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ABSTRACT 
A common method of managing the complexity of both technical 
and organizational relationships in a large software project is to 
use branches within the source code management system to 
partition the work into teams and tasks.  We claim that the files 
modified on a branch are changed together in a cohesive way to 
accomplish some task such as adding a feature, fixing a related set 
of bugs, or implementing a subsystem, which we collectively refer 
to as the goal of the branch.  Further, the developers that work on 
a branch represent a virtual team.  In this paper, we develop a 
theory of the relationship between goals and virtual teams on 
different branches.  Due to expertise, ownership, and awareness 
concerns, we expect that if two branches have similar goals, they 
will also have similar virtual teams or be at risk for 
communication and coordination breakdowns with the 
accompanying negative effects.  In contrast, we do not expect the 
converse to always be true. In the first step towards an actionable 
result, we have evaluated this theory empirically on two releases 
of the Windows operating system and found support in both. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement—Version Control; D.2.9 [Software Engineering]: 
Management – Software Configuration Management. 

General Terms 
Management, Measurement, Human Factors  

Keywords 
Branching, Teams, Coordination 

1. INTRODUCTION 
Software development in any large project is a collaborative and 
team-based enterprise.  Disorganization in such contexts is known 
to lead to delays [1] and faults [2]. An ideal solution to the 
problem of organizing a large software effort is to decompose the 
system into highly cohesive and loosely coupled modules [3] and 
create teams around these modules, leveraging Conway’s Law [4].  
We hasten to note that Parnas’ definition of a module may not 
characterize the conventional definition.  From his paper, “In this 
context ‘module’ is considered to be a responsibility assignment 
rather than a sub-program.”  In practice, we have observed that 
development teams face barriers when attempting to organize in 
this way.  Some “modules” are cross-cutting and defy loose 

coupling with the rest of the system. Other modules may be highly 
dependent on other components within the system.  In both cases, 
teams may need to be insulated from the changes of others that 
may destabilize parts of the system that it is working or dependent 
on.  

Once the decomposition of the system into modules has been 
decided upon and resources (in the form of developers) have been 
assigned tasks, how do they perform their work in such a way that 
they can share with each other but remain isolated during times of 
rapid and volatile development?  A common solution to this 
problem is through the use of branches within the software 
configuration management (SCM) system.  Using branches allows 
teams to defer integration and can insulate them from the changes 
of others that may hinder their own progress. 

Branching within an SCM allows multiple teams to create their 
own workspaces (usually called a branch) from a particular state 
of the source code.  Each team commits to their own branch as 
they normally would in their SCM and at some point in the future, 
once their tasks have been completed, the changes in their branch 
are integrated (also known as merged) into the trunk or a release 
branch.  The effort involved in such an integration is usually 
dependent on how much work went on in the branch and also in 
the original branch in the intervening time.  By providing 
isolation, branches allow teams to focus on their own tasks 
without prematurely worrying about or being affected by the 
changes occurring in the rest of the system.  Teams are free to 
explore, develop, test, and stabilize the code base without 
interfering with others. 

Recently, many open source software (OSS) projects have begun 
using branches more heavily as a result of moving to more 
advanced SCMs such as Git and mercurial [5].  Within Microsoft, 
branching is used heavily to insulate teams from each other’s 
possibly unstable changes.  In both contexts, we have observed 
anecdotally that a branch embodies a goal (we use a purposely 
vague term) which may represent one or more related features, 
user scenarios, or subsystems and a virtual team that represents 
those contributors working on this goal. 

We claim that the SCM is the most important collaborative tool 
used during software development because it is the mechanism by 
which developers actually share the technical artifact.  As such, 
their collaborative behavior as evidenced by SCM records is a 
valuable resource and tracking this behavior with an expectation 
of what is generally “good” and “bad” may enable project 
managers to help their teams avoid problems.  We follow in the 
steps of others by examining developers’ behavior through the 
lens of historical repository data [6]. 

Prior research suggests that awareness is important as developers 
work in different branches (also referred to in other work as 
workspaces) [7].  Based on findings that awareness is important in 
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large projects [8] and that lack of such awareness in software 
development can have detrimental effects [9], we assert that in 
certain scenarios, there may be adverse effects due to the 
insulation that branches afford software teams.  In this paper, we 
present a theory of branches as goals and virtual teams and 
explore this theory by evaluating it on two releases of the 
Microsoft Windows operating system. 

