Guardrail: A High Fidelity Approach to
Protecting Hardware Devices from Buggy Drivers

Olatunji Ruwase! *

Microsoft Research

Michael A. Kozuch?
%Intel Labs Pittsburgh

Phillip B. Gibbons?> Todd C. Mowry?

3Carnegie Mellon University

olruwase@microsoft.com, {michael.a.kozuch, phillip.b.gibbons}@intel.com, tcm®@cs.cmu.edu

Abstract

Device drivers are an Achilles’ heel of modern commod-
ity operating systems, accounting for far too many system
failures. Previous work on driver reliability has focused on
protecting the kernel from unsafe driver side-effects by in-
terposing an invariant-checking layer at the driver interface,
but otherwise treating the driver as a black box. In this paper,
we propose and evaluate Guardrail, which is a more pow-
erful framework for run-time driver analysis that performs
decoupled, instruction-grain dynamic correctness checking
on arbitrary kernel-mode drivers as they execute, thereby
enabling the system to detect and mitigate more challeng-
ing correctness bugs (e.g., data races, uninitialized mem-
ory accesses) that cannot be detected by today’s fault iso-
lation techniques. Our evaluation of Guardrail shows that it
can find serious data races, memory faults, and DMA faults
in native Linux drivers that required fixes, including previ-
ously unknown bugs. Also, with hardware logging support,
Guardrail can be used for online protection of persistent de-
vice state from driver bugs with at most 10% overhead on the
end-to-end performance of most standard I/O workloads.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Reliability, availability, and serviceability; D.2.5
[Software Engineering]: Testing and Debugging—Monitors,
Tracing

Keywords Device Drivers; Dynamic Analysis

* Work done at Carnegie Mellon University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ASPLOS ’14, March 1-5, 2014, Salt Lake City, Utah, USA.

Copyright © 2014 ACM 978-1-4503-2305-5/14/03. .. $15.00.
http://dx.doi.org/10.1145/2541940.2541970

1. Introduction

Because device drivers have been identified as a critical
weak link in overall systems reliability [8, 17, 31, 39, 46],
researchers have attempted to improve their robustness
through strategies such as static analysis [1, 8, 21, 31], spec-
ification [26, 40, 50], type safety [35, 44, 54], user-level
drivers [4, 18, 25, 50], and run-time analysis [4, 5, 14, 18,
45, 50]. While each of these approaches has its merits, we
focus on run-time analysis in this paper because it is com-
plementary to the other approaches and can potentially catch
problems that the other techniques may miss due to practical
limitations.

The main focus of run-time driver analysis to date has
been on fault isolation [4, 5, 14, 18, 45, 50], where the
goal is to augment the driver interfaces to prevent a buggy
driver from corrupting the OS kernel. The basic idea behind
fault isolation is to interpose a run-time checking layer at
the driver interface that performs a sanity check before the
driver is allowed to proceed with performing any side effects
outside of the driver (e.g., writing to kernel memory [45]).

1.1 Limitations of Existing Fault Isolation Techniques

While existing fault isolation techniques are useful, they suf-
fer from two key limitations. First, they only check invariants
at the driver’s interface, treating the bulk of the driver’s exe-
cution as a black box. For example, most fault isolation tech-
niques ignore driver reads (since normal reads do not have
side-effects), which means that they are unable to recognize
problems such as data races within drivers. In other words,
existing fault isolation techniques do not focus on whether
the driver software is executing correctly (at a fundamental
level), but rather on whether the driver has obviously harm-
ful side-effects beyond its interface.

Second, while fault isolation research has focused on
the driver’s interface with the kernel, arguably the driver’s
interface to its hardware device is equally important (if not
more important) since rebooting the kernel may do little
good once persistent device state has been corrupted. In
contrast with the driver/kernel interface, which tends to be
relatively uniform across drivers, the driver/device interfaces
are far more diverse and device-specific, which makes it

Kernel

Interposition &
Checking

Dynamic
Analysis

Interposition &
Checking

Device

Figure 1: Incorporating decoupled dynamic analysis to pro-
tect the system from driver faults.

far more challenging to interpose and successfully check
invariants across this latter interface [50].

1.2 Our Approach: Protecting Devices through
Decoupled, Instruction-Grain Dynamic Driver
Analysis

In this paper, we present a new framework (called Guardrail)
that focuses on preventing buggy device drivers from cor-
rupting hardware device state. Rather than treating the bulk
of the driver execution as a black box, Guardrail’s decision
of whether to allow the driver to proceed with a side-effect-
causing operation is driven not simply by invariant checks
at the driver’s interface, but rather by instruction-grain dy-
namic analysis of the driver software as it executes, as illus-
trated in Figure 1. Indeed, Guardrail typically identifies cor-
rectness problems within the driver before they even reach
the driver’s interface. Hence Guardrail enables a more com-
prehensive analysis of whether or not the driver software is
behaving correctly than what is practical today; for exam-
ple, handling the case where a buggy driver stores the wrong
value in a valid target location (in either kernel memory or
its device).

To achieve this higher fidelity of dynamic correctness
checking without sacrificing driver performance, we pro-
pose a decoupled approach to performing the dynamic
instruction-by-instruction analysis of the driver as it exe-
cutes. In our decoupled approach, an execution trace of the
driver software is captured (e.g., via a hardware-assisted
logging mechanism [6, 47] or through binary instrumenta-
tion [15, 32]) and stored in a buffer that is consumed asyn-
chronously by a dynamic analysis tool running concurrently
in a separate virtual machine. Because the dynamic analysis
tool can lag behind the driver in our decoupled approach, the
interposition layer stalls any side-effect-causing operations
at the driver interface until the dynamic analysis is able to
catch up. Guardrail effectively achieves a “sweet spot” be-
tween synchronous instruction-grain analysis (which results
in too large of a performance overhead for latency-critical
driver operations such as interrupt handling) and offline (or
post-mortem) instruction-grain analysis (which avoids run-
time overhead but occurs too late to prevent faulty drivers
from corrupting persistent state). Although the dynamic

analysis enabled by Guardrail does increase overall compu-
tational load on the system, our decoupled approach allows
the bulk of this overhead to be offloaded onto idle CPUs
(unless the system is already saturated on CPU throughput).
Hence Guardrail is suitable for either a fast debug/testing
environment or a production environment that is not already
throughput limited.

