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Abstract. Model programs are high-level behavioral specifications typi-
cally representing Abstract State Machines or ASMs. Conformance check-
ing of model programs is the problem of deciding if the set of traces
allowed by one model program forms a subset of the set of traces al-
lowed by another model program. This is a foundational problem in the
context of model-based testing, where one model program corresponds
to an implementation and the other one to its specification. Here model
programs are described using the ASM language AsmL. We assume a
background T containing linear arithmetic, sets, and tuples. We intro-
duce the Bounded Conformance Checking problem or BCC as a special
case of the conformance checking problem when the length of traces is
bounded and provide a mapping of BCC to a theorem proving problem
in T . BCC is shown to be highly undecidable in the general case but
decidable for a class of model programs that are common in practice.

1 Introduction

We consider behavioral specifications given in the form of model pro-
grams. Model programs are mainly used to describe protocol-like behav-
ior of software systems, and the underlying update semantics is based on
ASMs [17]. However, model programs usually depend on additional pa-
rameters that are needed for executability. At Microsoft, model programs
are used in the Spec Explorer tool in the Windows organization as an in-
tegral part of the protocol quality assurance process [16] for model-based
testing of public application-level network protocols. A central problem in
the context of model-based testing is to determine if an implementation
conforms to a given specification, meaning that the traces that are ob-
served from the implementation under test do not contradict the model.
Traditionally, model-based testing is used at system-level, as a black-box
testing technique where the implementation code is not visible to the
tester. White-box testing on the other hand, is used at the unit-level by
the developers of the code and is based on different techniques. Here we
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assume that the implementation is also given or abstracted as a model
program and consider the conformance checking problem as a theorem
proving problem between the implementation and the model. The gen-
eral conformance checking problem is very hard but can be approximated
in various ways. One way is to bound the length of the traces, which leads
to the Bounded Conformance Checking problem, or BCC, and is the topic
of this paper.

Model programs typically assume a rich background universe includ-
ing tuples (records) and sets, as well as user defined data structures.
Moreover, unlike traditional sequential programs, model programs often
operate on a more abstract level, for example, they use set comprehen-
sions and parallel updates to compute a collection of elements in a single
atomic step, rather than one element at a time, in a loop. The definition
of model programs here extends the prior definitions to nondeterminis-
tic model programs, by allowing internal choices. Two model programs,
written in AsmL [4, 18], are illustrated in Figure 1.

type Vertex = Integer

type Edge = (Vertex, Vertex)
IsSource(v as Vertex, E as Set of Edge) as Boolean

return not exists e in E where Second(e) = v

Sources(E as Set of Edge) as Set of Vertex
return {First(e) | e in E where IsSource(First(e),E)}

Model program P Model program Q

var E as Set of Edge
var V as Set of Vertex =

{x,y|(x,y) in E}

[Action]

Step(v as Vertex)
require v in V and IsSource(v,E)

forall w in V

remove (v,w) from E

remove v from V

var D as Set of Edge
var S as Set of Vertex = Sources(D)

[Action]

Step(v as Vertex)
require S<>{} and v=Min(S)

D′ = {e|e in D where First(e)<>v}

S := (S\{v}) union Sources(D′)

D := D′

Fig. 1. P specifies a topological sorting of a directed graph G = (V, E) as follows.
The Step-action of P requires that the vertex v has no incoming edges and removes
all outgoing edges from v. Thus, starting from a given initial graph G with n vertices,
a trace Step(v1),Step(v2), . . . ,Step(vn) is allowed in P if and only if (v1, v2, . . . , vn)
is a topological sorting of G. Similarly, the model program Q describes a particular
implementation where during each step the vertex with minimum integer id is selected.
As in ASMs, the top-level loop of a model program is implicit: while there exists an
enabled action, one enabled action is chosen and executed.
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T σ ::= xσ | Defaultσ | Ite(T B, T σ, T σ) | TheElementOf (T S(σ)) |
πi(T

σ0×···×σi−1×σ×···×σk)