2. THEORY 
Branches are most often created to accomplish some goal, which 
may be implementing a feature, performing a maintenance 
exercise, continued maintenance on a subsystem, or fixing a 
number of related bugs.  Each goal has a profile that is defined by 
the files that need to be changed to accomplish that goal.  In 
addition, the goal has a virtual team embodied by the developers 
who make the changes required to realize the goal.  However, 
files may (and often do) take part in multiple goals and people 
may also help in accomplishing multiple goals as well.  We use 
branches to identify the file and author profile for each goal.  Prior 
research has shown that when different sets of developers or 
teams are working on the same parts of the system without 
adequate communication, tasks take longer to complete [1] and 
defect rates increase [2].  We therefore claim that if two branches 
have a high similarity in terms of the files modified to accomplish 
that goal, then there must be a corresponding high similarity in 
terms of the developers working in those branches.  If not, there is 
risk of low communication between disparate teams working in 
the same systems for possibly competing or conflicting goals.  
Consequences of such scenarios could include syntactic or 
semantic conflicts, incompatible design changes, duplication of 
work, or longer stabilization phases.  High	Goal	Similarity ⇒ High	Virtual	Team	Similarity 

However, we do not expect that the converse is true.  The same or 
similar teams may work on unrelated goals without a negative 
impact on productivity or quality.  People may have expertise in 
multiple areas without undue negative effects; files generally fare 
better when their functionality is focused and internally cohesive. High	Virtual	Team	Similarity ⇏ High	Goal	Similarity 

3. EMPIRICAL EXPLORATION 
We evaluate our proposed theory in this paper by examining these 
relationships in branches within two releases of Windows.  These 
releases contained developers and binary components both 
numbering in the thousands.  Ideally, our research consists of 
three steps.  First, we need to verify that development actually 
follows this pattern.  That is, is it empirically the case that 
branches with similar goals are worked on by similar teams?  
Second, we must demonstrate that adherence (or the lack of 
adherence) to this theory is tied important outcomes.  In software 
engineering, two of the most important outcomes are quality and 
productivity.  Quality is usually measured in terms of defects, 
bugs, post-release failures, and regressions.  Productivity is often 
measured in tasks completed per unit time or the length of time 
needed for a system to stabilize.  Are these negatively impacted 
when branches have similar goals but disparate teams?  Third, 
provided that prior steps yield positive results, we plan to develop 
a tool that can alert stakeholders to violations of our branch 
similarity theory and evaluate if such a tool is able to improve 
outcomes by improving adherence to our theory. 

This paper is exploratory in nature and addresses the first step of 
the aforementioned research plan by evaluating how often practice 
matches our theory of branches as goals and virtual teams. 

3.1 Methodology 
To evaluate our theory of Branches empirically, we gathered 
historical information from two releases of the Windows 
Operating System, Windows Vista and Windows 7.  The 
Windows codebase is developed by engineers working on a 
number of different branches.  These branches form a general tree 
structure (there are occurrences of changes moving from one 
branch to an unrelated branch, but these are uncommon) which 
converges at a trunk from which Windows is released.  Although 
this forms a hierarchy a number of levels deep, for this 
preliminary examination, we do not differentiate by branch depth.  
For our purposes, we gathered all changes that were made on all 
branches during the development cycle for both releases of 
Windows (analyzed individually) and partitioned them by the 
branches where the changes originated.  We then compared all 
pairs of branches by looking at the similarity between who worked 
on the two branches and the similarity between what was changed 
on the two branches. 

Upon manual inspection we discovered that most branches modify 
many files, but a few files in each branch are modified an order of 
magnitude more than the others.  Dichotomizing the data by using 
only sets of changed files (required when using a set similarity 
measure such as Jaccard similarity) and ignoring the number of 
changes per file squanders this vital information.  We therefore 
leverage this information and use cosine similarity [10] which 
measures the cosine of the angle between two vectors in an ݊-
dimensional space and ranges from 0 to 1.0, with 1.0 indicating 
exact similarity and 0 indicating there is no intersection of non-
zero dimensions in ܣ and ܤ. cosine	similarity(ܣ, (ܤ = 	 ∑ ܣ × ∑ୀଵටܤ ଶୀଵܣ × ට∑ ଶୀଵܤ  

