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Abstract

We propose a natural model for agent failures in congestion
games. In our model, each of the agents may fail to partici-
pate in the game, introducing uncertainty regarding the set of
active agents. We examine how such uncertainty may change
the Nash equilibria (NE) of the game. We prove that although
the perturbed game induced by the failure model is not always
a congestion game, it still admits at least one pure Nash equi-
librium. Then, we turn to examine the effect of failures on
the maximal social cost in any NE of the perturbed game.

We show that in the limit case where failure probability is
negligible new equilibria never emerge, and that the social
cost may decrease but it never increases. For the case of non-
negligible failure probabilities, we provide a full character-
ization of the maximal impact of failures on the social cost
under worst-case equilibrium outcomes.

Introduction
Congestion games (Rosenthal 1973) are a well-studied

travelers cannot communicate but if they happen to ride to-
gether, they share the cost of the ride equally. This can be
modeled as a congestion game with two strategies, where
(C,C) (sharing a cheap taxi) is optimal. Howev&*, F) is

also an equilibrium. Consider what happens if both trageler
know that their peer has some probability of failing to agriv
leaving the other to face the full costs of the ride (no matter
what gate they may choose). In this new perturbed game it is
a dominant strategy to take taxi from gate C (and hope that
the other traveler will not fail to arrive, and choose the sam
gate). The “bad” equilibriun{E, E) dissolves.

Indeed, in most everyday interactions we cannot assume
players are completely reliable. This is particularly tine
computerized and online environments, where agents may
inadvertently disconnect, face communication delays, etc
The above example shows that the equilibrium outcomes can
change considerably when agents may fail, and that lack of
reliability may lead to a more socially desirable outcome.
These observations highlight the importance of understand

model of strategic sharing of resource, and have been used toing how failures affect the predicted outcomes of games.

investigate domains ranging from network design and rout-
ing (Kunniyur and Srikant 2003; Anshelevich et al. 2004)
to cloud-computing and load-balancing (Suriptfi, and
Zhou 2007; \bcking 2007; Ashlagi, Tennenholtz, and Zo-
har 2010).

The characterization and computation of equilibrium out-
comes in congestion games have received much attention
(see e.g. (Fabrikant, Papadimitriou, and Talwar 2004;
leong et al. 2005; Hayrapetyan, Tardos, and Wexler 2006;
Ashlagi, Monderer, and Tennenholtz 2007)). In particular,
researchers focused on tReice of Anarchy which is the
gap between the optimal cost and the cost under equilibrium
outcome (Roughgarden and Tardos 2004; Christodoulou and
Koutsoupias 2005). Nevertheless, an implicit assumption
underlying all of this vast literature, is that agents whe de
cided to use a certain resource always succeed in doing so.
In practice, however, agents may fail to follow their chosen
strategies, thereby utterly changing the costs of the game.

Consider a simple motivating example, where two travel-
ers (our agents) wish to go from the airport to the city. Taxis
to the city depart from gate C or gate E, where the taxis in
gate E cost almost twice as much as those in gate C. The
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We suggest a natural extension to the standard model of
congestion games, which attributeswavival probabilityto
each agent. Since in every congestion game the costs of
players are determined only by themberof agents using a
resource, it is straightforward to derive the new costshin t
absence of some agents, we compute the cost induced by the
surviving agents, where each agent now aims to minimize
herexpected cogtver all the realizations of the game.

Related work

Uncertainty in congestion games Though to the best of
our knowledge no previous work studies the effects of agent
failures on equilibria in congestion games, several works d
examine similar themes. Penn et al. (2009; 2011) study con-
gestion games with failure a&sourcesrather than agents.
In their model uncertainty always has a hazardous effect, as
it encourages the agents to overload the system. While our
model relies on the fact that congestion games already natu-
rally define the costs for any set of surviving agents, Penn et
al. must make specific assumptions regarding costs incurred
when a resource fails.

A different model of uncertainty was introduced by Bal-
can et al. (2009), where agents perceive a noisy signal of the
cost, which is either random or adversarial. Agents are un-



aware of the actual cost distribution, and are assumed-to fol
low a myopic best-response strategy, which may lead them
far away from any equilibrium. Balcan et al. study fPece

of Uncertainty(PoU) in congestion games, which is the in-
crease in social cost due to these perturbed dynamics.

Agent failures in games In general normal-form games
there is no clear interpretation for a failure of an agent.
However, there are particular families of games where fail-
ures do have a straightforward meaning. Messner and Pol-
born (2002) study how failures of voters to cast their vote
shape the equilibria of election systems, focusing on the
limit case where failure probability is negligible.

Closest in spirit to this paper is the work of Bachrach
et al. (2011) which considers agent failuresamoperative
gameswith transferable utilities. They prove that as in our
case, failures in such games tend to have a beneficial ef-
fect. This is since failures can expand the core of the aaigin
game, thereby increasing its stability against collusion.

Our contribution

Our primary conceptual contribution is the introduction of
agent failures to congestion games.

We first prove that every congestion game with failures al-
ways admits at least one pure Nash equilibrium, even if the
induced game igota congestion game. We then focus on a
simpler scenario where each agent survives with a uniform
independent probability. We analyze both the limit behav-
ior, where the survival probability goes t9and the case of
fixed survival probabilities. In the limit case, we show that
failures are beneficial: while the costs never increase, cer
tain “bad equilibria” may be eliminated, thereby decregsin
the worst social cost by an unbounded factor. Interestingly
we show that this no longer holds for Resource Selection
games with increasing costs. For the case of fixed probabili-
ties, we provide a full characterization of the maximal efffe
that failures may have on the Price of Anarchy, in terms of
the probabilityp and the number of agents All omitted
proofs can be found in the appendix.

Definitions and Preliminaries

A Congestion gameG is defined by a set of agentsN,
and a set of resources, each coupled with a cost func-
tion ¢; : [n] — Ry. We denote the costs of resource
x € F by a cost vector,, = (c;(1),¢z(2),...,cz(n)).
The highest possible cost on any single resource in a given
gameG is denoted byMs = maxgecrpr<n cz(k). Each
agent has a set of allowed strategigsC 2. A strategy
profile is a vector of strategieA = (Ay,...,A,), where
A; € S;. For every profileA, each agent incurs a cost
(negative utility)cost;(G,A) = > 4. cz(ns), Wheren,

is the number of agents that selected resourée A (in-
cludingi). Thesocial cost(or total cost) of a profileA is:
cost(G,A) = Y1 costi(G,A) = > pnaca(ng). We
denote byOPT'(G) the minimal total cost over all profiles,
i.e. OPT(G) = minaexr s, cost(G, A). For simplicity,

@\@ /@

Figure 1: The network. An allowed strategy is a path
fromstot, e.g. 4 = (s, z,t).

explicitly stated otherwise) that all costs are non-Zero.