T σ0×σ1×···×σk ::= 〈T σ0 , T σ1 , . . . , T σk〉

T Z ::= k | T Z + T Z | k ∗ T Z

T B ::= true | false | ¬T B | T B ∧ T B | T B ∨ T B | T B ⇒ T B | ∀x T B | ∃x T B |

T σ = T σ | T S(σ) ⊆ T S(σ) | T σ ∈ T S(σ) | T Z ≤ T Z

T S(σ) ::= {T σ |x̄ T B} | ∅S(σ) | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) | T S(σ) \ T S(σ)

T A ::= f (σ0,...,σn−1)(T σ0 , . . . , T σn−1)

Fig. 2. Well-formed expressions in T . Sorts are shown explicitly here. An expression
of sort σ is written T σ. The sorts Z and B are for integers and Booleans, respectively,
k stands for any integer constant, xσ is a variable of sort σ. The sorts Z and B are
basic, so is the tuple sort σ0 × · · · × σk, provided that each σi is basic. The set sort
S(σ) is not basic and requires σ to be basic. All quantified variables are required to
have basic sorts. The sort A is called the action sort, f (σ0,...,σn−1) stands for an action
symbol with fixed arity n and argument sorts σ0, . . . , σn−1, where each argument sort
is a set sort or a basic sort. The sort A is not basic. The only atomic relation that can
be used for T A is equality. DefaultA is a nullary action symbol. Boolean expressions
are also called formulas in the context of T . In the paper, sort annotations are mostly
omitted but are always assumed.

In Section 2 we define model programs. In Section 3 we define the
problem of bounded conformance checking or BCC and show its reduction
to a theorem proving problem in T . Section 4 discusses the complexity of
BCC. Section 5 is about related work.

2 Model programs

We consider a background T that includes linear arithmetic, Booleans,
tuples, and sets. All values in T have a given sort. Well-formed expressions
of T are shown in Figure 2. Each sort corresponds to a disjoint part
of the universe. We do not add explicit sort annotations to symbols or
expressions but always assume that all expression are well-sorted. A value
is basic if it is either a Boolean, an integer, or a tuple of basic values.

The expression Ite(ϕ, t1, t2) equals t1 if ϕ is true, and it equals t2, oth-
erwise. For each sort, there is a specific Default value in the background.
In particular, for Booleans the value is false, for set sorts the value is ∅,
for integers the value is 0 and for tuples the value is the tuple of defaults
of the respective tuple elements.
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The function TheElementOf maps every singleton set to the element
in that set and maps every other set to Default. Note that extensionality
of sets: ∀v w (∀y(y ∈ v ↔ y ∈ w) → v = w), allows us to use set compre-
hensions as terms: the comprehension term {t(x̄) |x̄ ϕ(x̄)} represents the
set such that ∀y(y ∈ {t(x̄) |x̄ ϕ(x̄)} ↔ ∃x̄(t(x̄) = y∧ϕ(x̄))). We make use
of explicit definitions in terms of T such as Min (used in Figure 1), that
returns the minimum element from a set of integers, or 0 when the set is
empty,

Min(X)
def
= TheElementOf ({y | y ∈ X ∧ ∀ z(z ∈ X ⇒ y ≤ z)}).

In the general case, model programs also use maps. We assume a standard
representation of maps as function graphs, maps are needed to represent
dynamic ASM functions, see [7], maps are not used in the current paper.

Actions. There is a specific action sort A, values of this sort are called
actions and have the form f(v0, . . . , varity(f)−1). DefaultA has arity 0. Two
actions are equal if and only if they have the same action symbol and their
corresponding arguments are equal. An action f(v̄) is called an f -action.
Every action symbol f with arity n > 0, is associated with a unique
parameter variable fi for all i, 0 ≤ i < n.1

Choice variables. A choice variable is a variable2 χ that is associated with
a formula ∃xϕ[x], called the range condition of χ, denoted by χ∃xϕ[x]. The
following axiom is assumed to hold for each choice variable:

IsChoice(χ∃xϕ)
def
= (∃xϕ[x]) ⇒ ϕ[χ∃xϕ]). (1)

In the general case, the sort of χ may be non-basic and χ is a map (a
Skolem function), in which case the range condition must hold for the
elements in the range of the map, see [7].