Formally, we describe our approach as follows.  Let ܦ be the set 
of developers, ܨ be the set of source files modified, and ܤ be the 
set of development branches all during a release of Windows.  
Note that ܨ may include files that contribute to tests, build 
infrastructure, or tools that are considered part of Windows 
development but that do not actually compile into any portion of 
Windows that ships.  We characterize each branch, ܾ ∈  by two ,ܤ
vectors. One vector, ܾ, represents the contributors to ܾ, with 
dimension ‖ܦ‖.  Each dimension of ܾ represents one developer 
and the value for branch ܾ is the number of contributions (i.e., 
individual changes, also known as commits or checkins) made by 
that developer on ܾ. This characterizes the set of developers 
working on a branch and we term this set a virtual team because it 
may span multiple organizational teams. Similarly, the second 
vector, ܾி, with dimension ‖ܨ‖, represents the files changed in ܾ.  
Each dimension in ܾி corresponds to a source file and its value is 
the number of changes to that file on b.  We call this vector the 
goal profile for ܾ.  We are interested in identifying and 
characterizing those pairs of branches that have similar goals.  
Once we obtain file and developer vectors for two branches, we 
compute their similarity scores using cosine similarity. 

We calculated the team and goal similarity for all possible pairs of 
branches and examined the relationship between these similarities 
in two ways.  First, we generated a visual depiction of these 
similarity relationships to determine if any visible trends were 
apparent in the data.  Figure 1 shows a heatmap of the relationship 
between these similarities.  Each pair of branches has a team 
similarity and a goal similarity, and can thus be characterized by 
one point on a plane.  Each cell in the heatmap is shaded 



according to the number of points that fall within the confines of 
that cell (essentially, colored according to density).  Darker values 
indicate that many branch-pair similarities fell in that cell. 

While a visual depiction is useful for observing goal and team 
similarity, we also perform a rigorous statistical analysis.  It is 
unclear how to test that an implication is true to a statistically 
significant degree.  A correlation of goal similarity with team 
similarity can give some sense of the relationship, but may not 
completely capture it because we do not expect that high team 
similarity will always lead to high goal similarity; the same team 
may work on disparate goals.  A correlation will only indicate if 
high values of one are always associated with high values of the 
other and low values of one are always associated with low values 
of the other.  Concretely, a correlation can validate: High	Team	Similarity ⇔ High	Goal	Similarity 

This is in fact not what we are asking.  Nonetheless, we use 
correlation as it provides a lower bound on the strength of the 
implication relationship.  In our case, we use a Spearman rank 
correlation [11] because both similarity distributions are highly 
right skewed (most mass is on the left); the majority of branch 
pairs have very low similarity in both virtual teams and goals. 

To augment this analysis, we also define an inequality relationship 
between team similarity and goal similarity.  If high goal 
similarity generally leads to high team similarity then we would 
expect the following inequality to hold. Virtual	Team	Similarity  Goal	Similarity 

We then examine what proportion of branch pairs maintains this 
inequality relationship. We don’t expect that all branch pairs will 
exhibit this property, but we do expect that the majority will.  In 
order to test this statistically, we use a binomial test [12].  This 
test treats each pair of branches as an individual Bernoulli trial 
that is true if the inequality holds and false otherwise.  It indicates 
if the inequality is true the majority of the time to a statistically 
significant degree. 

To control for false discovery, a phenomenon where multiple 
statistical tests on the same data may result in spurious statistically 
significant results, we use Benjamini-Hochberg correction of p-
values [13]. 

3.2 Findings & Discussion 
Figure 1 shows the branch similarity heatmap for the branches 
used in development for Windows 7.  This visualization provides 
evidence supporting our theory.  First, note that the cell with the 
most similarities has developer similarity and file similarity values 
both between 0 and 0.1.  This is because on average, most 
branches are not similar to each other in either virtual team or goal 
space.  Of interest are the two portions of the heatmap divide by 
the diagonal ݔ = ݔ line.  The cells below the ݕ =  line (bottom ݕ
and right) are far less dense than the cells above the ݔ =  line ݕ
(top and left).  This indicates that most of the time, virtual team 
similarity is at least as high as goal similarity for a pair of 
branches.  If two branches share a similar goal, they tend to have 
similar virtual teams of developers working on them.  This 
relationship is not, however, converse.  There are cells with high 
density near the top left, which represents many pairs of branches 
with high virtual team similarity, but not high goal similarity.  Just 
because the virtual teams on two branches are similar does not 
mean that their goals will (or should) be similar. 

