and every s ∈ Pj , the payment Ci(s) to agent
i is Ci(Pj). We view the partition P as a constraint imposed on the contract in terms of
contingencies that are allowed. The contract can make contingencies only on elements of
the partition and is not allowed to distinguish between two strategy profiles belonging to the
same element of the partition. The partition complexity of a contract is defined as the number
of parts in the partition P of that contract. For a contract with partition (P1, P2, . . . , Pk)
the complexity is k.

The cost of implementing profile s∗ for a given contract C is the sum of payments to all
agents, as determined by C, when the agents play the profile s∗, that is

∑
i∈N Ci(s

∗).4 Given
a solution concept E, the optimal cost of implementing profile s∗ via E is the infimum cost of
implementing s∗ via E, by a contract C that can assign an arbitrary non-negative payment
to each profile s ∈ S.

For a given ϵ > 0, we say that a contract C implements the profile s∗ via E with ϵ-optimal
cost, if the cost of implementing the profile s∗ via E by the contract C is larger than the
optimal cost of implementing profile s∗ via E by at most ϵ.

We are interested both in the minimal complexity needed to implement a profile via some
solution concept, and in the minimal complexity needed to implement a profile via some
solution concept with optimal cost. For a given solution concept E, we say that feasible
implementation in the solution concept E has partition complexity k if for any game and any
profile s∗, it is possible to implement the profile s∗ via E by a contract of partition complexity
k, but not by a contract of complexity k − 1 (that is, for some game and for some profile
s∗ there exist no contract of complexity k − 1 implementing s∗). Additionally, we say that
optimal-cost implementation in the solution concept E has partition complexity k if for any
game, any profile s∗ and any ϵ > 0, it is possible to implement the profile s∗ via E with
ϵ-optimal cost by a contract of partition complexity k, but not by a contract of complexity
k − 1.

2.1 Solution Concepts

We next formally define the solution concepts we consider, all of them are standard solution
concepts and we present them for completeness.

Definition 1. Given a game G:

4We remark that the contract is allowed to promise larger payments if s∗ is not played, these promises will
not affect the cost of implementing s∗ as long as they are not realized when s∗ is played. We later observe that
for dominant strategy implementation disallowing such promises might result in exponential size contracts.
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• a profile of strategies s∗ ∈ S is a pure Nash equilibrium if for every i ∈ N it holds that
Ui(s

∗) ≥ Ui(si, s
∗
−i) for every si ∈ Si.

• s∗i ∈ Si is a strict dominant strategy for i ∈ N if Ui(s
∗
i , s−i) > Ui(si, s−i) for every s ∈ S.

A profile s∗ is a (strict) dominant strategies profile if for every i ∈ N , the strategy s∗i
is a strict dominant strategy.

• s∗i ∈ Si dominates strategy si ∈ Si if Ui(s
∗
i , s−i) ≥ Ui(si, s−i) for every s−i ∈ S−i,

with strict inequality for some s−i. A profile s∗ is undominated if for every i ∈ N , the
strategy s∗i is not dominated by any other strategy.

• s∗ ∈ S survives iterative removal of strictly dominated strategies if there exist a sequence
of strategies s1k1 , s

2
k2
, . . . , srkr that does not include the strategy s∗i for every i ∈ [n], such

that for every j ∈ [r−1] if strategies s1k1 , s
2
k2
, . . . , sjkj are eliminated then sj+1

kj+1
becomes

a dominated strategy for agent kj , and there is not strategy that is not on the list that
can be added as the r + 1 element of the list.

• a profile of mixed strategies s∗ ∈ ∆(S) is a mixed Nash equilibrium if for every i ∈ N it
holds that Ui(s

∗) ≥ Ui(si, s
∗
−i) for every si ∈ ∆(Si).

• a profile of strategies s∗ ∈ S is a strong Nash equilibrium if there is no coalition R ⊆ N
and strategy profile sR ∈ SR such that for every i ∈ R it holds that Ui(sR, s

∗
−R) >

Ui(s
∗).