1.3 Related Work

As described above, our work complements earlier research
on fault isolation [4, 5, 14, 18, 45, 50] by not only using in-
terpositioning to prevent harmful side effects from escaping
from the driver, but also by “opening the black box™: i.e., us-
ing instruction-by-instruction dynamic analysis of the driver
software to hopefully identify problems that are not obvious
to interface invariant checks. In contrast with the previous
proposal for isolating devices from driver faults [50], which
required modifying the driver and moving it into user-space,
our approach is transparent to both the driver and the device,
therefore enabling Guardrail to work with arbitrary driver
binaries and devices.

Regarding dynamic checking for faults within drivers,
SafeDrive [54] and KAddrcheck [15] perform run-time
checks to detect memory addressability issues in kernel
code, including drivers. In contrast with SafeDrive [54],
which instruments drivers at compile-time, our approach
works directly on binaries and does not require access to
driver source code. In contrast with KAddrcheck [15], our
approach uses decoupled analysis to reduce the impact on
driver performance and can detect problems with mem-
ory initialization (in addition to addressability). Moreover,
within the same Guardrail framework, a wide variety of tools
are readily supported. For example, our DMACheck tool dy-
namically detects DMA bugs in drivers; this runtime ap-
proach is complimentary to a static analysis approach [3]
detecting similar bugs using separation logic with permis-
sions.

Finally, DataCollider [13] detects data races through a
sampling-based approach by stalling kernel threads in crit-
ical sections and using data breakpoints to detect conflict-
ing accesses in other threads. There are three fundamental
differences between DataCollider and our Guardrail-enabled
data race detection tool (DRCheck, which we describe in de-
tail later in this paper). First, DataCollider can only detect
whether a data race occurred in a specific observed interleav-
ing, whereas DRCheck can detect race conditions that might
occur in other interleavings (because DRCheck models syn-
chronization protocols used in the driver). Second, DataCol-
lider uses sampling to reduce run-time overheads, whereas
DRCheck uses decoupled analysis to reduce overhead while
still checking all driver invocations for potentially harm-
ful behavior. Third, DataCollider’s stalling approach is not
suited for threads servicing time-critical interrupts, making
it less effective for drivers (which are frequently in interrupt
contexts) than DRCheck.

1.4 Contributions
This paper makes the following contributions:

® We propose and implement a novel framework, Guardrail,
for detecting incorrect driver behavior at run-time and
preventing the faulty driver from corrupting the rest of the
system (including persistent state on hardware devices).
In contrast to previous proposals, Guardrail performs
instruction-grain correctness checking as the driver ex-
ecutes, and uses a decoupled VM-based approach to pro-
vide isolation and minimize the impact on driver perfor-
mance. Guardrail supports arbitrary kernel-mode driver
binaries and devices for commodity operating systems.

e Within Guardrail, we demonstrate three new instruction-
grain correctness checking tools that detect data races
(DRCheck), DMA faults (DMACheck), and unsafe uses
of uninitialized data (DMCheck), none of which are
supported by existing driver fault isolation techniques.
DRCheck improves upon prior approaches by minimiz-
ing false positives and avoiding false negatives, while
handling the complexities of kernel-mode drivers.

® Our experimental results show that Guardrail is more
effective at catching driver bugs than previous tools, e.g.,
by finding a bug in the popular gla2xxx SCSI driver
that was undetected for years. Moreover, with hardware
logging support, Guardrail modestly impacts the end-
to-end performance of standard I/O workloads in most
cases.

2. System Design

To foster a principled approach while designing Guardrail,
we developed a set of high-level design goals. In particular,
Guardrail should:

(generality) support the monitoring of unmodified driver bi-
naries running in common computing environments (e.g.,
stock multithreaded OS, arbitrary applications and run-
time environments, etc.);

(detection fidelity) enable fine-grain correctness-checking
and identification of errors, while supporting a wide va-
riety of monitoring tools;

(containment) provide mechanisms for preventing detected
driver errors from erroneously affecting external state;

(response flexibility) allow users to control what Guardrail
does on detecting an error (e.g., disable I/O operations
from the driver, or simply record information for post-
mortem analysis); and

(trustworthiness) rely on a minimal trusted computing base
for containment.

The system architecture that resulted from these goals is
shown in Figure 2. To simultaneously satisfy the contain-
ment and generality goals, we adopted a virtual machine-
based system. The driver(s) of interest, along with the stock

Driver VM Analysis VM
Dynamic Binary During Execution
Analysis 0. Collect Trace
A 3 User space
Trace On 1/0 Event
1 Kernel space
5 1. Access trap
\ 1/0 interposition | 2. Request approval
47 VMM space
Hardware 4. Complete access

Figure 2: System architecture of Guardrail.

OS (Linux, in our prototype) and related applications, exe-
cute in one virtual machine (VM), labeled the “Driver VM”
in the figure. The virtual machine monitor (VMM) provides
the interposition mechanism. I/O operations are intercepted
in this layer, and should an error be detected, the VMM pre-
vents the error from propagating outside the Driver VM by
simply not delivering it to the physical hardware.

While the driver executes, a trace of its operations is col-
lected and delivered to a second virtual machine, the “Anal-
ysis VM.” An instruction-level trace supporting high defec-
tion fidelity can be captured through one of several mecha-
nisms: binary translation [15, 32] in the Driver VM, VMM-
based monitoring [9, 52], or monitoring hardware [6, 47,
48]. Because driver code is potentially executed by an un-
bounded number of kernel threads, logical logs are main-
tained per virtual processor in the Driver VM, rather than
per kernel thread, to avoid scalability issues.