While this visual examination appears to support our hypothesis.  
We also evaluated our hypothesis using statistical inference.  For 
Windows 7, the Spearman rank correlation of team similarity with 
goal similarity was 0.39 and a test of significance yielded  ≪ 0.01 indicating a statistically significant, but moderate effect.  
One reason why this correlation may not completely capture the 
entire story is that there are many pairs of branches that have high 
team similarity but low goal similarity.  This lowers the 
correlation value, but is in fact in line with our hypothesis that 
high goal similarity will lead to high team similarity. 

We also examined cases of pairs of branches that had either (or 
both) high team or high goal similarity.  Within Windows 7, we 
found of the branch pairs that are similar in terms of virtual teams 

 
Figure 1. Branch Similarity in Windows 7.  Darker cells have 
more branch pairs with the indicated file and developer 
similarity.  Lighter cells in the bottom right and darker cells 
on the top and left support out hypothesis. 

 
Figure 2. Branch Similarity in Windows Vista.  Most darker 
cells are in areas where developer similarity is higher than file 
similarity, indicating that our hypothesis is supported in 
Windows Vista. 



or goals, 68% have higher team similarity than goal similarity.  A 
binomial test showed that this is a statistically significant result as 
well, with  ≪ 0.01. 

Figure 2 shows the heatmap for Windows Vista.  Again, observe 
that the density of branch pairs above the ݔ =  line is higher than ݕ
below, indicating that it is rare for branches to be similar in terms 
of goals, but not in terms of the virtual teams accomplishing them.  
The Spearman correlation of goal and virtual team similarity in 
was 0.47 with  ≪ 0.01 indicating a slightly higher, but still 
moderate and statistically significant correlation between 
similarities.  In our analysis of how often team similarity is higher 
than goal similarity in Vista, team similarity was higher 75% of 
the time, again with a binomial test significance of  ≪ 0.01. 
Our empirical analysis indicates that our theory of branch 
similarity in terms of goals and teams is supported by the 
development activity in the last two releases of Windows.   

4. RELATED WORK 
Space limits our discussion of the wealth of prior work related to 
awareness, collaboration of software teams, and use of branching.  
Sarma et al. developed [14] and evaluated [15] Palantir, a tool for 
workspace awareness.  While we are not aware that Palantir has 
been evaluated in the context of branches in source code 
management systems, fundamentally there is no reason that it 
would not work in such a setting.  Palantir addresses the same 
high level concern as our own, awareness between contributors to 
software projects.  Guimaraes et al. implemented a novel 
continuous integration system, WeCode, to be employed by teams 
using branches to collaboratively deal with integration issues early 
and improve checkin quality [7]. 

Tools such as Palantir and WeCode are aimed at mitigating 
existing issues and identify very concrete problems after or as 
they occur.  In contrast we are interested in identifying disparate 
teams working on the same parts of the system that have the 
potential to make changes which may conflict at the syntactic or, 
much worse, the semantic or design level.  Our target audience 
differs in that we aim to provide awareness to project management 
rather than developers, so that they may avoid these scenarios or 
coordinate these efforts without adverse effects.  As soon as a 
virtual team knows which files need work to realize their goals (as 
early as design time) management may use such information to 
identify which virtual teams may require additional coordination.  

5. LOOKING FORWARD 
These results represent the first step in our exploration of the 
relationship between teams and goals on branches.  While 
encouraging for this line of research, more must be done for it to 
be useful and actionable.  In this paper, we have proposed a theory 
and have found that it generally holds across two releases of 
Windows. We have not, however, shown that the results of 
software development are any different when this hypothesis 
holds from when it does not.  That is, we have not shown that 
there are better outcomes when high team similarity accompanies 
high goal similarity.  As our next step, we will examine this 
question. If this relationship leads to positive outcomes or the lack 
of this relationship is associated with negative outcomes (such as 
delay, lower software quality, or increased maintenance cost), 
there is value in developing tools and practices to avoid branches 
with similar goals that are contributed to by disparate teams. 

Further, we exhort other researchers studying various 
development contexts to ask the same or similar questions 

regarding division of work and teams using branches and report 
their results.   
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