2.2 The Effort Game

One specific game that would be useful in proving lower bounds on the partition complexity of
various solution concepts is the Effort Game.5 In this game each agent i ∈ N has a set of two
possible actions Si = {0, 1}, the low effort action (si = 0) has a cost of 0 independent of the
actions of others, while the high effort action (si = 1) has a cost of ci > 0 again, independent
of the actions of others. In this game the principal will be interested in implementing the
all-effort vector (si = 1 for all i). Note that if payments are not contingent at all on the
strategies played, every player has a dominant strategy to shirk. This means that any non-
trivial solution concept will require partition complexity of at least 2.

3 Individual Deviation Concepts

In this section we consider individual deviation concepts: Nash equilibrium, unique Nash
equilibrium, iterative removal of strictly dominated strategies, and strict dominant strategies.

The Nash cost of implementing s∗ is defined to be
∑

i∈N t̂NE
i for

t̂NE
i = max

ŝi∈Si

Ui(ŝi, s
∗
−i)− Ui(s

∗)

Clearly any implementation in a solution concept that is stronger than Nash equilibrium
requires paying at least the Nash cost. We observe below that the Nash cost is the optimal
cost not only to implement a profile as a Nash equilibrium, but also to implement it as

5A moral hazard version of this game was studied in [16, 3].

6



the unique Nash equilibrium, as the unique profile that survives iterative removal of strictly
dominated strategies, or in strict dominant strategies.

3.1 (Non-unique) Nash Equilibrium

As mentioned, for the effort game one cannot hope to implement the all-effort vector as a
Nash equilibrium with partition complexity of 1, as shirking is a dominant strategy for such a
contract. One can immediately observe that optimal-cost implementation in Nash equilibrium
has partition complexity 2. The partition that implements a profile is the natural partition,
separating the desired profile from all other profiles, and paying the minimal needed amount.

Observation 2. Optimal-cost implementation in Nash equilibrium has partition complexity
2. Therefore, feasible implementation in Nash equilibrium also has partition complexity 2.

Proof. Given any game and a profile s∗ ∈ S, we show that it is possible to implement s∗ as
a Nash equilibrium with a contract of partition complexity 2. Moreover, for any ϵ > 0 there
is such a contract with ϵ-optimal cost.

Consider the contract that pays 0 to each agent if the profile played is not s∗, and pays
every agent i the amount of ti = t̂NE

i + ϵ/n if the profile played is s∗. The profile s∗ is a
Nash equilibrium as given that all agents other then i are playing s∗−i, agent i gets utility
Ui(si, s

∗
−i) from playing si ̸= s∗i , while he gets utility Ui(s

∗)+ti = maxŝi∈Si
Ui(ŝi, s

∗
−i)+ϵ/n ≥

Ui(si, s
∗
−i)+ϵ/n from playing s∗i . The claim that this contract has ϵ-optimal cost is trivial.

3.2 Dominant Strategies

We have seen that optimal-cost implementation in Nash equilibrium has partition complexity
2, the complexity that is also necessary for feasible implementation. Implementation in
dominate strategies is much more demanding and requires linear complexity. Interestingly,
for dominant strategies, optimal-cost implementation requires strictly higher complexity than
just feasible implementation, although the gap is not large. While for any game it is possible
to implement any profile in dominant strategies with a contract of complexity n + 1 by
just counting the number of agents playing the desired strategy6, for the effort game such
complexity is not sufficed for optimal implementation. In particular, any symmetric contract
that just pays the agent according to the number of agents playing the desired strategy cannot
achieve optimal-cost implementation (even for a symmetric effort game). Yet, optimal-cost
implementation is possible by a refinement of the counting contract that isolates every profile
in which exactly one agent does not play the desired strategy. Such a contract has partition
complexity 2n and is clearly more complex than the coarser contract that only achieves a
feasible implementation by counting. The proof actually presents a contact with only 2n− 1
parts (created by joining the desired profile and all profiles in which none plays the desired
strategy).

We remark that feasible implementation in dominant strategies can be achieved with a
contract that only uses a bound on the payoffs of the game, there is no real need to know
the exact details of the game (the space of strategies and the exact payoffs). For optimal
implementation Nash payments are also needed, but not more than that.

6Note that this is a refinement of the simple contract that implements the profile as a Nash equilibrium,
thus the contracts can also be compared in terms of refinement.
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Theorem 3. Feasible implementation in dominant strategies has partition complexity of n+1.
Optimal-cost implementation in dominant strategies has partition complexity of at least n+2
and at most 2n− 1.