Nash equilibrium A profile A in G is a (pure)Nash equi-
librium (NE) if no agent can gain by departing froAx for

any strategyd’ € S;, cost;(G,A) < cost;(G, (A}, A_;)),
where ¢= N\{i}. All congestion games are potential games,
and thus admit a pure Nash equilibrium (Rosenthal 1973). In
this work we restrict our attention to pure Nash equilibria.

Types of congestion gamesWe focus on games where
cost functions are either (weaklgipcreasingpr increasing
We denote such games byor G, respectively. Congestion
games where al¥; are equal are callesiymmetric

In aresource selection gam({®SG), each ageritselects
exactly one resourcgfrom F'. In restricted resource selec-
tion gameqRRSG), which are an extension of RSGs, each
agent; is restricted to select a single resource frépC F'.

A different extension isymmetric routing gamgSRTG)
on a graph(V, E), where each agente N selects a path
from a sources € V to a targett € V. An example of an
SRTG (without the costs) is in Figure 1.

Note that in symmetric games (such as RSGs and SRTGS)
with decreasing costs there is always an optimal NE where
all agents select the same strategy.

Price of Anarchy ThePrice of Anarchy(PoA) of a game

G compares the social cost of the worst Nash equilibrium
to the optimal social cost, that i£0A(G) %G(’g‘;),
whereA* is thepure NE with maximal cost irG.

Agent failures

Given a game=, we extend it with survival probabilities to
every agent. In general, failures may be correlated, so we
have a vectop € A(2V), s.t. p(9) is the probability that
exactly the sef of agents survives to play. For any subsets
T CRCN,letp(T: R) = ZSCN\Rp(TU S), i.e. it
denotes the probability that from all agentsiinexactly the
agents ofl" survive. For any gamé&' and a survival vector
p, we define theeliability extensionGP of G, by computing
theexpected coghat each surviving agent experiences.

If an agentj selects resource, she is only affected by the
failures ofotheragents orx. Thus, agenj will pay

> p(RU{G}: N | fles(|RI+1),
RCN\{j}

where N, is the set of agents selecting resource Note
that if ¢, is decreasing, thecﬁx(Nm) > ¢, (N,), and ifc,

1This technical assumption is required to avoid issues of divi-

we assume all costs are non-negative integers, and (unlesssion by zero when computing a ratio between costs.



is strictly decreasing, then for dINV,| > 1 the inequality is GP, which is a standard practice. Note that in the limit case

strict. Similarly, ifc, is increasing thenﬁ.’w(Nm) < ¢ (Ng). p — 1 the direct effect is negligible, so this is equivalent to
In the general case the gaiG@ is nota congestion game,  measuring the indirect effect on the maximal costs.

as the cost for agentdepends both on the identity ¢fand

on the identity of the other agents sharing the resource. One General properties

may wonder if this new game still has a pure Nash equilib- \we first prove thaany reliability extension of a congestion

rium, since this isiotguaranteed in other extensions such as 4o me has a pure NE. We emphasize that no restriction on the
weighted congestion games (Milchtaich 1996). Our model o<t functions is required for this result.

may initially seem as an even broader generalization, as it ) )
allows dependencies among the agents. Somewhat surpris-1 "€orem 1. LetG be a congestion game, apch probabil-
ingly, we show that any reliability extension 6fdoes admit ity vector. TherGP has a pure Nash equilibrium.

a pure NE (see Theorem 1). Due to space constraints, we omit the full proof. However,
it relies on the definition of the following function, which i

a convex combination of the potential functions of 2l
subgames ofy.

Games with i.i.d. failures In many cases we can avoid
considering complicated failure distributions, and iaste
assume that each agent survives independently with a known
probabilityp € (0,1). In this case the number of surviv-

ing agents on each resource is simply a Binomial random |RNN, |
variable. In particular, the cost to agentioes not depend G(A) = ¢(N1,...,Njp) = > p(R)Y . > calk)
on the identity ofj. That is, all (surviving) agents on re- RCN zeF k=1
sourcex pay Ez.pin(n,—1,plc(Z + 1)]. Equivalently,

o1 1\ & ok While ¢ is nota potential function ofzP, we show that it is
Rng) =370 (" )P (L = p)eFeg(k +1). weighted potential functionf the game, where the weight
We focus on measuring the effect that failures have on the of each agent is her own survival probability. Due to the ex-
game's outcome. For this purpose it is convenient to focus stence of a weighted potential function, it is guarantesd t
on !.|.d failures for two reasons: (a) they can be described b anysequence of best-replies by agents eventually converges
a single parameter, and (b) in contrast to the general case, g g pure Nash equilibrium (Monderer and Shapley 1996).

the reliability extensiort:" is also a congestion game. Another important issue is whether properties of the orig-
Effect of failures on the costs Failures change costs in  inal game are conserved {HP. One property of interest
two distinct but interrelated ways. is convexity (or concavity) of the cost functions, sincelsuc

Direct effect the remaining players pay modified costs, as constraints can often be assumed in practice, and may have
shown above. Note that the direct effect applies to optimal implications on the PoA. It turns out that convexity is main-
outcomes and to equilibrium outcomes alike. For example, tained in the perturbed game (the proof is straightforward)
if the costs inG are decreasing in the number of agents, then Proposition 2. Letc, be a convex [respectivelgoncave
the direct effect of failures is that agents will now facetieg cost function in the gamé&!, and p a probability vector.
costs in any given profile. Thenc? , is also convex [resp., concave], for glic N.