The execution trace is streamed, possibly with some
buffering delay, to the Dynamic Binary Analysis tool, which
runs in user space in the Analysis VM. This tool consumes
the execution trace and checks for driver errors, such as data
races or memory access violations, to help the VMM deter-
mine when (or if) an intercepted I/O operation can be safely
dispatched to the device (see Section 2.2 for details). If a
fault is identified in the driver’s execution then it is poten-
tially unsafe to dispatch the intercepted I/O operation to the
device. However, the appropriate course of action in this sit-
uation often depends on the particular requirements of the
user (e.g., willingness to sacrifice system availability to en-
sure persistent data integrity). Therefore, to accommodate
the variety of constraints in production sites, end users have
the response flexibility of configuring Guardrail to operate in
one of 3 modes: (i) stringent, (ii) permissive, and (iii) triage.
In stringent mode, Guardrail blocks the intercepted and
subsequent I/O operations from the driver, effectively dis-
abling the I/O device. Permissive mode is the other extreme,
where after performing user specified actions (e.g., alerting
the user, recording event information for additional off-line
post-mortem analysis, taking a system checkpoint, enabling
additional online analysis, etc.) Guardrail dispatches the of-
fending I/O operation to the device and resumes normal
execution. Triage mode represents a middle ground between

these two extremes, where Guardrail performs a best-effort
estimation of the safety of completing the I/O operation by
automatically triaging the fault [22, 27, 34]. If the I/O op-
eration is deemed safe, Guardrail behaves like permissive
mode, otherwise it behaves like stringent mode. Although
this flexibility allows Guardrail to be configured in interest-
ing ways for different real-world deployment scenarios, this
paper is however focused on stringent Guardrail.!

Note that in this design, the trustworthiness of the con-
tainment mechanism is maintained because any complexity
associated with tracking the driver state, emulating device-
specific logic, or correctness checking is managed in the
dynamic analysis tool. Consequently, device-independent
I/O interpositioning may be implemented through a sim-
ple addition to the VMM layer; less than 500 lines of C
code were required to retrofit a commodity VMM (Xen [2])
with I/O interpositioning. The complexity of the checking
tool may be non-trivial, however, primarily because the sys-
tem was designed to accommodate arbitrary correctness-
checking to cope with the wide variety of bug types that
plague drivers [8, 17, 31]. Fortunately, these tools run in
user space of the Analysis VM, easing their development
and deployment.

2.1 Analysis Scope

An important question that arises in our design is: which
events should be captured in the execution trace? For ex-
ample, the trace could capture all instructions events in the
Driver VM, all kernel-level events only, or solely events
associated with the driver. Naturally, capturing a larger set
of events than necessary incurs a performance overhead, so
ideally, the driver analysis tool would only need to process
events generated by the driver. In our case, this would mean
instructions whose addresses belong to the loaded driver
module.

However, we soon observed that many operations critical
to determining whether a driver is behaving correctly are
in fact performed outside the driver. In particular, the I/O
subsystem (or protocol stack) (e.g., network, SCSI, sound),
which manages the driver, provides certain invariants upon
which the driver writer may rely. For example, the network
stack will acquire certain locks prior to driver execution to
protect shared data accesses within the driver, as illustrated
by the code snippet from Linux 2.6.18 in Figure 3. Here, the
network stack serializes packet transmission by locking the
execution of the driver’s hard_start_xmit () callback. A
race detector focused solely on the driver’s execution would
not observe the lock acquire, which happens outside the
driver context, and hence would incorrectly flag as data races

! Permissive and Triage modes only affect Guardrail’s response to suspected
driver correctness issues within the context of the Driver VM. The interpo-
sition layer always enforces the virtual machine definition. For example, an
attempt to read/write past the end of a virtual disk will be strictly enforced
under all modes.

HARD_TX LOCK(dev, cpu);
rc = dev->hard_start_xmit(nskb, dev);

HARD_TX_ UNLOCK(dev) ;

Figure 3: The Linux interface to network drivers serializes
packet transmission by locking hard_start_xmit ().

all pairs of accesses in hard_start_xmit() by different
threads with at least one writer.

To address this issue, Guardrail monitors and analyzes
operations occurring in the relevant portions of the I/O sub-
system (e.g., the scsi-mod module in the Linux SCSI sub-
system) as well as those originating in the driver, itself. Ex-
tending the scope to include this interface captured all such
“critical” operations that we observed. Our goal is not to de-
termine whether there are errors in the interface, but rather
to detect operations that are critical to driver correctness, and
this extension was useful for both our memory fault and data
race detectors. A possible drawback of our approach is that
interface changes across kernel versions will require corre-
sponding modifications to our checking tools—fortunately,
such changes are likely infrequent because they require cor-
responding modifications to the entire driver code base.

2.2 1/0O Interposition Details

Because devices are controlled by reading/writing device
registers, the interposition layer prevents driver errors from
propagating beyond the VM boundary by: (i) intercepting
all? device register accesses, (ii) coordinating with a decou-
pled correctness checker to determine the safety of the ac-
cesses, and (iii) ensuring their timely completion as soon as
they are deemed safe. Because the Driver VM has direct ac-
cess to the device [51], the interposition layer is transparent
to both the driver and device, and therefore supports arbi-
trary drivers and devices. Figure 2 depicts the steps associ-
ated with the transparent handling of a device register access.

Intercepting device register access Device register ac-
cesses from the driver are intercepted by ensuring that device
register accesses from the Driver VM fault to the VMM. In
virtualized x86 environments, the I/O port address space is
typically considered to be privileged by default and accesses
to this space will fault. Many modern devices, however, are
managed through memory-mapped I/O registers that are ac-
cessed through regular load and store instructions. Because
these operations are subject to the usual address translation
mechanisms, Guardrail intercepts accesses to the device reg-
isters by configuring the page tables of the Driver VM such
that these accesses fault to the VMM. The page faults result-
ing from this interposition can be distinguished from normal
memory management page faults based on the faulting ad-

2 Some performance improvements could be obtained by not intercepting
1/O operations that do not affect externally-visible state, such as side-effect
free reads, but such optimizations would require scrutiny of the operations
and were not pursued in this work.

dress. Note that interposition only affects communication
originating from the Driver VM; interrupts to the Driver
VM may be delivered normally.

Coordinating with decoupled correctness checking To
limit the performance penalty of I/O interposition, inter-
cepted device accesses should be verified and re-issued as
soon as possible. If correctness checking is coupled with
I/O interposition [50], this can be relatively straightforward;
however, in our decoupled checking approach, additional co-
ordination is required between the interposition and check-
ing components. After intercepting a device register access,
the interposition layer uses a memory-based communication
channel to request approval from the checker to complete
the access. Details of the faulting instruction (e.g., thread id,
faulting address) are included in the request. If the checker
verifies that no errors occurred in the execution trace up to
the point where the access was encountered, the access will
be approved. Otherwise, if the access is disapproved because
of a driver fault, the interposition layer can initiate recovery
using appropriate techniques [5, 24, 46].