Proof. The claim that feasible implementation in dominant strategies has partition complex-
ity of at least n + 1 follows from a lower bound proven for a weaker solution concept in
Lemma 9. That lemma shows that feasible implementation of a profile as the unique profile
that survives iterative removal of strictly dominated strategies has partition complexity of
at least n + 1. To complete the proof of the theorem we present three claims, the theorem
follows directly from these claims.

We first present a contract with complexity n+ 1 that implements the desired profile as
a profile of strict dominant strategies.7 Although we present an explicit contract with some
specific payments, the contract really only needs to have a bound on the payoffs of the game.

Lemma 4. Feasible implementation in dominant strategies has partition complexity of at
most n+ 1.

Proof. The claim that feasible implementation in dominant strategies has partition complex-
ity of at most n + 1 follows from the following simple contract with n + 1 parts. Fix some
profile s∗ that should be implemented. Each part Pj for j ∈ {0, 1, 2, . . . , n} includes all strat-
egy profiles in which exactly j players follow what they need to play according to the strategy
s∗. Let Z = 1 + 3 × maxi maxs,s′ (Ui(s)− Ui(s

′)).8 If the strategy belongs to Pj then all
players are paid j × Z. It is easy to verify that every player i has a strict dominant strategy
to play s∗i , as Z is huge and he loses Z by deviating.

We next show that a contract with complexity 2n− 1 can implement the desired profile
as a profile of strict dominant strategies with optimal cost. Now, the contract needs to know
both the Nash payments and a bound on the payoffs of the game, but does not really need
any more details about the game.

Lemma 5. Optimal-cost implementation in dominant strategies has partition complexity of
at most 2n− 1.

Proof. The claim that optimal-cost implementation in dominant strategies has partition com-
plexity of at most 2n − 1 follows from the following contract with 2n − 1 parts, which is a
slight modification of the contract presented in Lemma 4. Fix some profile s∗ that should
be implemented. Each part Pj for j ∈ {1, 2, . . . , n− 2} includes all strategy profiles in which
exactly j players follow what they need to play according to the strategy s∗. Part Pn in-
cludes the profiles in which no player is following his desired strategy, and the profile in which
all players follow their desired strategy. There are also n additional parts (instead of pn−1),
which will be denoted P i

n−1 for i ∈ [n], each part P i
n−1 includes all profiles in which all players

but i are following the desired strategy, while i does not. If the strategy belongs to Pj for
j ∈ [n − 2] then all players are paid j × Z. For part Pn all players are paid slightly above
their Nash payment, player i is paid ti = t̂NE

i + ϵ/n. For P i
n−1 for i ∈ [n], player i is paid 0,

7Which by definition makes the profile the unique profile of dominant strategies.
8A naive computation of Z requires exponential time, but we do not really care about the exact value of

Z, all is really needed is that Z is large compare to the gains by any deviation. If payoffs are bounded within
a interval, knowing that interval is enough to compute some Z that is good enough for the contract to work.
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while every other player j ̸= i is paid tj = (n− 1)× Z. It is again easy to verify that every
player i has a strict dominant strategy to play s∗i .

Finally, we show that optimal-cost implementation in dominant strategies has partition
complexity of at least n+ 2, thus require strictly higher complexity than feasible implemen-
tation.

Lemma 6. For the effort game, optimal-cost implementation of the all-effort profile in dom-
inant strategies has partition complexity of at least n+ 2.

Proof. To prove the claim we show that for the effort game, for ϵ > 0 that is small enough,
any contract with partition complexity n+1 does not have ϵ-optimal cost, thus any contract
that has ϵ-optimal cost has complexity larger than n+ 1. By Lemma 5 there is an ϵ-optimal
contract implementing the all-effort in dominant strategies with cost