Model programs. The following definition extends the former definition
of model programs by allowing nondeterminism through choice variables.
An assignment is a pair x := t where x is a variable and t is a term (both
having the same sort). An update rule is a finite set of assignments where
the assigned variables are distinct.

Definition 1 (Model Program). A model program is a tuple P =
(Σ,Γ, ϕ0, R), where

1 In AsmL one can of course use any formal parameter name, such as v in Figure 1,
following standard conventions for method signatures.

2 Pronounced “chi”.
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– Σ is a finite set of variables called state variables;
– Γ is a finite set of action symbols;
– ϕ0 is a formula called the initial state condition;
– R is a collection {Rf}f∈Γ of action rules Rf = (γ, U,X), where

• γ is a formula called the guard of f ;
• U is an update rule {x := tx}x∈Σf

for some Σf ⊆ Σ, U is called
the update rule of f ,

• X is a set of choice variables of f
All unbound variables that occur in an action rule, including the range
conditions of choice variables, must either be state variables, parame-
ter variables, or choice variables of the action. The sets of parameter
variables, state variables and choice variables must be disjoint.

Intuitively, choice variables are “hidden” parameter variables, the
range condition of a choice variable determines the valid range for its
values. For parameter variables, the range conditions are typically part
of the guard. We often say action to also mean an action rule or an ac-
tion symbol, if the intent is clear from the context. The case when all
parameter variables and choice variables of a model program are basic is
an important special case when symbolic analysis becomes feasible, which
motivates the following definition.3

Definition 2 (Basic Model Programs). An update rule is basic if all
parameter variables and choice variables that occur in it are basic. An
action rule is basic if its update rule is basic. A model program is basic
if its action rules are basic and the initial state condition implies that all
nonbasic state variables are empty sets.

Representing standard ASMs as model programs. Standard ASM update
rules can be translated into update rules of model programs. A detailed
translation from standard ASMs to model programs is given in [7]. In-
tuitively, a forall-statement (such as the one used in Figure 1) translates
into a comprehension expression, and each choose-statement introduces
a new choice variable. An important property of the translation is that,
if choose statements are not allowed to occur inside forall statements in
the ASM update rules, then the translation yields a basic model program.
When a choose-statement is nested inside a forall-statement, the result-
ing model program will depend on a non-basic choice variable or a choice
function (Skolem function). In the general case, the translation also adds

3 The standard notion of basic ASMs is more restrictive, in particular model programs
allow unbounded exploration, quantifiers may be unbounded.
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an additional state variable that indicates collisions of updates and in
this way captures “error” states. We assume here that update rules of
actions in a model program correspond to ASM update rules where some
choice variables occur as parameters of the action, in which case their
range conditions are typically part of the guard.

States. A state is a mapping of variables to values. Given a state S and
an expression E, where S maps all the free variables in E to values, ES

is the evaluation of E in S. Given a state S and a formula ϕ, S |= ϕ

means that ϕ is true in S. A formula ϕ is valid (in T ) if ϕ is true in all
states. Since T is assumed to be the background theory we usually omit
it, and assume that each state also has an implicit part that satisfies T ,
e.g. that + means addition and ∪ means set union. In the following let P
be a fixed model program.

Definition 3. Let a be an action f(v0, . . . , vn−1) and S a state. A choice
expansion of S for a is an expansion S′ of S ∪ {fi 7→ vi}i<n with choice
variables of f .

Definition 4. An f -action a is enabled in a state S if there exists a
choice expansion of S for a that satisfies the guard of f .

Definition 5. An f -action a causes a transition from a state S1 to a
state S2, if a is enabled in S1, S

′
1 is a choice expansion of S1 that satisfies

the guard of a, for each assignment x := t of f , xS2 = tS
′

1, and for any
other state variable x, xS2 = xS1 .