Because the checker’s response will typically incur some
latency, the interposition layer has at least two options re-
garding what to do while waiting for the checker’s response.
The first is to hold the request in the hypervisor until the
response arrives, effectively freezing the virtual CPU. To
maintain the responsiveness of the guest OS, if interrupts are
generated during this period, they should be delivered to the
virtual CPU at the point just before the faulting instruction.’
For development expediency, we selected a different option:
the interposition layer simply returns control to the faulting
instruction periodically. In other words, a guest OS thread
that accesses a device register will continue executing the
access and trapping into the interposition layer, until either
the checker verifies the safety of the access or the thread is
preempted.

Completing device register access After the checking tool
has verified that the intercepted register access is safe, there
are two ways of issuing the operation: (i) retrying the fault-
ing instruction after temporarily making the device register
available to the guest OS [10], or (ii) emulating the fault-
ing instruction in the hypervisor. Because the concurrently
executing kernel threads of commodity OSes share a sin-
gle kernel address space, the first option requires great care
in attempting to ensure that the temporarily accessible page
is only accessed by the verified operation in the intended
thread at an appropriate time. Consequently, in our current
implementation, we chose the emulation option in order to
avoid potential containment errors, especially in SMP envi-
ronments.

3 We assume that the faulting instruction will eventually be re-executed, and
the matching approval from the checker can then be applied. The VMM
may need to monitor the guest to ensure it doesn’t make an adjustment to
prevent such re-execution (e.g. re-writing the stack). Such adjustments were
not encountered in our experiments.

3. Driver Correctness Tools

Guardrail enables a wide range of driver correctness check-
ing tools. In this work, we focus on tools for memory safety
and concurrency, and OS protocol issues, because studies
have shown that these account for a significant fraction of
production driver faults [8, 17, 31, 39]. This section de-
scribes the three instruction-grain dynamic analysis tools
that we developed for finding (i) data races, (ii) violations
of OS rules for using DMA, and (iii) memory faults in un-
modified Linux driver binaries.

3.1 DRCheck: Detecting Data Races

Our first dynamic analysis tool, DRCheck, detects data races
in kernel-mode drivers. A data race condition occurs when-
ever there are two unserialized accesses to the same shared
data with at least one being a write. Race conditions are diffi-
cult to avoid during driver development because of the com-
plex concurrency setting in which drivers operate, and diffi-
cult to find during pre-release testing because of their non-
deterministic nature. Moreover, most drivers are developed
by third parties who are unlikely to be kernel experts [17,
31]. As modern OS kernels and their drivers increasingly
exploit parallelism to improve performance, avoiding race
conditions becomes all the more challenging, posing a seri-
ous threat to system stability.

3.1.1 Complexity of concurrency issues in drivers

While there have been many studies on user-mode data race
detection [16, 41, 42, 53], existing tools cannot be eas-
ily adapted for drivers, because the concurrency issues of
kernel-mode execution are more complex than user-mode
execution. For example, the LockSet algorithm [41], which
associates a lockset state with each memory location, as-
sumes that all synchronization occurs through well-defined
library primitives. To integrate the LockSet techniques into
DRCheck, any kernel synchronization mechanisms that do
not use library primitives would need to be adapted to the
framework. We identified the following four sources of ad-
ditional complexity that must be addressed in kernel-mode
driver execution:

1. a form of concurrency that makes it possible for a single
thread to make racy accesses to shared data (i.e., to race
itself);

2. synchronization invariants based on the context of the
device state;

3. synchronization based on deferred execution using softirgs
and kernel timers; and

4. ad hoc mutual exclusion techniques that avoid lock over-
heads, such as disabling interrupts and preemption.

These issues can lead to excessive false positives and false
negatives for user-mode race detectors, as shown by our
experimental study in Section 4. We discuss these concur-
rency issues in more details below, and then describe how

1. In process context (e.g. packet transmission)
Preempted to interrupt context to service NIC interrupt (e.g. packet reception)
3. Resume process context

[

Figure 4: A kernel thread executing network driver code in
different Linux kernel contexts.

DRCheck addresses them to reduce false positives and avoid
false negatives.

Sources of concurrency in drivers The most basic source
of driver concurrency is multi-threaded execution of driver
code that accesses shared data. In addition, a subtle form of
concurrency is introduced by the multiple execution contexts
of varying priority levels that are provided by commodity
preemptive OS kernels, in order to enable scheduling flex-
ibility for time-constrained, privileged work. For example,
Linux kernel threads execute either in process context (low-
est priority) or in interrupt context—further divided into bot-
tom half and top half (highest priority). Kernel-mode execu-
tion contexts are critical to driver performance—they enable
the prompt completion of higher priority tasks (e.g., interrupt
handling) by hijacking a thread that is performing a lower
priority task and using it for the higher priority task. As an
example, Figure 4 illustrates the time line of a kernel thread
executing network driver code in process and interrupt con-
texts of the Linux kernel. The thread is initially executing the
packet transmission routine of the driver in process context,
next it is switched to fop half context to service a network
card interrupt using the interrupt handling routine, and after-
wards it resumes the packet transmission routine. However,
execution contexts complicate concurrency in drivers in the
sense that if the high priority code shares data with the sus-
pended low priority code then the kernel thread could race
itself.* For example, a race would occur in Figure 4 if on re-
sumption of process context the thread reads data that was
updated in top half context. Such a race will be missed by
existing race detection tools because only one thread is in-
volved.

Device state-based synchronization Many peripheral de-
vices (ethernet, scsi, usb, etc.) behave like finite state ma-
chines (FSM), and drivers often use their states to protect
critical sections. The set of valid operations for a device de-
pends on the state of the device, and so the kernel, in or-
der to prevent device failures, invokes only driver callbacks
that are valid for the current device state. In other words,
device states act as the invariants that guard the invocation

4 A restricted form of this issue arises in user-space due to signal handling
(i.e., reentrancy), and to our knowledge has been ignored by prior work on
user-space data race detection.

pci::probe ()

netdev::open ()

connected to
pci bus

ready for
pkt rx/tx

Figure 5: State transitions for a Linux PCI network device,
showing that the probe() and open() functions of the
driver are serialized.

of certain driver callbacks by the kernel. Thus, any pair of
driver callbacks that are never concurrently valid (i.e., they
have conflicting invariants) will not execute concurrently,
and their critical sections are mutually serialized as a re-
sult. For example, consider the FSM snippet in Figure 5
for a Linux network device. It shows that the pci: :probe
and netdev: : open callbacks of a network driver are valid
in different device states, and hence cannot race with each
other. Existing race detection tools are oblivious to the in-
variants (or states) in which driver callbacks are executed,
and hence they can incorrectly report races between call-
backs with conflicting invariants. Indeed, our experimental
study in Section 4 shows that ignoring state-based synchro-
nization results in a high false positive rate.