∑
i ci+ ϵ, as ci, the cost

of effort of i, is also the Nash payment for i.
Fix any contract with n+1 parts and assume that it is ϵ-optimal. We can assume without

loss of generality that the all-effort profile belongs to P0. As this is an ϵ-optimal cost, each
player i is paid between ci and ci + ϵ. Now consider any profile s(i) = (0, 1−i), the profile in
which all players but i exert effort, while i shirks. Clearly any such profile does not belong
to P0, as i has a dominant strategy to exert effort. We also claim that for i ̸= j, s(i) and s(j)

must belong to different parts. This is so as in the part that includes s(i) it must be the case
that the payment to i is at most ϵ (as otherwise i would prefer not to exert effort when all
other do), while in the part that includes s(j) it must be the case that the payment to i is at
least ci (otherwise i ends up with negative utility for some profile in which he exerts effort,
contradicting exerting effort being a dominant strategy for i). This implies that there are n
parts on top of the parts that includes the all-effort profile. Finally, we claim that any profile
in which exactly two players shirk cannot belong to any of the above n + 1 parts. Consider
the profile s(i,j) = (0, 0, 1−{i,j}) for i ̸= j. We first claim that s(i,j) cannot be in the same

part as s(i) as in this case j’s does not have a dominant strategy to exert effort. Similarly,
s(i,j) cannot be in the same part as s(j). Finally, we consider the possibility that s(i,j) is in
the same part as s(k) for k /∈ {i, j}. In that case, the payment for k in this part must be at
least ck, as k exerts effort in s(i,j), but on the other hand, it cannot be more than ϵ, since in
the all effort profile k is paid at most ck + ϵ and k should have the incentive to exert effort
even if all others exert effort.

This completes the proof of the theorem.

Observe that the complexity of implementing the all-effort profile in dominant strategies
is only 2n − 1 and not 2n which is the complexity of the naive contact that promises to
pay the cost of effort for every agent exerting effort and zero otherwise. Also note that if
the contract was restricted to pay at most the cost of effort to an agent, independent of the
profile (could not make promises for larger payments when profiles other than the all-effort
profile are played), then exponential complexity of 2n would have been necessary for feasible
implementation. Thus, our assumption that off-equilibrium promises are allowed to be large
is necessary to achieve contracts with a reasonable partition complexity.
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3.3 Iterative Solvability

While optimal-cost implementation in dominant strategies has complexity of at least n + 2,
which is higher than the complexity required for (non-optimal) implantation, once we move
to the weaker solution concept of unique profile that survives iterative removal of strictly
dominated strategies, it is possible to get optimal-cost implementation with complexity n+1,
the required complexity even for feasible implementation. Observe that the gap in complexity
between this notion and Nash implementation is large (linear vs. constant), while the gap
between this notion and implementation in dominant strategies is very small (both linear).

Theorem 7. Optimal-cost implementation as well as feasible implementation of a profile as
the unique profile that survives iterative removal of strictly dominated strategies has partition
complexity of n+ 1.

The theorem follows directly from Lemma 8 and Lemma 9 below.

Lemma 8. Optimal-cost implementation of a profile as the unique profile that survives iter-
ative removal of strictly dominated strategies has partition complexity of at most n+ 1.

Proof. Given any game and profile s∗ ∈ S, we show that there exists a contract with partition
complexity n+ 1 that implements s∗ as the unique profile that survives iterative removal of
strictly dominated strategies. Moreover, we show that for any ϵ > 0 there is such a contract
with ϵ-optimal cost.

We first define the contract. Fix some permutation over the agents. Define Pj for j ∈
[n+ 1] to be the set that include all profiles s satisfying si = s∗i for i < j and sj ̸= s∗j . Note
that Pn+1 includes the profile s∗, and only that profile.

Next we define the payments for each part. We first define the payments for part Pj such
that j ∈ [n]. The payment to every agent i ≥ j at Pj is 0. The payment to every agent i < j
at Pj is

ti = max
ŝ∈S

(Ui(s
∗
1, s

∗
2, . . . , s

∗
i−1, ŝi, ŝi+1, . . . , ŝn)− Ui(s

∗
1, s

∗
2, . . . , s

∗
i−1, s

∗
i , ŝi+1, . . . , ŝn)) + ϵ/n

Finally, the payment to every agent i at Pn+1 is

tNE
i = t̂NE

i + ϵ/n = max
ŝi∈Si

(Ui(ŝi, s
∗
−i)− Ui(s

∗)) + ϵ/n

We next show that s∗ is the unique profile that survives iterative removal of strictly
dominated strategies. First observe the agent 1 has a strictly dominant strategy to play s∗1.
Fix any strategies of the other agents s−1 ∈ S−1. If s−1 = s∗−1 then any strategy s1 ̸= s∗1 will
result with agent 1 having utility U1(s1, s

∗
−1) (as he is paid 0 at S1) while agent 1’s utility

when playing s∗1 is U1(s
∗
1, s

∗
−1) + tNE

1 = maxŝ1∈S1 U1(ŝ1, s
∗
−1) + ϵ/n ≥ U1(s1, s

∗
−1) + ϵ/n.