Ch';:'fﬁ;:;gﬁdmﬂ&ﬁf;gml'bgaof'fg the new game may In the remainder of this paper we assume that failures are
Wegcém utegt]he total costpsejlmmin over all the survivin Hi.d., thatis that every player survives with probabifityVe
lavers Tﬁat is ' 9 9 donote however, that most of our results easily extend to the
players. " om more general cases of distinct (or correlated) probadsliti
cost(GP, A) = cost;(GP, A) = Nzl (ng). o ] o
; a; Negligible failure probabilities
We are particularly interested in cases where failure prob- e now study how equilibria of a given garGeare affected
abilities are low (i.e. whep is close tol). In such cases the i the limit case. Most of the results assume negligible fail

direct affect is negligible, but the indirect effect may ok ure probabilities, but some hold for apy< 1 (e.g. Prop. 4).
major role. Specifically, we want to know if the equilibrium

costs in the game can change significantly with small fail- Effect of failures on the set of NE

ure probabilities. When considering a “low probability” it - A ¢rcjal observation is that when failure probabilities ar

is important to specify the order of quantifiers, i.e. whethe g icienty low, no new NEs emerge caused by agent failure.
the failure probability may depend on the game or not. In '

each result, we specify whether the survival probabjlitg Proposition 3. LetG be a congestion game. There is some
allowed to take anixedvalue. In contrast, whep — 1 we p* = p*(G) s.t. forallp > p*, every NE profile otz is
can take an arbitrary value that may depend on the game. To also an NE ofG.

demonstrate the difference, consider the following. Foran  proof. |f failure probabilities are negligible, then the costs
fixedp < 1there is a gamér = G(p) whereMg > 1—. in G can be arbitrarily close to the costs@ Therefore

However, for any fixed gam@l’, there isp = p(G’) suffi- all strict orders between costs remain, i.ec,itk) > c, (k)
ciently close tol, s.t. M¢ < 1. thenc® (k) > cb(k). If c.(k) = ¢,(k) then this equality
We are mainly interested in thirdirect effectof failures might break inG?, but new equalities may not form. Finally,

on the costs. To that end we compare the PoAGo&nd equality means that there is no incentive to deviate (from



one strategy to another). Since equalities can only disappe  Proposition 9. For any M there is an SRTG with increasing
incentives to deviate can only increase, and Nash equailibri costs and two agenég (over the network” from Fig. 1),
can only dissolve. . such that (a)PoA(G5) = Q(M); and (b) for anyp < 1,

In contrast, the following examples demonstrate that cer- PoA(ég’) =1

tain NEs may dissolve even with a negligible failure proba- o ] . .
bility, whether the costs are decreasing or increasing. RSGs with increasing costs To conclude this section, we

show that when costs are increasing, the PoA can neither
increase nor decrease due to negligible failure probagsilit
— in contrast to games with decreasing costs.

Proposition 4. There is a RSG with decreasing costs
and an NEA in G, s.t. for any survival probability < 1,
A is not an NE of+}.

(11 is an RSG with = 2, |F| = 2, and we define costs as Lemma 10. LetG be a RSG with increasing costs. lc&t=

follows. ¢, = (M, 1) andc, = (M + 1, M), whereM > 1. cost(@, A™) be the cost of the worst NE . Foranyp <1
We can construct a similar example with increasing costs, there is another profil@ which is a pure NE irG?, and
by settinge, = (1, M), and¢, = (M, 2M). Thus: cost(G,B) > ¢* — Rg - (1 — p),
Proposition 5. There is a RSG with increasing costs and whereR 4 is a constant that depends only 6h

an NEA in Gy, s.t. for any survival probability < 1, A is

not an NE O@z{_ Proof. If A* is an NE inGP then we are done. Therefore

assume that it is not, and thus there is an ageniV which
Effect of failures on the PoA gains (inG?) by moving from some resourecec< F' to an-

We show that if failure probabilities are small, the PoA can- Otherb € F. If there is more than one such deviation, tien
not significantly increase. is the strategy (resource) wherpays the lowest cost (break

. . . ) ties arbitrarily). Denote byA; the outcome wheréplaysb
Proposition 6. Let G be a given congestion game with  instead ofa, and all other agents play as &y = A*. As
bounded PoA. For any > 0 there isp* = p*(G,¢) s.t.

o long asA; is not an NE (irﬁp), we repeat the process until
P
forall p > p*, PoA(GP) < PoA(G)(1 + ). no agent wants to deviate, and denote the final profilBby

Proof sketch.We can sep* arbitrarily close tol. There- We argue that there are at massteps until convergence.
fore, by Prop. 3, there are no new equilibria @¥. In If an agenti moves froma to b in stept then no agent
particular, there are no newad equilibria. Moreover, will leave resourcé in a future steg’ > ¢ (otherwise agent
since costs are bounded, for every profdeand agent, i would have had a better step at tinje Thus there are
|cost;(GP, A) — cost;(G, A)| can be made arbitrarily small. ~ mutually exclusive subset$, B C F' s.t. agents only move
Thus there is no indirect effect, and the direct effect isneg from Ato B. In particular, this means that each agent moves
ligible for sufficiently small failure probabilities. O at most once and thus there are at mosteps.

Let M = Mg (a constant). We next show that for &/l
8 = cost(G, Ay_1) — cost(G, Ay) < O(n2M(1 — p)).

We denote byn7,n;,n’; the number of agents using re-
3 sourcej in the profilesA*, A,_; andA,, respectively. Sup-
Decreasing costs In the RSG(G; above one of the two pose that betweeA; ; and A, some agent moved from
NEs of the game dissolved when we added (even negligi- a to b. Thenn? > n, = n,, + 1 andn*, < n, = nj, — 1.
ble) failure probabilities. Moreover, the removed NE was = gjnceA * is an NE inG, and by monotonicity of ;,
the worst NE in terms of social welfare. To be precise, !
without failures we had thaPoA(G,) = M/1 = M, ca(na) < ca(ny) < ep(ny+1) < ep(np+1) = cp(ny). (1)
whereas with failures the unique remaining NE was optimal,
i.e. PoA(GY) = 1. We get the following as a corollary,
Proposition 7. For any M, there is a RSG with decreasing b (ng) > ¢ (ny,). (2
costs and two players', s.t. (a)POA(GQ > M (ie. itis We next bound the two expressions. Denate= 1 — p.
unbounded); and (b) for any < 1, PoA(GY) = 1. DenoteA, = ca(na) — ca(nta — 1), andAy = cy(n}) —
cp(n, — 1). There is a probability op™e~! < 1 — (n, —
a + (n, — 1)%2a? that all agents om (excepti) survive.
Thus w.p. of at leastn, — 1)a — (n, — 1)%a? at least one
agent fails. Thus

By Proposition 6 the PoA cannot increase due to failures.
However the PoOA mightiecreasealue to the elimination of
“bad” equilibria, and we would like to quantify this effect.