Deferred execution Kernel threads that execute under
tight deadlines (e.g., interrupt service routines) often have
important tasks (e.g., copying received packets from the net-
work card) that cannot be completed in a timely manner.
Thus, most OS kernels provide mechanisms for postponing
work until a more convenient time, such as softirgs in Linux,
deferred procedure calls (DPCs) in Windows, and software
interrupts in Solaris. Kernel timers are also provided for
deferring the execution of functions, such as checking that
tasks are completed on schedule or that a device is still func-
tional, until at least a specified time in future.

Softirgs are commonly used by interrupt handlers of high
performance drivers to defer work to a future context, e.g.,
to the bottom half context. However, the way the interrupt
thread deferring work synchronizes with the polling thread
that will do the work poses a challenge for data race analysis
because these threads do not share any locks. Kernel timers
also pose some challenges to data race detection. For exam-
ple, although a delay is specified when registering a timer,
only the operations that were performed by the thread prior
to timer registration are guaranteed to be serialized with ex-
ecution (possibly by a different thread) of the deferred func-
tion. This is because the thread could be preempted for a
period longer than the timer delay. Also, successive execu-
tions of the function of a timer are serialized, even though
synchronization primitives (e.g., locks) are not used in the
function. On the other hand, executions of functions with
different timers are not serialized.

Kernel-mode mutual exclusion primitives The kernel pro-
vides a variety of synchronization primitives for mutual

exclusion: (i) locking primitives such as spinlocks and
mutexes, (ii) operations that disable interrupts and pre-
emption, and (iii) hardware atomic instructions such as
test_and_set. Detecting (and tracking) locking primitives
such as spinlocks and mutexes is easy because of their mod-
ularized interface (e.g., spin_lock()/spin_unlock()).
However, other primitives, such as interrupt enabling/disabl-
ing and hardware atomic instructions (e.g., test_and_set)
require more effort to detect because they are not accessed
through modularized interfaces.

3.1.2 Addressing driver concurrency issues

Before describing how DRCheck addresses the concurrency
issues of kernel-mode drivers, we first discuss how DataCol-
lider [13] (discussed in Section 1.3) addresses these issues.

DataCollider purposely stalls kernel threads and detects
synchronization errors by observing “collisions” between
the stalled thread and improperly synchronized threads. A
thread “collides” with a purposely stalled thread only if there
is nothing preventing them from colliding—the tool need
not reason about the particular mechanisms used to serial-
ize threads. However, because such stalling is not suited for
threads servicing time-critical interrupts, DataCollider pro-
vides only limited coverage of interrupt contexts. This makes
DataCollider less effective for drivers, because interrupt con-
texts represent significant portions of driver executions.

DRCheck, in contrast, covers interrupt contexts as well
as all other contexts. Furthermore, DRCheck can detect not
just realized race conditions but also some potential race
conditions that may occur in thread execution interleavings
other than the one(s) observed.

Detecting driver concurrency DRCheck uses thread iden-
tifier information to detect and disambiguate the concur-
rency associated with multi-threaded execution of driver
code, similar to user-mode tools. To detect concurrency due
to interleaved execution of different execution contexts by
a single kernel thread, DRCheck also tracks the execution
context of each kernel thread. Basically, just as memory
operations of a user-mode thread are considered serialized,
DRCheck considers the memory accesses of a kernel thread
in a particular context to be serialized. In other words, ex-
cept when explicitly synchronized by any of the methods
discussed in this section, a kernel thread’s memory access in
one context is considered to be concurrent with its memory
accesses from other contexts.

Detecting synchronization based on device state As dis-
cussed in Section 3.1.1, devices can be in certain disjoint
states known to the kernel, and the kernel may (implicitly or
explicitly) guarantee that certain driver entry points are only
invoked in particular device states. Figure 6, for example,
shows how the Linux kernel networking stack uses device
states to guard the execution of the open() callback of a net-
work driver. Consequently, driver code need not include ex-

int dev_open (dev) {

if (! test_bit(__ LINK_STATE PRESENT, &dev->state))
return —ENODEV;

dev->open (dev)

Figure 6: Snippet of Linux network code that uses device
state to guard the open() callback of a network driver.

plicit synchronization between two access if those accesses
are known to only occur in particular states.

DRCheck detects the use of device state for synchroniza-
tion by drivers by exploiting the fact that the kernel already
leverages device state information to guard driver execution.
For each driver callback, DRCheck dynamically maintains
the set of all the device states in which the callback has been
invoked. With this information, DRCheck can identify call-
backs that are invoked under disjoint sets of device states.
Because such callbacks cannot execute concurrently with
one another, their accesses to shared data are implicitly seri-
alized and therefore not races. An alternative to dynamically
building the set of device states for each callback would be
to obtain such information from kernel experts [12, 19], per-
haps reducing runtime overhead. However, we adopted our
dynamic discovery approach because it does not rely on the
availability of correct specifications.

Because drivers routinely change device states, the ba-
sic approach of tracking states at driver entry points is not
sufficient: other regions of a callback might execute under a
different set of states. As a refinement, DRCheck also tracks
device states at code points that follow device state changes.
So far, we have focused on device states that are used by the
kernel to control driver execution. Some examples include
status of the PCI connection, interrupt request line (IRQL),
polling/interrupt handling, etc. However, it is possible for
a driver to use other state information internally to manage
critical sections. Nevertheless, our focus is on kernel-aware
device states, because most OS kernels organize devices into
classes (e.g., network, scsi, graphics, usb) and export a stan-
dard interface to the drivers of a given class. It is therefore
more scalable to design for the kernel interface rather than
for individual drivers.