If s−1 ̸= s∗−1 then any strategy s1 ̸= s∗1 will result with agent 1 having utility U1(s1, s−1)
(as he is paid 0 at S1) while agent 1’s utility when playing s∗1 is U1(s

∗
1, s−1)+t1 = U1(s

∗
1, s−1)+

maxŝ∈S(U1(ŝ)− Ui(s
∗
1, ŝ−1)) + ϵ/n ≥ U1(s1, s−1) + ϵ/n.

Next we assume that each agent j from 1 to i − 1 is playing s∗j , and need to show that
agent i now has a strictly dominant strategy to play s∗i . The exact same arguments as above
hold for the game restricted to each agent j from 1 to i− 1 is playing s∗j .

Finally we show that for any ϵ > 0 there is such a contract with ϵ-optimal cost. Indeed
the cost of the above contract is

∑
i∈N tNE

i , while any other contract the implements s∗ with
the weaker notion of Nash equilibrium has cost at least

∑
i∈N t̂NE

i =
(∑

i∈N tNE
i

)
− ϵ.
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Lemma 9. Feasible implementation of a profile as a profile that survives iterative removal
of strictly dominated strategies has partition complexity of at least n+ 1.

Proof. To prove the claim we show that for the effort game, any contract implementing the all-
effort profile in iterative elimination of strictly dominated strategies has partition complexity
of at least n+ 1.

Consider a contract with partition complexity k+1, such a contract partitions the strategy
profiles to k+1 disjoint sets. We show that if there are less than n+1 such sets, the contract
does not implement the profile as promised.

Let P1, P2, . . . , Pk+1 be the partition of the space of strategies profiles to k + 1 sets.
(w.l.o.g. all of them are non-empty). Assume w.l.o.g. that agents are sorted by the order
of elimination, that is, agent 1 has a dominant strategy to exert effort. Given that agent 1
exerts effort, agent 2 has a dominant strategy to exert effort, etc. We denote the payment to
agent i is sets Pj by pi,j . Assume without loss of generality that the sets are sorted in some
order that satisfies the following property: for any j > i it holds that pi,j ≥ pi,i. for example,
set P1 is some set for which agent 1 gets the minimal possible payment over all payments
that agent 1 gets. After fixing this set, P2 is some set in which agent 2 get at least as much
as he gets in any of P3, P4, . . . , Pk+1, etc.

We claim by induction that for i ∈ {1, 2, . . . , k}, all profiles in which every agent j ≤ i
exerts effort, do not belong to any set Pr for r ≤ i. This implies that the all-effort profile
does not belong to Pi is i ≤ n, and thus there must be at least n+ 1 parts in the partition.

We first prove the claim for i = 1. Assume that there is a profile s ∈ P1 in which agent
1 exerts effort. Given that the other agents are playing s−1, agent 1 gets minimal payment
when exerting effort (playing s1). But effort is costly, and if agent i shirks, he will be paid
at least as much but will not bear the cost of effort, increasing his utility. This contradicts
the fact that agent 1 has a dominant strategy to exert effort. This proves the base of the
induction.

Next we prove the induction step. Assume that the claim holds for every j < i, we next
prove the claim for i. Consider the process of eliminating dominated strategies, and consider
the i-th step in which shirking was eliminated for every agent j < i, and now shirking needs
to be eliminated for agent i. We know by the induction hypothesis that every profile s in
which every agent j < i exerts effort belongs to some Pr for r ≥ i. The contract must ensure
that i is better off exerting effort in this case. But effort is costly and i can ensure a payment
of at least pi,i even when shirking (as for any r > i it holds that pi,r ≥ pi,i), thus for agent i
to have a dominant strategy to exert effort (given that every j < i exerts effort), any profile
in which every agent j ≤ i exerts effort does not belong to Pi.

3.4 Unique Nash Equilibrium: Pure and Mixed

In this section we consider implementing a profile as the unique pure Nash equilibrium, or as
the unique Nash equilibrium (among both pure and mixed).