Example 1. Let P be the model program in Figure 1. The set of initial
states of [[P ]] includes for example the state S0 = {V 7→ {1, 2, 3}, E 7→
{〈1, 2〉, 〈2, 3〉}}. The action Step(1) is enabled in S0 because S0 ∪ {v 7→
1} |= v ∈ V ∧ ¬∃w(w ∈ V ∧ 〈w, v〉 ∈ E). The action Step(1) causes a
transition from S0 to S1 = {V 7→ {2, 3}, E 7→ {〈2, 3〉}}. �

A labeled transition system or LTS is a tuple (S,S0, L, T ), where S is
a set of states, S0 ⊆ S is a set of initial states, L is a set of labels and
T ⊆ S × L× S is a transition relation.

Definition 6. Let P = (Σ,Γ, ϕ0, R) be a model program. The LTS of
P , denoted by [[P ]] is the LTS (S,S0, L, T ), where S0 = {S | S |= ϕ0};
L is the set of all actions over Γ ; T and S are the least sets such that,
S0 ⊆ S, and if S ∈ S and there is an action a that causes a transition
from S to S′ then S′ ∈ S and (S, a, S′) ∈ T .
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Definition 7. A model program P is deterministic if forall transitions
(S, a, S1) and (S, a, S2) in [[P ]], S1 = S2.

Clearly, any model program without choice variables is deterministic.

Definition 8. A run of P is a sequence of transitions (Si, ai, Si+1)i<κ in
[[P ]], for some κ ≤ ω, where S0 is an initial state of [[P ]]. The sequence
(ai)i<κ is called an (action) (κ-)trace of P .

3 Symbolic Bounded Conformance Checking

We are now ready to define the central problem of the paper in Defi-
nition 10. Let P and Q be fixed model programs with the same set of
action symbols. Let k ≥ 0 be a fixed bound. We assume here that P and
Q have initial state conditions that require that all the state variables
are initially equal to Default. Under this assumption, we drop the initial
state condition from the definition. This assumption is needed in order
to avoid tedious special cases, when for example the initial conditions are
false, etc. Note that, by adding an additional initialization action, any
values can be assigned to the state variables.

Definition 9. Q k-conforms to P , Q vk P , if for all l ≤ k, all l-traces
of Q are l-traces of P . Q conforms to P , Q v P , if Q vk P for all k.

If Q vk P , then P is more liberal by allowing more traces up to
length k. Intuitively, when P is a specification model program and Q is
an implementation model program and Q vk P , then Q behaves as ex-
pected by P within k steps. Conformance testing is an approximation of
k-conformance up to some k, where k depends on the maximum length of
the test cases. In the more general case, when one distinguishes between
observable and controllable actions in the context of asynchronous sys-
tems, one needs to consider a more general form of conformance notion,
such as alternating refinement [2] or ioco [26], that is outside the scope
of this paper. Note that a most general model program is one where all
actions have an empty update rule and all guards are true, such a model
program is trivially conformed to by any other model program

Example 2. Let P and Q be the model programs in Figure 1. Assume that
there is an additional Init-action in both P and Q that first initializes the
state variables to a concrete graph G and then enables the Step-action.
One can show that Q vk P for all k and thus Q v P . In this particular
case, if one shows that, for all input graphs with k vertices Q vk+1 P ,
then Q v P follows. Note also that P 6v2 Q. �
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Definition 10 (BCC). Bounded Conformance Checking or BCC is the
problem of deciding if Q vk P .

In order to reduce BCC into a theorem proving problem, we construct
a special formula from given P , Q and k, as defined in Definition 11. Given
an expression E and a step number i > 0, we write E[i] below for a copy
of E where each (unbound) variable x in E has been uniquely renamed
to a variable x[i]. We assume also that E[0] is E.

