
A Theory of Branches as Goals and Virtual Teams

Christian Bird
Microsoft Research

Redmond, WA
cbird@microsoft.com

Thomas Zimmermann
Microsoft Research

Redmond, WA
tzimmer@microsoft.com

Alex Teterev
Microsoft

Redmond, WA
alextet@microsoft.com

ABSTRACT
A common method of managing the complexity of both technical
and organizational relationships in a large software project is to
use branches within the source code management system to
partition the work into teams and tasks. We claim that the files
modified on a branch are changed together in a cohesive way to
accomplish some task such as adding a feature, fixing a related set
of bugs, or implementing a subsystem, which we collectively refer
to as the goal of the branch. Further, the developers that work on
a branch represent a virtual team. In this paper, we develop a
theory of the relationship between goals and virtual teams on
different branches. Due to expertise, ownership, and awareness
concerns, we expect that if two branches have similar goals, they
will also have similar virtual teams or be at risk for
communication and coordination breakdowns with the
accompanying negative effects. In contrast, we do not expect the
converse to always be true. In the first step towards an actionable
result, we have evaluated this theory empirically on two releases
of the Windows operating system and found support in both.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version Control; D.2.9 [Software Engineering]:
Management – Software Configuration Management.

General Terms
Management, Measurement, Human Factors

Keywords
Branching, Teams, Coordination

1. INTRODUCTION
Software development in any large project is a collaborative and
team-based enterprise. Disorganization in such contexts is known
to lead to delays [1] and faults [2]. An ideal solution to the
problem of organizing a large software effort is to decompose the
system into highly cohesive and loosely coupled modules [3] and
create teams around these modules, leveraging Conway’s Law [4].
We hasten to note that Parnas’ definition of a module may not
characterize the conventional definition. From his paper, “In this
context ‘module’ is considered to be a responsibility assignment
rather than a sub-program.” In practice, we have observed that
development teams face barriers when attempting to organize in
this way. Some “modules” are cross-cutting and defy loose

coupling with the rest of the system. Other modules may be highly
dependent on other components within the system. In both cases,
teams may need to be insulated from the changes of others that
may destabilize parts of the system that it is working or dependent
on.

Once the decomposition of the system into modules has been
decided upon and resources (in the form of developers) have been
assigned tasks, how do they perform their work in such a way that
they can share with each other but remain isolated during times of
rapid and volatile development? A common solution to this
problem is through the use of branches within the software
configuration management (SCM) system. Using branches allows
teams to defer integration and can insulate them from the changes
of others that may hinder their own progress.

Branching within an SCM allows multiple teams to create their
own workspaces (usually called a branch) from a particular state
of the source code. Each team commits to their own branch as
they normally would in their SCM and at some point in the future,
once their tasks have been completed, the changes in their branch
are integrated (also known as merged) into the trunk or a release
branch. The effort involved in such an integration is usually
dependent on how much work went on in the branch and also in
the original branch in the intervening time. By providing
isolation, branches allow teams to focus on their own tasks
without prematurely worrying about or being affected by the
changes occurring in the rest of the system. Teams are free to
explore, develop, test, and stabilize the code base without
interfering with others.

Recently, many open source software (OSS) projects have begun
using branches more heavily as a result of moving to more
advanced SCMs such as Git and mercurial [5]. Within Microsoft,
branching is used heavily to insulate teams from each other’s
possibly unstable changes. In both contexts, we have observed
anecdotally that a branch embodies a goal (we use a purposely
vague term) which may represent one or more related features,
user scenarios, or subsystems and a virtual team that represents
those contributors working on this goal.

We claim that the SCM is the most important collaborative tool
used during software development because it is the mechanism by
which developers actually share the technical artifact. As such,
their collaborative behavior as evidenced by SCM records is a
valuable resource and tracking this behavior with an expectation
of what is generally “good” and “bad” may enable project
managers to help their teams avoid problems. We follow in the
steps of others by examining developers’ behavior through the
lens of historical repository data [6].

Prior research suggests that awareness is important as developers
work in different branches (also referred to in other work as
workspaces) [7]. Based on findings that awareness is important in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHASE’11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05… $10.00.

large projects [8] and that lack of such awareness in software
development can have detrimental effects [9], we assert that in
certain scenarios, there may be adverse effects due to the
insulation that branches afford software teams. In this paper, we
present a theory of branches as goals and virtual teams and
explore this theory by evaluating it on two releases of the
Microsoft Windows operating system.