3.4.1 Unique Pure Nash

While feasible implementation of a profile as a Nash equilibrium has complexity of only 2,
such complexity is not enough to ensure that the profile is the unique Nash equilibrium
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profile. We show that complexity of 3 is required to achieve this, and is also sufficient for
optimal-cost implementation.

Theorem 10. Feasible implementation of a profile as the unique pure Nash equilibrium has
partition complexity of at least 3. Optimal-cost (and thus also feasible) implementation of a
profile as the unique pure Nash equilibrium has partition complexity of 3.

The theorem follows from the following two claims.

Lemma 11. For the effort game, any contract with partition complexity 2 cannot implements
the all-effort profile as the unique pure Nash equilibrium.

Proof. Assume that such an implantation is possible, we will derive a contradiction. Assume
that we are given a partition to only two parts, call them P1 and P2. Without loss of generality
assume that all-effort vector belong to P1. Let pi denote the payment to agent i if the vector
is in set P1, and let qi denote the payment to agent i if the vector is in set P2. To get the
all-effort vector to be a Nash equilibrium, in P1 each agent i must be paid pi that is at least
ci. If a vector with agent i shirking and all other n − 1 agents exerting effort belong to P1

then the all effort is not an equilibrium: i would rather shirk as this will increase his utility
because he will have less cost but will receive the same payment of pi. We conclude that all
vectors with exactly n− 1 agents exerting effort belong to P2. The payment qi to agent i in
P2 must be at most pi − ci, as otherwise that agent shirking from the all-effort vector would
be a beneficial deviation, thus 0 ≤ qi ≤ pi − ci < pi.

Now consider the all-shirking vector. It must be in P2 as if it belongs to P1 it is an
equilibrium: each agent i gets utility of pi ≥ ci > 0 and no deviation can increase that (as for
both P1 and P2 the payment to i does not exceed pi, as qi < pi, and exerting effort has higher
cost than shirking). As the all-shirking vector is not an equilibrium, a beneficial deviation in
which one agent exerts effort must exist. Assume that agent is i, it must be the case that the
vector when i exerts effort and all other shirk belongs to P1 (since deviating from shirking
to exerting effort cannot be beneficial if the payment does not change). For this vector not
to be an equilibrium, another agent j ̸= i must have a beneficial deviation of exerting effort,
but this new vector cannot belong to P2 (as in P2 agent j’s payment qi is smaller than pi and
deviating by shirking increases the cost), and it cannot belong to P1 as the payment is the
same and the cost increases. Thus we have a contradiction and this concludes the proof.

We next show that optimal-cost implementation of a profile as the unique pure Nash
equilibrium has partition complexity of 3. The contract we built essentially put players 1 and
2 into a matching pennies game which has no pure Nash equilibrium. This game is slightly
modified to make sure the desired profile is indeed an equilibrium.

Lemma 12. Optimal-cost implementation of a profile as the unique pure Nash equilibrium
has partition complexity of 3.

Proof. Fix any game and let s∗ be the profile that we would like to implement as the unique
pure Nash equilibrium. Let Z = 1+3×maxi maxs,s′ (Ui(s)− Ui(s

′)). Consider the contract
with three parts P0, P1, P2 as follows. Part P0 includes only the profile s∗, each player i is
paid slightly above his Nash payment, player i is paid t̂NE

i +ϵ/n. Part P2 includes any profile
s such that s1 ̸= s∗1 while s2 = s∗2, and any profile s such that s1 = s∗1 while s2 ̸= s∗2, excluding
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the profiles in which every player i ̸= 2 plays s∗i . For profiles of part P2, player 2 is paid Z,
while all other are paid 0. Part P1 include every other profile. For profiles of part P1, player
1 is paid Z, while all other are paid 0.

We claim that s∗ is the unique pure Nash equilibrium in the game induced by this contract.
To prove this we first observe that s∗ is indeed a Nash equilibrium as any player i deviating
to si will end up with 0 payment and utility Ui(si, s

∗
−i), while playing s∗i gives i utility of

Ui(s
∗) + t̂NE

i + ϵ/n = maxŝi∈Si
Ui(ŝi, s

∗
−i) + ϵ/n ≥ Ui(si, s

∗
−i) + ϵ/n > Ui(si, s

∗
−i). The claim

that this contract has ϵ-optimal cost is trivial, as paying the Nash cost is necessary for Nash
implementation (even non-unique).