Definition 11 (Bounded Conformance Formula). Let P and Q be
model programs (x?, Γ, (γf,?, Uf,?,Xf,?)f∈Γ ), for ? = P,Q. Assume that
xQ ∩ xP = ∅ and that the choice variables in P and Q are disjoint.4

Assume also that each action rule includes an assignment for all the state
variables.5 The bounded conformance formula for P , Q, and k is:

BCF (Q,P, k)
def
= (xQ = Default ∧ xP = Default) ⇒ Conforms(0, k)

Conforms(k, k)
def
= true

(i < k) Conforms(i, k)
def
=

∧

f∈Γ

(∀ fj[i]χf,Q[i](γf,Q[i] ∧ IsChoice(χf,Q[i]) ⇒

∃χf,P [i](γf,P [i] ∧ IsChoice(χf,P [i]) ∧

(
∧

x:=tx∈Uf,Q∪Uf,P

x[i+ 1] = tx[i]

⇒ Conforms(i+ 1, k)))))

where fj[i] = f0[i] . . . farity(f)−1[i] are the parameter variables of action f

for step i (the parameter variables of f are shared between P and Q), and
χf,P [i] and χf,Q[i] are the choice variables of f in P and Q, respectively,
for step i.

Notice that all parameter variables, and choice variables have distinct
names in each step. This implies that all oracles and parameters are local
to a single step, and do not carry over from one step to the next. The
only connection between the steps happens via the state variables. Note
also that if both P and Q are deterministic, then the resulting formula is
essentially a universal formula. If P has choice variables then the bounded
conformance formula has a k-depth quantifier alternation.

The following theorem allows us to check k-conformance by proving
that the corresponding bounded conformance formula is valid in T .

4 Alternatively rename those variables in Q for example.
5 Add an assignment x := x for each state variable x that is not assigned.
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Theorem 1. BCF (Q,P, k) is valid in T if and only if Q vk P .

Proof (Sketch). For k = 0 the statement holds trivially. Assume k > 0.
Both directions are proved separately. For the direction (=⇒) we assume
that Q 6vk P and get a shortest run of length l ≤ k where the last action
is enabled in Q but not in P . From the run we can construct a state where
¬BCF (Q,P, l) is true. Note that if ¬BCF (Q,P, l) is satisfiable then so is
¬BCF (Q,P, l′), for l′ > l. The proof of the direction (⇐=) is similar. �

4 Complexity of BCC

Here we look at the complexity of BCC. First we note that the problem
is effectively equivalent to the validity problem of formulas in second-
order Peano arithmetic with sets (Π1

1 -complete). This implies that there
exists no refutationally complete procedure for checking k-conformance
in general (even for k = 1). Second, we note that, even if we restrict the
background universe to finite sets, the problem is still undecidable, by
being co-re-complete. Third, we show that BCC is decidable over basic
model programs. The reason for this is that for basic model programs, the
set variables can be eliminated, and the problem reduces to Presburger
arithmetic.

Undecidability of BCC. We use the result that the validity problem of for-
mulas in Presburger arithmetic with unary relations is Π1

1 -complete [1,
19]. The Π1

1 -hardness part is an immediate consequence of the results
in [1, 19], by considering model programs that have one action with a set-
valued parameter and a linear arithmetic formula as the guard. The in-
clusion in Π1

1 can be shown similarly to the proof of the Σ1
1-completeness

of the BMPC problem in [7].

Corollary 1. BCC is Π1
1 -complete.

Now suppose that the sets in the background are finite and consider
the satisfiability problem in T over finite sets that is re-complete [7].

Corollary 2. BCC over finite sets is co-re-complete.

Decidability of BCC over basic model programs. Basic model programs
are common in practical applications. The two main reasons for this are:
1) actions typically only use parameters that have basic sorts, see for
example the Credits model in [31]. 2) the initial state is usually required
to have fixed initial values or default values for all the state variables.
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Let T 0 stand for the fragment of T where all variables are basic. We
use decidability of T 0, that follows as a special case from the decision
procedure for T ≺ in [7], that is by reduction to linear arithmetic.

Theorem 2. BCC of basic model programs is decidable.