Handling deferred execution Although Linux interrupt
threads that defer work using softirgs do not share locks with
the polling threads that will eventually do the work, they do
invoke the polling threads using the raise_softirq call.
Further, the Linux softirq infrastructure guarantees that only
one polling thread, on the same processor as the interrupt
thread, will respond to a given call and complete the deferred
work. Hence, DRCheck recognizes the raise_softirq call
as the serializing operation between threads.

For kernel timers, DRCheck associates a virtual state with
each timer. A timer is inactive before its registration, and ac-
tive until it executes, after which it becomes inactive again.

This serializes the execution of the timer to operations pre-
ceding its registration. Additionally, DRCheck associates a
virtual lock with each timer that is held throughout the exe-
cution of the timer function. This serializes successive exe-
cution of the timer’s function.

Detecting non-lock based mutual exclusion Interrupt en-
abling/disabling can be detected (and tracked) by observ-
ing the specific instructions (e.g., STI, CLI, POPF, IRET,
etc. in x86) in the execution trace. Hardware atomic instruc-
tions like test_and_set are more challenging because of
the need to determine whether the instruction guards a criti-
cal section and, if so, whether or not it succeeded in entering.
DRCheck uses pattern matching over a small window of the
trace starting with the test_and_set instruction (btsl in
x86) in order to determine whether the sequence matches a
known critical section preamble for the specific kernel. If so,
it checks the value returned by the test_and_set to deter-
mine whether it succeeded.

3.1.3 DRCheck implementation

DRCheck is an extension of the Lockset algorithm in
Eraser [41]. Lockset detects races in multithreaded applica-
tions by checking that shared data access is protected by a
consistent locking discipline. Lockset maintains metadata for
each word of shared memory indicating whether the location
has been accessed by multiple threads, and if so, the set of
locks consistently held by all threads accessing the location
from that point on. If there is no such common lock, Lockset
reports a potential data race.

DRCheck extends Lockset as follows. First, adapting
Lockset for kernel-mode locking primitives was straightfor-
ward for the ones that behave similarly to user-mode prim-
itives (e.g., kernel spinlocks). However, some kernel-mode
locking primitives, such as spin_lock_irq, also disable
interrupts. Based on previous Lockset proposals for support-
ing interrupts, per-CPU virtual locks are associated with
interrupt contexts, and are acquired by threads that disable
preemption or interrupts. Logical locks are maintained for
virtual and real locks, e.g. spinlocks, including bitlocks of
atomic test_and_set instructions. In the evaluation, we
call this variant KLockset.

Second, we add the mechanisms for handling deferred
execution discussed in Section 3.1.2. Finally, we further
include state-based synchronization tracking, as follows. For
each shared data, in addition to tracking the set of locks
held by threads on each access, the set of device states is
also tracked. The state variable field in the device class data
structure of each driver is used to track device states. When a
shared data’s set of locks becomes empty at an access, a race
is not reported only if the current device state is disjoint with
the state set of the data. Instead, the location’s metadata is
reset to the “exclusive” (i.e., no longer accessed by multiple
threads) state.

Note that, as in all our tools (recall Section 2.1), DRCheck
tracks synchronization in both the driver and kernel-driver
interface execution, while reporting races only in the driver
execution.

3.2 Direct Memory Access (DMA) Faults

Direct Memory Access (DMA) is a common technique for
transferring data to and from devices without consuming
CPU cycles. To detect incorrect DMA operations that might
harm the system, we created a new tool within our Guardrail
framework called DMACheck, which performs instruction-
grain dynamic analysis of drivers to ensure that they cor-
rectly address the following issues related to DMA buffers
(i.e. regions of system memory used in DMA transfers):

Sharing: Because DMA buffers are shared between the
driver and the device, there is the potential for data races
(e.g., writes by the driver into source DMA buffers could
corrupt outgoing I/O data). Hence the driver should as-
sume that the device has exclusive access during a trans-
fer in order to avoid data corruption.

Management: DMA buffers are system resources, and
should be carefully managed by drivers. Drivers should
avoid leaking (i.e., failing to unmap) DMA buffers, or
redundantly mapping or unmapping them.

Coherence: Because devices access DMA buffers directly
(bypassing any caches) on non-coherent systems while
drivers’ accesses to DMA buffers can be cached, cache
lines should never mix DMA buffer data with other types
of data (including other DMA buffers). Proper alignment
and padding of data can prevent this problem.

DMACheck detects DMA buffer bugs in Linux drivers
by monitoring how they manipulate DMA buffers. Because
Linux drivers operate on DMA buffers through both vir-
tual and physical addresses (e.g., a driver reads or writes a
DMA buffer using the virtual address, but synchronizes the
cache and memory copies of the buffer using the physical
address), DMACheck tracks the mapping of a DMA buffer
in both the virtual and physical address spaces; this makes
it unusual compared with other tools. (DRCheck and DM-
Check (Section 3.3), for example, need to track only vir-
tual addresses.) Although some DMA buffer bugs (e.g., mis-
aligned DMA buffers) can be detected simply by inspecting
the arguments that drivers use to make DMA function calls
(e.g., dma_map_single()), data races require instruction-
grain dynamic analysis to identify when driver accesses to a
DMA buffer overlap with those from the device.

DMACheck detects races on DMA buffers by checking
for unserialized accesses by the driver and device to a DMA
buffer. One challenge is that device access to DMA buffers
cannot be directly observed by DMACheck. To overcome
this, DMACheck defines a time interval that includes the pe-
riod during which a DMA buffer could be accessed by the
device, and checks that no driver accesses are made to the

buffer during that interval. We identified two pairs of driver
operations for defining this interval: (i) between mapping the
buffer into the I/O address space and the corresponding un-
mapping, and (ii) between specifying the buffer as part of a
DMA transfer to the device and the corresponding servicing
of the completion interrupt. While the latter option may ap-
pear to provide a smaller correct interval, DMACheck uses
the former, more conservative, option for two practical rea-
sons. First, some coherence issues of DMA are addressed
when DMA buffer(s) are mapped/unmapped into/from the
I/0 address space. For example, the cache lines of a source
DMA buffer are flushed when it is mapped for the device to
read, and thus, later driver updates may be lost in the trans-
fer. In fact, Linux kernel documentation recommends that
drivers should not touch DMA buffers that are accessible
to the device without unmapping the buffer or synchroniz-
ing the cache and memory copies. Second, the latter option
requires understanding the device-specific way that drivers
setup DMA transfer—an unscalable undertaking, given the
large number of available devices.