We then show that for any profile that is not obtained by a single player deviating from
s∗, if the profile is in P1 then player 2 has a beneficial deviation, and if the profile is in P2

then player 1 has a beneficial deviation. For such i ∈ {1, 2}, if the profile s is such that i
is not playing s∗i , the deviation is to switch to s∗i , and if i is playing s∗i , the deviation is to
switch to a strategy s′i which maximizes Ui(s

′
i, s−i) over all s

′
i ̸= s∗i . In any case the deviation

will result with player i being paid Z. Z is picked to be so big such that no matter what the
others are playing, a player would always prefer being paid Z than playing any strategy and
being paid 0.

3.4.2 Unique (Mixed) Nash

A unique profile that survives iterative removal of strictly dominated strategies must be the
unique Nash equilibrium of a game. Additionally, it is clear that the cost of implementing
a profile as the unique Nash equilibrium is at least the Nash cost. Thus, the contract of
Lemma 8, which has Nash cost and implements a profile as the unique one that survives
iterative removal of strictly dominated strategies, provides an upper bound on the complexity
of optimal implementation as the unique Nash equilibrium.

Corollary 13. Optimal-cost implementation of a profile as the unique mixed NE has partition
complexity of at most n+ 1.

The exact complexity of both feasible and optimal-cost implementation of a profile as the
unique mixed NE is left as an open problem.

3.5 Implementation in Undominated Strategies

Recall that for the effort game, it is a dominant strategy for the players to shirk, thus
implementing this profile in undominated strategies must have partition complexity of at
least 2. We next show that any profile can be implemented with 0 cost by a contract of
partition complexity 2, which is the best the principal can hope for. Such cost is lower than
the cost of implementing a profile as a Nash equilibrium. The proof idea is to make the
desired strategy of each player undominated without ever actually paying any agent when
they all play the desired profile. To achieve this the contract promises high payment for
the desired strategy of each player but only when other players are deviating. When none
deviates, no payments are made.

Observation 14. Optimal-cost (and thus also feasible) implementation in undominated
strategies has partition complexity 2.
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Proof. Given any game and a profile s∗ ∈ S, we show that it is possible to implement s∗ in
undominated strategies with a contract of partition complexity 2. The implementation we
construct has zero cost, and thus is clearly optimal.

Let Z = 1 + 3 ×maxi maxs,s′ (Ui(s)− Ui(s
′)). The partition has two parts. In the first

part we have all profile in which exactly one player is following the desired strategy. For this
partition every player is paid Z. The other part includes all remaining profiles (including the
profile s∗), and the payment to any player is 0. Observe that in the case that all players but i
are not following the desired profile, i’s unique best response is to follow his desired strategy
s∗i , thus this strategy is undominated, and the contract indeed implements s∗ in undominated
strategies.

4 Coalitional Deviation Concepts

In this section we consider coalitional deviation concepts: strong Nash equilibrium and unique
strong Nash equilibrium.

4.1 Strong Nash Equilibrium

As a strong Nash equilibrium is a stronger solution concept than Nash equilibrium, clearly
the partition complexity of such an implementation is at least 2. It turns out that although
this is a much stronger solution concept, the complexity of an optimal-cost implantation of
strong NE is still 2. The proof idea is to show that there is an optimal contract that never
pays any agent unless the desired profile is played. This is so as if we take any optimal
contract that implements some desired profile as a strong Nash equilibrium, and zero all
payments when an undesired profile is played, the new contract also implements the desired
profile as a strong Nash equilibrium, and has the same cost. We note that this cost might be
higher than the Nash cost.

Theorem 15. Optimal-cost (and thus also feasible) implementation of a profile as a strong
Nash equilibrium has partition complexity 2.

Proof. We show that given any game and profile s∗ ∈ S, it is possible to implement s∗ as a
strong Nash equilibrium with a partition with only 2 parts, an moreover, for any ϵ > 0 there
is such a contract with ϵ-optimal cost.