On the other hand, sinaggreferred overa in Gr,

Increasing costs We next study the improvement in the
POA due to failures in games witincreasing costs The
main result of this section is that in RSGs, i.e. symmet-
ric singleton games, such a decrease is impossible. We first
show that both symmetry and the singleton restriction are  ¢?(n,) < c,(n,) — (g — o — (ng — 1)*a*)Aq. (3)
minimal. That is, if either one is relaxed, then there isan . . . S
example where the PoA can improve arbitrarily. Similarly, the probability that exactly one agent fails &t r

. . e . sourceb is at most(n; — 1)a = na (in which case the cost
Proposition 8. For any M, there is a RRSG with increasing drops byAy), and the probability that more than one agent

costs and three plaxe(g’g s.t. () PoA(Gz) > M; and (b) fails is at most7a? (in which case the cost drops by at most
foranyp < 1 PoA(GY) = 1. M). Thusc (n}) > cp(n}) — npaly — (npa)® M.



By combining the last equation with Eq. (1),(2) and (3) ,
ca(ng) — ((ng — Da — (ng — 1)%20*) A, >
cp(n)) —npaly— (npa)> M > cq(ng) —npaldy—(nya)* M
Then, by rearranging terms,

ey + (np)2aM > ((ng — 1) — (ng — 1)), =
ey > (g — 1)Ag — (ng — 1)%al, — (n)*aM
> (ng — 1)Aq — 2an*M (4)

We can now bound the costs Af,_;, A;.

de = naca(na) +npep(np) — (ngca(ng) +njes(ny))

= 1 (Ca(a) —Ca ) + Cala) — mo(colrg) — o)) — ()
= (ng — 1Ay — npAp + (ca(na) — cp(ny))

< (ng — 1)Aq — np Ay < 2an>M, (by (1),(4))

Finally, since there are at moststeps, we get that
cost(G B) > ¢ —n-(2an*M) =c* — Rz(1—p). O
Proposition 11. LetG be a RSG with increasing costs. Then
for anye > 0 there is some < 1 s.t. the ratio between
PoA(G) and PoA(GP) is small, i.e.

PoA(G)(1 —£) < PoA(GP) < PoA(G)(1 +¢).
Proof sketch.The crux of the proof is Lemma 10, show-
ing that althoughsomebad equilibria may dissolve itw?,
at least one bad equilibrium (thatdg3 close to the worst
equilibrium A*) survives ifp exceeds some valyg.

We then sep high enough so that (a) For every profile
A, cost(GP,A) > cost(G,A) — ¢/3 (i.e. the direct effect
is negligible); (b) No new equilibria emerge (i.e. Prop. 6
holds); and (cp > p* (i.e. (1 — p)Rs < &/3).

SinceOPT(@) > 0, then it is at least as all costs are

integers. Then by (c) and Lemma 10 there is a bad equilib-
rium B that still exists inG?, and Qy (a) bottO PT and the

cost of B do not improve much id-”. Thus
B cost(GP, B*) cost(@,B)(l —¢/3)
)= OPT(GP) OPT(é)(l +¢/3)
cost(G A*)(1—¢/3)(1 —¢/3)
OPT(G)(1+¢/3)

= poa(@yL—=/3" 1165/ /?;))

The upper bound follows directly from (b).

PoA(GP

> PoA(G)(1 — ¢).
O

Fixed failure probabilities

In this section we assume that there is some fixed survival
probabilityp, whereas the parameters of the game may vary.
Interestingly, it turns out that fixing the probability bedo
the game is defined (i.e. changing the order of quantifiers) is
highly significant, and some results are very different from
the ones in the previous section. Recall for example that
whenp — 1, it was impossible to introduce new NEs to a
game via failures. However this is no longer true whda
fixed (even if small), and the costs may significantly Vary.

Effect of failure on the set of NEs

While some NEs may disappear, no new NEs can emerge in
a symmetric game with decreasing costs.

Proposition 12. Let G be asymmetricgame with decreas-
ing costs, and lep < 1. ThenG? does not admit new Nash
equilibria.

However, symmetry turns out to be a minimal require-
ment. Note that the gam@&; depends on the value pf

Proposition 13. For anyp < 1 there is a RRSG with two
agents and decreasing cosis s.t. Gp has new NEs.

As for games withincreasing costghey can behave quite
differently from games with decreasing costs when there are
fixed failure probabilities (even small ones). In particula
new NEs may emerge even in symmetric games.

Proposition 14. For anyp < 1, there is a RSG with increas-
ing costs(y, such thatG% has new NEs.

Example. The gameG, has two resourcea, b} andn
agents.a always costsl/ > 1. b costsl, unless everybody
select it, and then it cosi8 > M.

Effect on the PoA — Games with decreasing costs

It is quite clear that with significant failure probabiliigthe
social cost of playing some NE in a game may increase.
However since the cost of OPT may also increase, it is not
clear how the PoA is affected. The following examples show
that POA can increase as well — in contrast to the result we
had when failure probabilities are negligible.

Proposition 15. For any M and anyp < 1, there is a
RRSGG, with three players s.t. (aPoA(G2) = 1; and
PoA(GS) > M.

That is, in asymmetric games we can get an unbounded
increase in the PoA (in facty; is the same game used in
Prop. 13). WherG: is symmetric, there is a tight bound on
the PoA — and thus on the maximal increase in the PoA.
Proposition 16. Let G be a symmetric game with decreas-
ing costs. For anyp < 1 it holds that PoA(GP) <
(1-p).

Proposition 17. For anyp < 1, anyn, and any= > 0, there
is a RSG with decreasing costg s.t. (&) PoA(Gs) = 1;
and (b) PoA(G%) > (1 —p)'—" —e.

Example.The game's containsn players and resources

with the following costs:c, = (M,1,1,...,1), and¢, =
(R,...,R,R,1), whereR = I‘ffp’f,f. O

The bound of(1 — p)!~" is somewhat counter-intuitive.
For a fixed game?, we know that increasing the survival
probability p eventually means that the PoA cannot increase
(much). It therefore seems reasonable to assume that this
effect is “monotone”, i.e. that gsgrows, then the maximal

ratio 1;"‘:((%) becomes smaller and smaller. However, the

converse is true: While for small the ratio is also small,

2To see these contrasts more clearly, the reader is advised to asp grows we can find examples where this ratio becomes

look at Tables 1, 2 and 3 in the last section.

larger and larger.