Proof (Sketch). Let P and Q be basic model programs and k a step
bound. Let ψ = BCF (Q,P, k). The subformula

∧

x∈Σ x[i + 1] = tx[i] ⇒
Conforms(i+1, k) of ψ is equivalent to the formula Conforms(i+1, k){x[i+
1] 7→ tx[i] | x ∈ Σ} where x[i + 1] has been replaced by tx[i]. Apply this
transformation successively to eliminate each occurrence of x[i + 1] for
i < k. Finally, eliminate each (initial) state variable by replacing it with
the default value. The resulting formula, say ϕ, is equivalent to ψ and
does not use any state variables. Moreover, since P and Q are basic, ϕ is
in T 0. The statement follows from Theorem 1 and decidability of T 0. �

It is possible to carry out the reduction in Theorem 2 in polynomial
time in the size ψ. First, the formula ψ is translated into logic without sets
but with unary relations, by replacing set variables with unary relations
and by eliminating set comprehensions and set operations in the usual
way, e.g., t ∈ S, where S is a set variable, becomes the atom RS(t),
where RS is a unary relation symbol. It is easy to show by induction over
expressions that such a translation can be done in polynomial time in the
size of ψ and preserves the structure of ψ.

We iterate the following transformation on the resulting formula, say
ψi, starting with i = k, repeating the transformation for i := i− 1, until
i = 0. For ease of exposition assume also that there is a single set valued
state variable S.

The formula ψi has a subformula of the form (2) where Qȳρ is assumed
to be on Prenex form so that ρ is quantifier free,

∀x(Ri+1(x) ⇔ ϕ[x]) ⇒ Qȳρ[Ri+1(t1), . . . , Ri+1(tn)] (2)

where Ri+1 corresponds to the value of S at step i + 1 and ϕ as well
as each tj may only contain values of S from step i. The formula (2) is
equivalent to (3) where we may assume that ȳ do not occur free in ϕ.

Qȳ(∀x(Ri+1(x) ⇔ ϕ[x]) ⇒ ρ[Ri+1(t1), . . . , Ri+1(tn)]) (3)

The formula (3) is equivalent to (4) (where z̄ are Boolean).

Qȳ ∀ z̄((
n∧

j=1

zj ⇔ ϕ[tj ])

︸ ︷︷ ︸

δ

⇒ ρ[z1, . . . , zn]) (4)
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Formula δ is equivalent to (5) by using the encoding in [15, p 129],

∀x∀w ((
n∨

j=1

(x = tj ∧ w = zj)) ⇒ (w ⇔ ϕ[x])

︸ ︷︷ ︸

Φ[w⇔ϕ]

). (5)

Now consider the formula Φ[w ⇔ ϕ], where ϕ is Qūγ[ū] in Prenex form.
The formula Φ[w ⇔ ϕ] is equivalent to

QūQcū′Φ[(w ∧ γ[ū]) ∨ (¬w ∧ ¬γ[ū′])] (6)

where Qc is the complement of quantifier prefix Q; (6) is equivalent to

QūQcū′∀b∀b′((γ[ū] ⇔ b ∧ γ[ū′] ⇔ b′
︸ ︷︷ ︸

γ′

) ⇒ Φ[(w ∧ b) ∨ (¬w ∧ ¬b′)]) (7)

Using the same encoding from [15] as above, γ′ is equivalent to

∀v̄∀d(((v̄ = ū ∧ d = b) ∨ (v̄ = ū′ ∧ d = b′)) ⇒ (d⇔ γ[v̄])) (8)

Combining the above equivalences, it follows that (2) is equivalent to

Q . . . ((8) ⇒ Φ[(w ∧ b) ∨ (¬w ∧ ¬b′)]) ⇒ ρ[z̄]) (9)

The reduction from (2) to (9) shows that no tj or ϕ needs to be duplicated
and clearly the Prenex form of (9) has the same size as (9). The formula
(2) is replaced in ψi with (9) to get ψi−1.