Consider contracts that can specify payment Ci(s) for any agent i and strategy profile
s ∈ S. We claim that there is such a contract that pays every agent 0, unless s∗ is played.
This clearly implies that the partition complexity is 2, as one part in this contract includes
s∗ and the other includes all other profiles.

Fix any contract (with arbitrary complexity) C∗ that implements s∗ as a strong Nash
equilibrium and has ϵ-optimal cost (such a contract exists by definition). Now consider mod-
ifying this contract that pays 0 unless s∗ is played (and the same payments as C∗ otherwise).
As all payments are non-negative, removing these payments only decreases the incentive of
coalitions to deviate from s∗, thus s∗ remains a strong Nash equilibrium with the modified
contract.
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4.2 Unique Strong Nash Equilibrium

While the complexity of feasible implementation of a profile as the unique Nash equilibrium
is higher than the complexity feasible implementation of a profile as a Nash equilibrium,
this is not the case for strong Nash equilibrium, as we show next. This is so as increasing
payment for the desired profile does not help in uniqueness of Nash equilibrium, but does so
for strong Nash equilibrium. If payments for the desired profile are high enough, no other
profile can be a strong Nash equilibrium as all agents would rather deviate to the desired
profile together, while for Nash equilibrium such high payments do not rule out the existence
of other equilibria as only individual deviations are considered. Yet, such a low complexity
contract seems to have higher than necessary cost. We conjecture that optimal-cost contracts
have strictly higher complexity, and leave the complexity of optimal cost implementation of
unique strong Nash equilibrium as an open problem.

Theorem 16. Feasible implementation of a profile as a unique strong Nash equilibrium has
partition complexity 2.

Proof. We show that given any game and profile s∗ ∈ S, it is possible to implement s∗ as the
unique strong Nash equilibrium with a partition with only 2 parts, one only includes s∗ with
very high payments, and the other include all other profiles, with no payments.

Formally, if s∗ is played then each agent i is paid Zi = 1 + 3 × maxs,s′ |Ui(s) − Ui(s
′)|.

It is easy to verify that this is indeed a strong Nash equilibrium (as the loss of payment of
Zi for every deviating player i eclipses any gain from the game) and that any other profile is
not a strong Nash equilibrium as it is beneficial for all agents not playing according to s∗ to
deviate together such that the final profile will be s∗.

We note that the contract presented in Theorem 16 also creates a feasible implementation
of a profile as a unique Coalition Proof Nash Equilibrium.

5 Conclusions

In this paper we have studied the complexity required for the implementation of multi-agent
contracts under a variety of solution concepts. Our focus was on the complexity that arises
from verifying the contract, complexity which increases as the contract is refined. As not
every two contracts are comparable with respect to refinements, we extend the partial order
to a complete order by considering the size of the output set as our complexity measure.
We found that there is a large gap between the complexity of weak solution concepts like
Nash equilibria and strong concepts like dominant strategies. Additionally, we found that the
complexity of feasible implementation is usually also sufficient for optimal implementation,
event when insisting on uniqueness.

Clearly, our complexity measure is only one of many possible measures for complexity of
contracts. One issue that it does not captured by our complexity measure is the length of
the contract’s description (say when written in a ”reasonably simple” language). Trying to
address such an issue, one might specify a small set of queries that the contract is allowed to
use in its contingencies (e.g., queries like: ”did agent i play s∗i ?”) and define the complexity
to be the minimal number of such queries in the contract, or in the longest chain of queries
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that need to be asked for a arbitrary profile. An interesting direction for future work is to
study such measures and compare between the results achieved for different measures.

Our analysis is confined to complete information implementation. In many settings,
agents have private types and the game is actually a Bayesian game. For example, the
cost of effort in an effort game might be private information. A natural direction for future
research is to consider the complexity of implementation in the Bayesian setting (incomplete
information). While for the full information setting the actions space and the strategy space
are the same, this is no longer the case in the Bayesian setting, as now strategies are mappings
from types to actions. It is natural to assume that the principal can only condition payments
upon actions (and not the unobserved strategies), yet he would like to implement some
strategy profile in a given solution concept. For example, in a single-item auction setting,
the principal might like agents to have a dominant strategy to be truthful about their value
for the item. While in full information such an implementation was always possible, this is
no longer the case in the Bayesian setting, but when it is, it is interesting to understand the
complexity of feasible and of optimal implementations.
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