3.3 DMCheck: Detecting Memory Faults

Kernel-mode drivers for commodity OSes are prone to type
safety issues because they are written in unsafe languages
(C and C++). Common memory faults in drivers include
accesses to unallocated memory, unsafe use of uninitialized
data, and memory leaks. The objective of our analysis is
to detect such faults in driver executions. To this end, we
adapt the analysis in Memcheck [28], a popular tool for
finding memory faults in application binaries, to kernel-
mode drivers. Specifically, we use Memcheck’s algorithm
for finding memory faults by maintaining metadata for each
byte of memory indicating whether the byte is currently
allocated and, if so, whether it has been initialized. The
metadata is updated in response to instructions that initialize
data or system calls that allocate or free memory. An error
is reported if an instruction accesses unallocated memory or
uses uninitialized data in an unsafe way, or a memory leak is
detected.

Our tool, DMCheck, adapts Memcheck to kernel-mode
drivers by addressing two issues: (i) recognizing kernel func-
tions for (de)allocating memory, and (ii) dealing with mem-
ory objects that are (de)allocated outside the driver. The first
issue is trivially handled by recognizing that kernel memory
management functions such as kmalloc () and kfree () are
analogous to user-space functions such as malloc() and
free().

The second issue arises because of the need for drivers to
communicate with the kernel in an efficient manner. Some-
times, this means the driver will manipulate memory ob-
jects that are allocated by other parts of the kernel. An ex-
ample can be found in how socket buffers, for storing net-
work packets, are handled in the network stack. The packet
transmission path of a network driver receives socket buffers
from the network stack and deallocates them after transmis-

sion. Conversely, the packet reception path allocates socket
buffers, for received packets, and expects the network stack
to deallocate them. DM Check addresses this issue by incor-
porating the kernel-driver interface module into our analysis,
as described in Section 2.1, so that the address range for each
such memory object can be captured by the analysis.’

3.4 Discussion

As we demonstrate through evaluation with production
Linux drivers (Section 4.2), our checking tools can detect
errors that are missed by current techniques. This suggests
that our techniques can be used to improve driver debugging
and testing, and to make production systems more resilient
to defective drivers. However, in evaluating how to deploy
our techniques in these scenarios, it is worth considering the
practical implications of false positives and false negatives
that certain analysis tools may incur.

DRCheck is a tool that may incur false positives. The un-
derlying Lockset algorithm of DRCheck leads to false data
race reports for code that while properly synchronized, de-
viates from the expected locking discipline. This is a seri-
ous limitation for production deployments, because halting
a system for a false alarm is simply unacceptable. Moreover,
the fact that 76%—-90% of true races are actually benign [27]
means that simply avoiding false alarms (e.g., by incorporat-
ing a Happens-Before approach [53]) is insufficient. How-
ever, rather than foregoing race detection entirely on pro-
duction systems, we believe that Guardrail’s friage mode
(Section 2) can help, when armed with techniques seeking
to automatically classify the alarms raised by DRCheck into
harmless and harmful races. Furthermore, DRCheck could
be extended to recognize the synchronization patterns and
benign data sharing patterns that it had incorrectly flagged
in the past, to improves its classifier and reduce the number
of spurious alarms.

The dynamic nature of our techniques creates the possi-
bility of false negatives—run-time analysis cannot guaran-
tee driver correctness. Rather, our tools can determine only
whether or not the observed driver executions (i.e., code
paths, thread interleavings, and input) are fault-free. For pro-
duction deployments, this is not a problem because the goal
is to keep the system running (i.e., availability), until there
is a compelling reason to do otherwise (i.e., driver misbe-
having). In contrast, for driver debugging or testing, false
negatives make it difficult to reproduce bugs or guarantee
their absence. Thus, our tools will be more effective for pre-
release purposes when combined with techniques for achiev-
ing high coverage driver execution [7, 36].

5 As in prior work, we trust the kernel-driver interface module. E.g., we
assume that pointer and size arguments passed to the driver correspond to a
properly allocated memory object for the given address range. The design
can be readily extended to correctness check the kernel, but this is beyond
the paper’s driver-checking scope.

I/O type Benchmark | Description Workload
Audio & Video | Mplayer Multimedia player Full HD movie trailer (i.e., 1920 x 1080p resolution, 24 fps)
Apache Webserver 16 K requests for 40KB static page using 16 concurrent requests
Network Memcache | In-memory key value store | 256 client threads each making 100K gef requests
Netperf Network perf. meter 20 secs run with 16KB msg for stream and 32B for request/response
Storage GNU Make | Compilation utility 4-way parallel build of Linux 2.6.18 kernel with default configuration
Postmark Filesystem benchmark 100K transactions on 20K files of size range 10KB—20KB

Table 1: I/O intensive benchmarks and workload settings for evaluating Guardrail.

4. Evaluation

We evaluated our Guardrail prototype to answer two ques-
tions:

1. How effectively do our techniques detect driver faults,
particularly when compared with existing techniques?

2. What is the impact on the system end-to-end perfor-
mance, particularly if the monitored device is heavily
used?

4.1 Methodology

The I/O interposition layer of our Guardrail prototype was
implemented by extending paravirtualized Xen-3.3.1 VMM
with our techniques for containing potential driver faults.
The guest OS in the Driver and Analysis VMs was a 32 bit
Fedora Core 6 OS, based on the Linux 2.6.18 kernel. We
used a variety of audio, video, network and storage devices
in our evaluation, along with the corresponding stock, un-
modified Linux driver binaries. In all experiments, the de-
vice is directly assigned [51] to the Driver VM to minimize
1/0 virtualization overheads [11].

Benchmarks We generated driver workloads using a set
of popular I/O benchmarks, listed in Table 1. We used the
open source media player, Mplayer, to evaluate the audio
and video drivers. We evaluated the network drivers us-
ing the Apache web server, the Memcache in-memory key-
value store, and the Netperf network performance mea-
surement tool. Network load for Apache and Memcache
were generated using their respective benchmarking tools:
ApacheBench and Memslap, while Netperf load was gener-

Experimental setup We conducted experiments on both
real and simulated multicore x86 hardware, but used the
same software stack in both environments.