Finally, recall that the initial values of set variables are empty sets,
which means that ∀x (R0(x) ⇔ false), so each occurrence of an atom
R0(t) is replaced in ψ0 with false.

The above reduction can also be carried out in a more general set-
ting, independent of the background theory, by first introducing auxiliary
predicates that define all the subformulas of ψ, by applying a transforma-
tion similar to [27] or [24], and then eliminating the predicates (as a form
of deskolemization) by equivalence preserving transformations similar to
the transformations shown above.

The overall reduction shows that the computational complexity of
BCC of basic model programs, regarding both the lower and the upper
bound, is the same as that of Presburger arithmetic, stated here as a
corollary of the above reduction and [15].

Corollary 3. The upper bound of the computational complexity of BCC

of basic model programs is 222cn

and the lower bound is 22cn
, where c is

a constant and n is the size of the input (P,Q, k) for BCC.
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5 Related work

The bounded model program checking problem or BMPC [7, 28, 30] is a
bounded path exploration problem of a given model program. BMPC is a
generalization of bounded model checking to model programs. The tech-
nique of bounded model checking by using SAT solving was introduced
in [5] and the extension to SMT was introduced in [14], a related approach
is described in [3]. BMPC reduces to satisfiability modulo T . Unlike BCC,
the resulting formula for a BMPC problem is typically existential with no
quantifier alternation, even for nondeterministic model programs, since
choice variables and parameter variables are treated equally. BMPC is
therefore better suited for analysis using the SMT approach. General
reachability problems for transition systems as theorem proving problems
are also discussed in [25].

Formulating a state refinement relation between two symbolic transi-
tion systems as a theorem proving problem, where one system describes
an implementation and the other one its specification, has a long standing
in automatic verification of hardware, with seminal work done in [11] for
verifying control properties of pipelined microprocessors. In particular the
work generated interest in the use of uninterpreted functions for hardware
verification problems [10]. Refinement techniques related to ASMs are dis-
cussed in [8]. Traditionally, such techniques are based on state transitions,
rather than action traces and use untyped ASMs; the main motivation is
incremental system design. Various refinement problems between specifi-
cations are also the topic of many analysis tools, where sets and maps are
used as foundational data structures, such as RAISE, Z, TLA+, B, see [6].
The ASM method is also described in [6]. In some cases, like in RAISE,
the underlying logic is three-valued in order to deal with undefined values
in specifications. In many of those formalisms, frame conditions need to
be specified explicitly, and are not implicit as in the case of model pro-
grams or ASMs. In Alloy [20], the analysis is reduced to SAT, by finitizing
the data types. A file system case study of a refinement problem using
Alloy is discussed in [22]. In our case the analysis is reduced to a theorem
proving problem in T , by restricting the search depth rather than the size
of the data types.

As future and ongoing work, we use the state of the art SMT solver
Z3 [13] for our experiments on satisfiability problems in T . Our current
experiments use a lazy quantifier instantiation scheme that is on one
hand not limited to basic model programs, but is on the other hand
also not complete for basic model programs, some of the implementation
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aspects are discussed in [31] in the context of BMPC. In particular, the
scheme discussed in [31] is inspired by [9], and extends it by using model
checking to implement an efficient incremental saturation procedure on
top of Z3. The saturation procedure is similar to CEGAR [12], the main
difference is that we do not refine the level of abstraction, but instead
lazily instantiate axioms in case their use has not been triggered during
proof search. Implementation of the reduction of BCC of basic model
programs to linear arithmetic is future work. In that context the reduction
to Z3 does not need to complete all the reductions to linear arithmetic,
but can take advantage of built-in support for Ite terms, sets, and tuples.

Model programs are used as high-level specifications in model-based
testing tools such as Spec Explorer [29] and NModel [23]. In Spec Ex-
plorer, one of the supported input languages is the abstract state machine
language AsmL [17, 18]. In that context, sanity checking or validation of
model programs is usually achieved through simulation and explicit state
model checking and search techniques [21, 29].
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