Dec. Max. decrease Maximal increase in POA
costs in POA symmetric other

p<1 || UB (P.7) (1-p)t™ (* | UB (P.15)
p—1||UB (P.7) none &) | none (P.6)

Decreasing|| NE may NE may emerge
costs dissolve symmetric any game
p<l1 yes ) no (P.12)| yes (P.13)
p—1 yes (P.4)| no ((,«<) | no (P.3)
increasing costs

p<l1 yes () yes (P.14)| yes &)
p—1 yes (P.5)| no («) no (P.3)

Table 1: The table describes how NE#A may differ from
those inG. “yes” means that there is an example where the
described effect occurs. P. # refers to Proposition #.

Another interesting implication is that the PoA ¥ is
bounded, whereas this is not true for games without failures
Some insight might be gain by the following explanation.
The cost of the worst equilibrium can sharply increase for
any probability. However, for low a high increase must
entail that theoptimal costis also increasing, thereby limit-
ing the maximal ratio between the two.

Effect on the PoA — Games with increasing costs
Lemma 18. For any RSG with increasing cosé, 1<

~

PoA(G) <n.

In particular, the lemma entails that the PoA @fcan
never decrease or increase by a factor of more than

Bounds on the increase in PoA By properly setting the
parameters of the gande, (from Prop. 14), we get:

Proposition 19. For anyp < 1, anye > 0 and any number
of playersn, there is a RSG with increasing costs, s.t.
(@) PoA(G4) = 1; and (b) PoA(GE) > n —e.

If we either relax the symmetry constraint, or allow more
complex strategies than singletons, then the PoA may in-
crease by an unbounded factor (examples omitted).
Proposition 20. For any% < p < 1 and any constand/,
there is a RRSG with increasing costs and three pla@%rs
s.t. () PoA(Gs) = 1; and (b) PoA(GE) > M.

Proposition 21. For anyp < 1 and M, there is a SRTG/;
with increasing costs and four players s.t. @)A(Gg) =
1; and (b) PoA(GE) > M.

Example.SetR s.t. R > 2M /p? and% > p (forp > 1).
Consider the SRTG netwotk from Figure 1, with the costs
as follows.c(, .y = (1,1,1, R+8), and the cost of the other

four edgesig1,1, R+ 5, R+ 5). O

Bounds on lowering the POA Prop. 9 shows that failures
can trigger an unbounded improvement in the PoA in routing

Table 2: The table describes the bounds on the maximal ratio
betweenPoA(GP) and PoA(G). “none” means there is no
change, or effect is negligible. “UB” means the change is
unbounded in terms gfandn. (* by P. 17 and P. 16)

Inc. Maximal increase in POA

costs RSG symmetric other

p<l1 n (P.19,L.18)| UB (P.21)| UB (P.20)

p—1 | none ) none () none (P.6)
Maximal decrease in POA

p<l1 O(n)(P.22,L.18) | UB (P.9) | UB (=)

p—1 || none (P.11) uB ((P.9) | UB (=)

Table 3: (see caption of Table 2).

Discussion

Two particular conclusions can be drawn from our results.
First, failures may completely alter the outcome of the game
even if they occur with a very low probability. Thus they
must be taken into account in the analysis of many realistic
scenarios. Second, some limited level of noise (in the form
of failures) can actually contribute to the participatiigyp

ers, by eliminating bad equilibria. Two notable examples
for this are Prop. 7 showing an unbounded improvement in
the social cost; and Prop. 16 showing an upper bound on the
PoA of whole family of games, where no such bound exists
for games without failures.

Concavity and convexity In many realistic games we can
assume that marginal costs are increasing or decreasing. We
have shown that this property does not change when fail-
ures occur. However concavity/convexity can potentially
limit the PoA or the ratio by which the PoA changes due
to failures. We note that all our results for the limit case
hold regardless of convexity or concavity. However, some
examples in the latter section make use of particular cost
functions. We leave it as an open question whether con-
vex/concave examples can be constructed in each case.

Future Work  Many questions are left open for future re-
search. These include understanding the effect of failures
on thebest Nash equilibrige.g. by studying the Price of
Stability); focusing on particular interesting familiekamst
functions; and bounding the rate of convergence of various
game dynamics. We also believe that with strictly monotone
cost functions (and in particular convex or concave farsjlie

games, even if they are symmetric. Our last result concludes Some of our results may change.

that with fixed failure probabilities even the PoA of RSGs
can improve, although not by an unbounded factor.

Proposition 22. Supposd > p > % There exists a family
of RSG (withn = 2, 3,4, ... agents) with increasing costs
Gr, s.t. (@)PoA(G7) = Q(n); and (b) PoA(GY) = O(1).

An important future goal is to leverage our current knowl-
edge on uncertainty in congestion games in various models,
to prompt the design of bettenechanismsThat is, to intel-
ligently manipulate the reliability of the connections bet
information players have on the number of survivors, so as
to benefit the society by eliminating unwanted equilibria.
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Proofs: General properties
THEOREM 1. Let G be a congestion game, amda probability vector. TheidzP has a pure Nash equilibrium. Moreover, any
sequence of best-responses by players must converge iteanfimber of steps.

Proof. Consider a fixed profil\. Denote by, C N the set of agents that select resourda A.
We define the following function, which is a convex combipatdf the potential functions of al* subgames ofs.

|RNN,|
G(A) = ¢(N1,...,Nw) = D> p(R) D D calk)
RCN zeF k=1

We argue that(-) is a weighted potential function. More precisely, that foy agentj moving from resource to b, the
change iny is exactly the change in the cost of aggninultiplied byp;.

For any subset® C R C N, letp(T : R) = ZSCN\RP(T U S) denote the probability that from all agentsih exactly
the agents of survive. N

LetA’, s.t. N, = N, \ {j}, andN] = N, U{;} (all other agents and resources are unchanged). We firstutertie change
in j's cost.