2. THEORY
Branches are most often created to accomplish some goal, which
may be implementing a feature, performing a maintenance
exercise, continued maintenance on a subsystem, or fixing a
number of related bugs. Each goal has a profile that is defined by
the files that need to be changed to accomplish that goal. In
addition, the goal has a virtual team embodied by the developers
who make the changes required to realize the goal. However,
files may (and often do) take part in multiple goals and people
may also help in accomplishing multiple goals as well. We use
branches to identify the file and author profile for each goal. Prior
research has shown that when different sets of developers or
teams are working on the same parts of the system without
adequate communication, tasks take longer to complete [1] and
defect rates increase [2]. We therefore claim that if two branches
have a high similarity in terms of the files modified to accomplish
that goal, then there must be a corresponding high similarity in
terms of the developers working in those branches. If not, there is
risk of low communication between disparate teams working in
the same systems for possibly competing or conflicting goals.
Consequences of such scenarios could include syntactic or
semantic conflicts, incompatible design changes, duplication of
work, or longer stabilization phases. High	Goal	Similarity ⇒ High	Virtual	Team	Similarity

However, we do not expect that the converse is true. The same or
similar teams may work on unrelated goals without a negative
impact on productivity or quality. People may have expertise in
multiple areas without undue negative effects; files generally fare
better when their functionality is focused and internally cohesive. High	Virtual	Team	Similarity ⇏ High	Goal	Similarity

3. EMPIRICAL EXPLORATION
We evaluate our proposed theory in this paper by examining these
relationships in branches within two releases of Windows. These
releases contained developers and binary components both
numbering in the thousands. Ideally, our research consists of
three steps. First, we need to verify that development actually
follows this pattern. That is, is it empirically the case that
branches with similar goals are worked on by similar teams?
Second, we must demonstrate that adherence (or the lack of
adherence) to this theory is tied important outcomes. In software
engineering, two of the most important outcomes are quality and
productivity. Quality is usually measured in terms of defects,
bugs, post-release failures, and regressions. Productivity is often
measured in tasks completed per unit time or the length of time
needed for a system to stabilize. Are these negatively impacted
when branches have similar goals but disparate teams? Third,
provided that prior steps yield positive results, we plan to develop
a tool that can alert stakeholders to violations of our branch
similarity theory and evaluate if such a tool is able to improve
outcomes by improving adherence to our theory.

This paper is exploratory in nature and addresses the first step of
the aforementioned research plan by evaluating how often practice
matches our theory of branches as goals and virtual teams.

3.1 Methodology
To evaluate our theory of Branches empirically, we gathered
historical information from two releases of the Windows
Operating System, Windows Vista and Windows 7. The
Windows codebase is developed by engineers working on a
number of different branches. These branches form a general tree
structure (there are occurrences of changes moving from one
branch to an unrelated branch, but these are uncommon) which
converges at a trunk from which Windows is released. Although
this forms a hierarchy a number of levels deep, for this
preliminary examination, we do not differentiate by branch depth.
For our purposes, we gathered all changes that were made on all
branches during the development cycle for both releases of
Windows (analyzed individually) and partitioned them by the
branches where the changes originated. We then compared all
pairs of branches by looking at the similarity between who worked
on the two branches and the similarity between what was changed
on the two branches.

Upon manual inspection we discovered that most branches modify
many files, but a few files in each branch are modified an order of
magnitude more than the others. Dichotomizing the data by using
only sets of changed files (required when using a set similarity
measure such as Jaccard similarity) and ignoring the number of
changes per file squanders this vital information. We therefore
leverage this information and use cosine similarity [10] which
measures the cosine of the angle between two vectors in an ݊-
dimensional space and ranges from 0 to 1.0, with 1.0 indicating
exact similarity and 0 indicating there is no intersection of non-
zero dimensions in ܣ and ܤ. cosine	similarity(ܣ, (ܤ = 	 ∑ ܣ × ∑ୀଵටܤ ଶୀଵܣ × ට∑ ଶୀଵܤ

Formally, we describe our approach as follows. Let ܦ be the set
of developers, ܨ be the set of source files modified, and ܤ be the
set of development branches all during a release of Windows.
Note that ܨ may include files that contribute to tests, build
infrastructure, or tools that are considered part of Windows
development but that do not actually compile into any portion of
Windows that ships. We characterize each branch, ܾ ∈ by two ,ܤ
vectors. One vector, ܾ, represents the contributors to ܾ, with
dimension ‖ܦ‖. Each dimension of ܾ represents one developer
and the value for branch ܾ is the number of contributions (i.e.,
individual changes, also known as commits or checkins) made by
that developer on ܾ. This characterizes the set of developers
working on a branch and we term this set a virtual team because it
may span multiple organizational teams. Similarly, the second
vector, ܾி, with dimension ‖ܨ‖, represents the files changed in ܾ.
Each dimension in ܾி corresponds to a source file and its value is
the number of changes to that file on b. We call this vector the
goal profile for ܾ. We are interested in identifying and
characterizing those pairs of branches that have similar goals.
Once we obtain file and developer vectors for two branches, we
compute their similarity scores using cosine similarity.