5;(A,A') = cost;(GP, A) — cost;(GP, A') = &, (N}) — & ,(N,)

= > pSu{ N\ De(SI+1) = Y p(T UGy Na\ {7} | De(IT] + 1)

SCNA\{5} TCNa\{j}
= Y p(SU{G}: Ny [ Hen(S|+1) = D p(TU{j}: N, | Hen(|T|+1).
SCN, TCN/,

Next, we compute the difference §n DenoteN’ = N \ {j}.

|[RNN.| |RAN, |
S(A) — d(A) = > p(R) (Z Yoow - ) cm))

RCN zeF k=0 z€F k=0

k=0 k=0 k=0 k=0

|[RNN.| |RNN, | |[RNNY| |[RNN |
- me)( PIOEED SRACESD SEAOEEY c,,<k>)
|[RON! | |[RNN,| |[RNN{| |RNNy|
=p; Yy p(R:N'[}]) (Z k)= D calk+ D+ Y ak+1)— Y cb<k)>

RCN' k=0 k=0 k=0 k=0
|[RNN! | |RNN,| |[RNN,| |RNNy|

+ (1 =p) Y p(RNT) [ DD calk) = D calk)+ D k)= Y alk)
RCN’ k=0 k=0 k=0 k=0

|[RON!| |[RNN,| |[RNNY| |RNNG |
=p; ) p(R:N']}j) (Z calb) = Y calk+ D)+ D ak+1)— Y cb<k>>

RCN' k=0 k=0 k=0 k=0

1T IT|
=Pj ( Z p(TU{j} : N{i |j) (an(k) _an(k+1))
TCN/, k=0 k=0
S| S|
+ > p(SU{j}: Ny 1)) (Zcbkﬂ Zcb ))
k=0

SCN,

=p; [ = X p(TU}: Ny | Dea(TI+ 1)+ D p(SULG}: Ny | f)es(|R +1)
TCN, SCN,

= pj . (Sj(A,A/).
A weighted potential function is a special case of an ordaméntial. Therefore(P has the-inite Improvement Property

In other words, any sequence of best-responses converggaire Nash equilibrium.
For the non-singleton case we need to replace resouraedb with setsA, B C F' (summing over the cost of all resources

in the set). O



Proofs: Negligible failure probabilities

PrRoOPOSITION4. There is a RSG with decreasing coéts and an NEA in G4, s.t. for any survival probability < 1, A is
not an NE ofG?}.

Example.G; is an RSG withn = 2,m = 2, and we define costs as follows, = (M, 1) andc, = (M + 1, M), where

M > 1. Note thatG, admits two Nash equilibria, where both players select eitegource: or b. Now, for anyp < 1, the
profile A = (b, b) is no longer an equilibrium iG (as its new cost is slightly ovev!).

PROPOSITIONS. There is a RSG with increasing costs and an NEA in G, s.t. for any survival probabilitp < 1, A is not

an NE ofG?.
Example.We still use two agents and two resources. Costs are defined-ag1, M), andc, = (M,2M). Itis not hard to
verify that both profilega, a) and(b, b) are NE inG4, but for anyp < 1, G has a unique NE. %

PROPOSITIONG. Let G be a given congestion game with bounded PoA. Forany 0 there isp* = p*(G,¢) s.t. for all
p > p*, PoA(GP) < PoA(G)(1 +¢).

Proof. We can sep* arbitrarily close tol. Therefore, by Lemma 3, there are no new equilibrigsih Moreover, for every
profile A, |c/(A) — ¢;(A)| < +. This is possible since costs are bounded. In particlgast(G, A) — cost(G?, A)| < /3.
SinceOPT(G) > 1, we have thaOPT(G?) > OPT(G) — /3 > OPT(G)(1 — ¢/3). Let A*, B* be the worst NE irG
andGP, respectively. We similarly have thatst(G?, A*) < cost(G, A*) +¢/3 < cost(G, A*)(1 +¢/3).
Finally,

cost(GP,B¥) < cost(G,B*)(1 +¢/3) < cost(G,A*)(1+¢/3)

PoA(GP) =
oA = 5pT(Gr = OPT(G)1—2/3) = OPT(G)(1—2/3)
1+¢/3
= < .
PoA(G) (1 — 5/3) < PoA(G)(1+¢)
where the second inequality is sinBé& is also a NE inG. O

Increasing costs

PrROPOSITIONS. For any M, there is a RRSG with increasing costs and three pla@rs.t. (a)PoA(@Q) > M; and (b) for
anyp < 1 PoA(G?) = 1.

Example.@g is an RSG with three resourcés, b, ¢} and three agents. The costsaye= (2,2M,2M), andc, = (1,2M,2M)
for z € {b,c}. Agents 1 and 2 are restricted {o, b}. The optimal profile, which is also an NE, there is one agen¢ach
resource, and the total paymentis- 1 + 1 = 4. There is also a bad NE, a, b), with a total social cost oM + 1, thus
PoA(Gy) > M.

For anyp < 1, only the optimal NEa, b, ¢) remains in@g, and thusPoA(ég) = 1. By increasing\/, the ratio between the

PoAs is unbounded. O

That is, for general symmetric games (even SRTG), the PoAlisunded. Moreover, failures can eliminate all bad equalibr
PrROPOSITIONY. For everyM there is an SRTG3 with increasing costs and two agents, such thatRal(G3) = Q(M)

(i.e. itis unbounded); (b) for any < 1, PoA(@é’) =1
Example Consider the network from Figure 1. We set the costs as follows, ,,, = (1, M), and the cost for any other edge
is(1,M +1).

The optimal profile i A4, A2), where each agent pags However there is an NB = (Bj, B>), where each agent pays
1+ M+ 1 = M + 2. By deviating the agent will still pay/ + 2, so this is in deed an NE. Now, for apy< 1 we get:
e y = (L,pM + (1 - p)), whereas the cost of other edges is nawp(1 + M) + (1 — p)). Therefore inB each agent pays

(z,y

24 pM+(1—-p)>1+p+pM+(1—-p)=1+p(1+ M)+ (1-p),which is the cost of switching td. ThusA is the
only NE inG5. ¢

PROPOSITION11. Let G be a RSG with increasing costs. Then for any 0 there is some@ < 1 s.t. the ratio between
PoA(G) and PoA(GP) is small, i.e.

PoA(G)(1 —£) < PoA(GP) < PoA(G)(1 +¢).



Proof. We setp high enough so that (a) for every profide ¢(A) > ¢?(A) > ¢(A) — /3 (i.e. the direct effect is negligible);
(b)p > (1-— Mic)l/" (i.e. no new NEs by Proposition 3); and (d)— p) Rac < /3.

Note that there are no new NES@?, and letB* be the worst NE irG?. ThusB* is also an NE irG.

~

SinceOPT(G) > 0, then itis at least since all costs are integers.

~

PoA(GP) = cost(@p,AB*) > cost(@p,AB*) > cost(GpiB)
OPT(GP) OPT(GP) OPT(GP)
- cost(G,B)(1 — ¢/3) - (cost(G,A*) — (1 — p)Rg)(1 — £/3)
~ OPT(G)(1+¢/3) — OPT(G)(1+¢/3)
- (cost(G, A*) —e/3)(1 — £/3) - (cost(G, A*))(1 —e/3)(1 —£/3)
OPT(G)(1+¢/3) - OPT(G)(1+¢/3)
B ~(1—¢e/3)2 ~1—2¢/3+ (¢/3)? ~
= PoA(G)m = PoA(G) 15273 > PoA(G)(1 —e).
The other direction follows directly from Proposition 6. O

Proofs: Fixed failure probabilities
Decreasing costs

PROPOSITION12. Let G be asymmetricgame with decreasing costs, and jet< 1. ThenG? does not admit new Nash
equilibria.

Proof. Let profile A be some NE of:?. SinceG? is also a decreasing cost game, all agents play the sametpaisggA C F

in the profileA. Let B C F' be some other pure strategy. Suppose that agenV deviates fromA to B, then she will be the
only agent selecting resourcesin\ A.

P(BAL) =D )= > Em)+ > )

beB z€BNA bEB\A
FAA) =) b= DY )+ Y cin)
acA rx€EBNA a€A\B
P(B,A_;) > cP(AA) = (sinceA in NE in G?)
POCAOERD SIAD) (5)
bEB\A a€A\B

Therefore, in the gamé,

(B ALY =Y am) = Y am)+ Y. o)

beB z€BNA beB\A
= Z cz(n) + Z (1)
rEBNA beB\ A
> Y )+ Y din) (by Eq. (5))
r€BNA a€A\B
> > )+ Y cln) (cost are higher iG?)
reBNA a€A\B
=) calna) = ci(A,A).
a€A
Thusi does not want to deviate frod to B in G, which means thaA is an NE in the original gamé'. O

PROPOSITION13. For anyp < 1 there is a RRSG with two agents and decreasing @@stst. G} has an additional NENote
that the gamé, depends on the value pf



Example.SetM = [ﬁw The game(, has two resourcega, b} and three agents. The costs age= (2M, M, 1) and

e, = (M3, M —1,1). One agent is restricted to resouigeand the other two are free to choose. s there is only one
equilibrium, where all agents play(and payl).

G% now has another NE, where the two unrestricted agents qlajo see this, note that the modified cost they pay is
pM2—|— (1 —p)2M = 2M — pM < 2M, whereas by deviating, each agent will ggwW/ — 1) + (1 — p)M3 > (1 — p)M3 >
2M? > 2M. O

PROPOSITION14. For anyp < 1, there is a RSG with increasing cosis, such that in@ﬁ pure NEs can either emerge or
dissolve.
Example.The game&7, has two resources amdagents.a always costs\/ > 1. b costsl, unless everybody select it, and then
it costsk > M.

G4 has a single NE, in which all players but one selecthis NE is also optimal, with a social cost &f + n — 1.

Foranyps.t.p" 'R+ (1 —p" ') < M, we get tha@i has a single NE, where all agents play %

PROPOSITION16. Let G be a symmetric game with decreasing costs. Forary1 it holds thatPoA(GP) < (1 — p)*—".

Proof. In symmetric games with decreasing costs agents are alvedtes vhen playing the same strategy. et F be the
strategy s.tA = (A, A, ..., A) is the worst NE inG?. Similarly, letB and B denote the optimal profile and optimal strategy
in G?. Note that the PoA of is at leastl. We next bound the PoA af”.

W.l.o.g. AN B = 0, as this can only increase the gap between the costsanfd B. The crucial observation is that

F(A) = ) <> 1) =)
acA beB

Otherwise, agents would prefer to move frohto B.
With a probability of(1 — p)»~! only one agent survives afi. Thus

OPT(CP) = y(n) > (1 —p)" 'en() + (1 (1—p)" ) ep(n)

> (1=p)"lep(l) +cp(n)
>(1—p)"tep(l)+1 (costs are integers)
= (1—p)" (1) +1
> (1-p)" I (A) +1
Then 5
PoA(GP) cP(A) < OPT(GP) —1

~ OPT(GP) ~ (1—p)"'OPT(GP)’
Finally, note that this ratio becomes larger wi@RT'(G?) is increasing. Therefore

- X -1 1
PoA(G?) < 1i =
A S T T T

as required. ]

— (1 _p)l—n7

PROPOSITION17. For anyp < 1, anyn, and any= > 0, there is a RSG with decreasing coétg s.t. (a) PoA(G3) = 1; and
(b) PoA(GE) > (1= p)'" —e

Example Our example will only use the direct effect of failures, vaith changing the set of equilibria. The gafigcontains»
players and resources with the following costs: Lebe some fixed value:, = (M, 1,1,...,1),and¢, = (R,...,R,R,1),

) ) )

whereR = Afjpp:__ll. In G5 there are two NEs (all play and all playb), where each one costsper agent. In particular,
POA(G:;) =1

In C:g the cost of the optimal Nz does not change much, and it remains lower than(1 — p)"~* M. On the other hand, if
any agent fails, the cost éfincreases td. Thus the expected costbfn G% is exactlyc) (n) = p" -1+ (1 —p" ) )R= M
(and thereforeé is still an NE inG%). When we increas#/, the PoA ofG% increases from to roughly

M M—00 1—
— (1-— ",
1+ (1—p)—1M (1=p)

Thus for a sufficiently high value af/, the inequality holds. O




Increasing costs
LEMMA 18. For any RSG with increasing costs PoA(G) < n.

Proof. Let B denote the optimal profile i6/, and letA any other profile. Assume thatA) > n-¢(B). Then there is a player
(w.l.o.g. agent 1, using some resourdethat is paying alone iA more thare(B). Denote byn,, n! the number of agents on
resourcer in profiles A andB, respectively. We have tha (n,) > c¢(B) = >, n,c.(n},) > cq(n),), thisn, > n,,. There
must be some resourées.t. n;, < nj.

By moving to resourcé, agent 1 will paye, (ny + 1) < ¢p(ny,) < ¢(B) < ¢q(n,). ThereforeA is not an NE. O

PROPOSITION19. For anyp < 1, anye > 0 and any number of players, there is a RSG with increasing cogis, s.t. (@)
PoA(G,) = 1; and (b) PoA(GE) > n —e.