We calculated the team and goal similarity for all possible pairs of
branches and examined the relationship between these similarities
in two ways. First, we generated a visual depiction of these
similarity relationships to determine if any visible trends were
apparent in the data. Figure 1 shows a heatmap of the relationship
between these similarities. Each pair of branches has a team
similarity and a goal similarity, and can thus be characterized by
one point on a plane. Each cell in the heatmap is shaded

according to the number of points that fall within the confines of
that cell (essentially, colored according to density). Darker values
indicate that many branch-pair similarities fell in that cell.

While a visual depiction is useful for observing goal and team
similarity, we also perform a rigorous statistical analysis. It is
unclear how to test that an implication is true to a statistically
significant degree. A correlation of goal similarity with team
similarity can give some sense of the relationship, but may not
completely capture it because we do not expect that high team
similarity will always lead to high goal similarity; the same team
may work on disparate goals. A correlation will only indicate if
high values of one are always associated with high values of the
other and low values of one are always associated with low values
of the other. Concretely, a correlation can validate: High	Team	Similarity ⇔ High	Goal	Similarity

This is in fact not what we are asking. Nonetheless, we use
correlation as it provides a lower bound on the strength of the
implication relationship. In our case, we use a Spearman rank
correlation [11] because both similarity distributions are highly
right skewed (most mass is on the left); the majority of branch
pairs have very low similarity in both virtual teams and goals.

To augment this analysis, we also define an inequality relationship
between team similarity and goal similarity. If high goal
similarity generally leads to high team similarity then we would
expect the following inequality to hold. Virtual	Team	Similarity Goal	Similarity

We then examine what proportion of branch pairs maintains this
inequality relationship. We don’t expect that all branch pairs will
exhibit this property, but we do expect that the majority will. In
order to test this statistically, we use a binomial test [12]. This
test treats each pair of branches as an individual Bernoulli trial
that is true if the inequality holds and false otherwise. It indicates
if the inequality is true the majority of the time to a statistically
significant degree.

To control for false discovery, a phenomenon where multiple
statistical tests on the same data may result in spurious statistically
significant results, we use Benjamini-Hochberg correction of p-
values [13].

3.2 Findings & Discussion
Figure 1 shows the branch similarity heatmap for the branches
used in development for Windows 7. This visualization provides
evidence supporting our theory. First, note that the cell with the
most similarities has developer similarity and file similarity values
both between 0 and 0.1. This is because on average, most
branches are not similar to each other in either virtual team or goal
space. Of interest are the two portions of the heatmap divide by
the diagonal ݔ = ݔ line. The cells below the ݕ = line (bottom ݕ
and right) are far less dense than the cells above the ݔ = line ݕ
(top and left). This indicates that most of the time, virtual team
similarity is at least as high as goal similarity for a pair of
branches. If two branches share a similar goal, they tend to have
similar virtual teams of developers working on them. This
relationship is not, however, converse. There are cells with high
density near the top left, which represents many pairs of branches
with high virtual team similarity, but not high goal similarity. Just
because the virtual teams on two branches are similar does not
mean that their goals will (or should) be similar.

While this visual examination appears to support our hypothesis.
We also evaluated our hypothesis using statistical inference. For
Windows 7, the Spearman rank correlation of team similarity with
goal similarity was 0.39 and a test of significance yielded ≪ 0.01 indicating a statistically significant, but moderate effect.
One reason why this correlation may not completely capture the
entire story is that there are many pairs of branches that have high
team similarity but low goal similarity. This lowers the
correlation value, but is in fact in line with our hypothesis that
high goal similarity will lead to high team similarity.

We also examined cases of pairs of branches that had either (or
both) high team or high goal similarity. Within Windows 7, we
found of the branch pairs that are similar in terms of virtual teams

Figure 1. Branch Similarity in Windows 7. Darker cells have
more branch pairs with the indicated file and developer
similarity. Lighter cells in the bottom right and darker cells
on the top and left support out hypothesis.

Figure 2. Branch Similarity in Windows Vista. Most darker
cells are in areas where developer similarity is higher than file
similarity, indicating that our hypothesis is supported in
Windows Vista.

or goals, 68% have higher team similarity than goal similarity. A
binomial test showed that this is a statistically significant result as
well, with ≪ 0.01.

Figure 2 shows the heatmap for Windows Vista. Again, observe
that the density of branch pairs above the ݔ = line is higher than ݕ
below, indicating that it is rare for branches to be similar in terms
of goals, but not in terms of the virtual teams accomplishing them.
The Spearman correlation of goal and virtual team similarity in
was 0.47 with ≪ 0.01 indicating a slightly higher, but still
moderate and statistically significant correlation between
similarities. In our analysis of how often team similarity is higher
than goal similarity in Vista, team similarity was higher 75% of
the time, again with a binomial test significance of ≪ 0.01.
Our empirical analysis indicates that our theory of branch
similarity in terms of goals and teams is supported by the
development activity in the last two releases of Windows.