Example.Let M be some large value that we will later define. Consider theegﬁm Note thatPoA(§4) = 1. We set the
value of Rto R = {M—lj. Note thap” 'R+ (1 —p"~ 1) < p" ' M=1 {1 = M/ — 14+ 1= M, thusB = (b,b,...,b)isan

pn—l pnfl
NE in G%.
Let us now compute the cost Bf. Each player pays,

M-1
ch(n)=p" 'R+ (1—p" ) >p"‘1R2p"‘1< — 1)

pn 1
=M—-1—p"t>M-2,

M —o00

whereas) PT(GE) < M + n. Thus we havePoA(G?) > ”(MMiJ;f) = n. O
PROPOSITION20. Forany 1 < p < 1 andM, thereis a RSG5 with three players s.tPoA(@f;) > M- PoA(ég,).
Example. SetR > max{ﬁ}. We define the gamé’; with three resourcesc, = (L,MR+1, MR+ 1), ande, =
(R, MR, MR) for z € {b,c}. Agents 1,2 are restricted to resoureeandb. Agent 3 is restricted tgb, c}. The game’s has
only one equilibriumA = (a, b, ¢) which is also optimal. Thu?oA(@S) =1.

In the gameGAg, there is another NEu, a, b). To see that this is an NE, note that

A2)=p(MR+1)+(1—p)=pMR+1<pMR+ (1-p)R=c}(2).

-~

The total cost in the new NE &+ 2pM R > 2 + 2M R, whereas the cost of OPT 25+ 2R. ThusPoA(GE) > H-ME
Q(M).

<l

PROPOSITION21. For anyp < 1 and M, there is a SRTG/ with increasing costs and four players s.t. (Ia@A(CAJG) =1,
and (b) PoA(G?) > M.
Example We assume for the proof that> 1, however a similar construction can be provided for smatiwes ofp. SetR s.t.
R >2M/p? andﬂ%7 > p. Consider the SRTG network from Figure 1, with the costs as follows, ., = (1,1,1, R +8),
and the cost of the other four edgegisl, R + 5, R + 5).

Itis easy to see that i@ there is only one NEA, where two agents play;, and two play4s. In A each agent paysand
this is optimal, thusPoA(Gg) = 1.

Now, we argue that playinB = (B, By, B2, Bs) is an NE in the gamég. We have that the cost agent 1 is

cost1 (G5, B) =, () + ¢, )+, (2 =1+ P (R+8)+(1—p*)+1=3+ (R+7)p"

By deviating toA;, she will pay

oy (2) + ) (8) = 1+ PP (R45) + (1= p%) =2+ R’ +4p> > 3+ Rp’
1 R4T7 A
=3+ Rp’~ > 3+Rp3% =3+ (R+7)p° = cost1(G§, B).
p

We can apply the same analysis to any agent and possibldidaytausB is an NE.
As for the PoA, note thaf is still optimal in G§ with a cost of2 per player. In contrast, each player B pays over
2+ p3(R+8) > 2M. ThusPoA(GY) > M = M - PoA(Gp). O



PROPOSITION22. Supposd > p > % There exists a family of RSG (with= 2, 3,4, ... agents) with increasing cosGy,
s.t. () PoA(Gr) = Q(n); and (b) PoA(GE) = O(1).
Example. Our example will include O costs. However, we can get a simmggult by multiplying all costs with some large
constant, and repladewith 1. The gamef¥7 hasn agents, an@ resources as followse, = (0,...,0,1, M) whereM >
n-p~ ", ande, = (0,2, M, M, ..., M).

In the optimal outcom, two agents play, and pay2 each. The other players playand pay nothing. Thu@PT(@ﬂ =4.

In the only NE (denoted\), all players but one play, and payl each. ThusPoA(@ﬁ =121 = Q(n).

Now, consider the garr@?. The new costs ar€ (2) = 2p, andcE(n — 1) = p"~1. Sincep > 1, we have that?(n — 1) <
1 < ¢}(2), thus the unique NE remains the same (9. Now consider the optimal outcome. Clearly it must be eitheor
B. In the first case the PoA drops tdand in particulaO(1)).

If the optimal outcome i, then it means thatn — 1)p"~2 = ¢’(A) > ¢*(B) = 4p, i.e. p"~3 > —4-. We can then
compute the PoA:

A P(A) _(n—Dp"2 1 _
PoA(GE) = £ = =(n—1)p" 3= ™) = O(1).
Thatis, in any casd?oA(@';) = O(1). Note however that the constant depends on the valpgesofd is roughly proportional

1
toﬁ. O

Other directions

PoS may increase also whep — 1

As in the case of decreasing costs, games can be very seneitimall failure probabilities, and certain NEs may digsoAs
good NEs may disappear, the PoS may increase.

Example: take a game with two resources arabents. Agents on resoure@ay0, unless all agents select it, in which case
they payl. Agents orb always payl. G has a bad NE where all agents selecand an optimal NE where one agent selécts
ThusPoS(G) = 1. For anyp < 1, the optimal NE dissolves (sineé(n) < c,(n) =1 = ¢,(1)), and thusPoS(G?) = n.

large probabilities We saw that non-negligible failure probabilities can leaditeat increase of PoOA. However, this may not
be true if we restrict the costs to be concave/convex / tmgbnotone.

attitude to risk  Agents may be risk-averse, in which case cost functions seem convex than they are. That is, agents
have more fear to remain alone, which seems to increaseftt ef failures.

Conversely, risk-loving agents have more concave costifum; which should mitigate the effect of failures. Thef#ture
suggests that in the domain of costs, people tend to beaiskg.

increasing and non-monotone games Games with increasing costs are very important due to theralatonnection with
road congestion. In fact, there are probably some papersaimgames with uncertainty.

Increasing or non-monotone costs seem more complicatathtyze, as their equilibria can have various structuresr(év
RSG).

This is also the domain to study the assertion that Yoram amade regarding “concentration”. That is,jaurvival prob.)
decreases, agents tend to concentrate on a smaller sedbarfaes. This maybe somehow related to the phenomenon ttaince
roads are heavily packed during rush hour while other roeslaat. (Now | am even more sure there is literature on this)

This might be related to the fact that smaller resourcesdmyipically have fewer agents in equilibrium) have moreamce
due to failures. If costs are convex, then more variance mbayher cost, which should encourage agents to desert thié sm
resources and concentrate on ’large’ resources. Conygiebsts are concave, then more variance is better andtsesu
more balanced equilibrium.