4. RELATED WORK
Space limits our discussion of the wealth of prior work related to
awareness, collaboration of software teams, and use of branching.
Sarma et al. developed [14] and evaluated [15] Palantir, a tool for
workspace awareness. While we are not aware that Palantir has
been evaluated in the context of branches in source code
management systems, fundamentally there is no reason that it
would not work in such a setting. Palantir addresses the same
high level concern as our own, awareness between contributors to
software projects. Guimaraes et al. implemented a novel
continuous integration system, WeCode, to be employed by teams
using branches to collaboratively deal with integration issues early
and improve checkin quality [7].

Tools such as Palantir and WeCode are aimed at mitigating
existing issues and identify very concrete problems after or as
they occur. In contrast we are interested in identifying disparate
teams working on the same parts of the system that have the
potential to make changes which may conflict at the syntactic or,
much worse, the semantic or design level. Our target audience
differs in that we aim to provide awareness to project management
rather than developers, so that they may avoid these scenarios or
coordinate these efforts without adverse effects. As soon as a
virtual team knows which files need work to realize their goals (as
early as design time) management may use such information to
identify which virtual teams may require additional coordination.

5. LOOKING FORWARD
These results represent the first step in our exploration of the
relationship between teams and goals on branches. While
encouraging for this line of research, more must be done for it to
be useful and actionable. In this paper, we have proposed a theory
and have found that it generally holds across two releases of
Windows. We have not, however, shown that the results of
software development are any different when this hypothesis
holds from when it does not. That is, we have not shown that
there are better outcomes when high team similarity accompanies
high goal similarity. As our next step, we will examine this
question. If this relationship leads to positive outcomes or the lack
of this relationship is associated with negative outcomes (such as
delay, lower software quality, or increased maintenance cost),
there is value in developing tools and practices to avoid branches
with similar goals that are contributed to by disparate teams.

Further, we exhort other researchers studying various
development contexts to ask the same or similar questions

regarding division of work and teams using branches and report
their results.

6. REFERENCES
[1] Cataldo, M., Wagstrom, P., Herbsleb, J., and Carley, K.

Identification of coordination requirements: implications for
the Design of collaboration and awareness tools. In
Proceedings of the 20th anniversary of the Conference on
Computer supported cooperative work (2006).

[2] Nagappan, N., Victor, B., and Brendan, M. The Influence of
Organizational Structure on Software Quality: An Empirical
Case Study. In Proceedings of the 30th International
Conference on Software Engineering (2008).

[3] Parnas, D. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM, 14
(1972), 221-227.

[4] Conway, M. How do committees invent. Datamation, 14, 4
(1968), 28-31.

[5] Bird, C., Rigby, P., Barr, E., Hamilton, D., German, D., and
Devanbu, P. The Promises and Perils of Mining Git. In
Proceedings of the Sixth Working Conference on Mining
Software Repositories (2009), IEEE Computer Society.

[6] International Working Conference on Mining Software
Repositories. (2004-2010).

[7] Guimaraes, M.L. and Rito-Silva, A. Towards Real-Time
Integration. In Proceedings of the Workshop on Cooperative
and Human Aspects of Software Engineering (2010).

[8] Dourish, P. and Bellotti, V. Awareness and Coordination in
Shared Workspaces. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work (1992).

[9] Damian, D., Izquierda, L., Singer, J., and Kwan, I.
Awareness in the Wild: Why Communication Breakdowns
Occur. In Proceedings of the International Conference on
Global Software Engineering (2007).

[10] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to
Data Mining. Addison Wesley, 2005.

[11] Dowdy, S., Wearden, S., and Chilko, D. Statistics for
Research. John Wiley & Sons, 2004.

[12] Conover, W.J. Practical Nonparametric Statistics. Wiley &
Sons, New York, 1971.

[13] Benjamini, Y. and Hochberg, Y. Controlling the False
Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. Journal of the Royal Statistical Society.
Series B (Methodological), 57, 1 (1995), 289-300.

[14] Sarma, A., Noroozi, Z., and van der Hoek, A. Palantir:
Raising Awareness among Configuration Management. In
Proceeding of the 25th International Conference on Software
Engineering (2003), 444-454.

[15] Sarma, A., Redmiles, D., and van der Hoek, A. Empirical
Evidence of the Benefits of Workspace Awareness in
Software Configuration Management. In Proceedings of the
16th ACM SigSoft International Symposium on Foundations
of Software Engineering (2008), 113-123.