Our evaluation of Guardrail on real hardware focused on
the performance of virtualization-based I/O interposition-
ing and software-based instruction tracing of kernel-mode
drivers. The devices and corresponding drivers that were
used in these experiments are presented in Table 2. The test
system for these experiments was a Dell Precision 390 work-
station that had Dual-Core Intel Core 2 Duo processors run-
ning at 2.66 GHZ and with 2GB of physical memory. For
the network experiments, the server ran on the test system
while the client ran on a Dell Precision T3400 workstation
with Quad-Core Intel Core 2 Extreme processors running at
3 GHz and with a 4GB physical memory. The client system
was running 32-bit Ubuntu 10 (2.6.32 kernel) Linux OS. The
client and server systems were in the same local area net-
work so that network latency was negligible in our results.

For our Guardrail evaluation on simulated hardware, we
used the Simics [43] full system simulator (academic pack-
age, version 4.0.63) to model hardware-assisted instruction-
level streaming of a driver’s execution from the Driver VM
to the Analysis VM. We used these experiments to study
the bug detection effectiveness of Guardrail and the end-to-
end performance of online protection of I/O operations from
buggy drivers. Our kernel-mode instruction tracing hardware
is based on previous hardware proposals [6, 48] for tracing
user-mode execution. We carefully chose the simulation pa-
rameters illustrated in Table 3a to derive a similar environ-
ment to the real hardware platform. The lack of audio and
video device models in our simulation package restricted our

ated using its stream tests (TCP_STREAM & UDP_STREAM) evaluation to the network and storage drivers and devices

and request/response tests (TCP_RR & UDP_RR). The stor-
age drivers were evaluated using the Postmark filesystem
benchmark and a kernel compilation workload. Table 1
shows the workload settings for the results in this paper.

| Class [Driver [Device ‘
Audio snd_hda_intel | High Definition Audio (ICH7)
Network | tg3 Broadcom 5754 1Gpbs NIC
Storage ahci ICH7 SATA disk (200GB)
Video nvidia Quadro NVS 285

Table 2: Drivers and devices evaluated in real hardware.

shown in Table 3b.

4.2 Fault Detection

We evaluated how Guardrail improves driver bug detec-
tion by using the framework to implement our proposed
dynamic binary analysis tools: (i) DRCheck, for detecting
data races (Section 3.1), (ii) DMACheck, for detecting DMA
faults (Section 3.2), and (iii) DM Check, for detecting mem-
ory faults (Section 3.3). The results show that Guardrail
enables better detection of driver bugs than previous ap-
proaches.

Parameter Values used ‘ | Class Driver Device

Processors Dual-Core, Intel Pentium 4, 2.6Ghz, 2GB RAM e100 182559 100Mbps NIC
Private L11 16KB, 64B line, 2-way assoc, 1-cycle access lat. ¢1000 182543gc 1Gbps NIC
Private L1D 16KB, 64B line, 2-way assoc, 1-cycle access lat. Network | pcnet32 AM79C973 100Mbps NIC
Shared L2 2MB, 64B line, 8-way assoc, 10-cycle access lat, 4 banks tg3 BCM5703C 1Gbps NIC
Main Memory | 200-cycle access latency tulip DEC21143 100Mbps NIC
Tracing 512KB log buffer qla1280 ISP1040 SCSI disk

Driver VM 2 VCPU, 1GB RAM Storage | gla2xxx ISP2200 SCSI disk
Analysis VM | 1 VCPU, 512MB RAM sym53c8xx | SYMS53C875 SCSI disk

(a)

(®)

Table 3: The simulation parameters, and the drivers and devices used for simulation based evaluation.

Tool [Count | | Tool ‘ | Count |
DRCheck 9 DataCollider 0
] DRCheck 11
Det-DataCollider 2
Ideal-DataCollider 6 DeferExec 67
KLockset 111

(a) Data races detected
(b) False data race alarms

Table 4: Races and false alarms reported by Guardrail.

4.2.1 Data races

As shown in Table 4a, DRCheck found nine serious data
races in five Linux drivers (six of which have either been
confirmed or fixed). Also, using this table, we compare
DRCheck with DataCollider based on the details in [13].
We made two assumptions in our analysis to increase the
chances that DataCollider’s sampling will detect the races.
First, we assume that the racy accesses, outside of interrupt
contexts, are deterministically sampled (Det-DataCollider).
DataCollider does not sample interrupt context accesses for
robustness reasons. Second, for races involving interrupt
and non-interrupt contexts, we assume that the non-interrupt
context access occurred earlier (Ideal-DataCollider). With
these assumptions, two races will be detected by Det-
DataCollider, and six races by Ideal-DataCollider.
However, unlike DataCollider which has no false posi-
tives, DRCheck generated a small number of false alarms
while detecting these driver races, as shown in Table 4b. The
number of false alarms, though, is an order of magnitude
fewer than KLockset. DeferExec, which is DRCheck with-
out state-based synchronizations (Section 3.1.2), falls in be-
tween. We were not able to compare with DDT [23], an ex-
isting data race detector for the Windows kernel, because it
was not described in sufficient detail to enable comparisons.

4.2.2 DMA faults

The different DMA buffer faults found by DMACheck in six
drivers are summarized in Table 5a. Races on DMA buffers,
which are the most serious of these bugs, affected only the
tulip network driver. DMACheck found seven unique driver
writes (i.e., static instruction addresses) that could poten-

| Bug type [Count ‘ | Tool [Count ‘
Data race 7 DMCheck 2
Leak 4 DDT 1
Repeat map/unmap 4 KAddrcheck 1
Misaligned buffer 10 KMemcheck 2
(a) DMA buffer bugs (b) Memory bugs

Table 5: DMA buffer bugs detected by Guardrail by type,
and memory bugs detected by different tools.

tially corrupt I/O data being read by the network card. DMA
buffers with unaligned virtual addresses (assuming 32 byte
cache lines) are the most common fault type—affecting five
drivers (i.e., 100, e1000, pcnet32, tg3, tulip). As discussed
earlier, this bug is a serious issue in non-coherent systems.
The sym5c8xx driver was the only one that leaked DMA
buffers (i.e., failed to unmap DMA buffers before unload-
ing), whereas tulip and tg3 were the only drivers to map
previously mapped DMA buffers, or unmap previously un-
mapped DMA buffers. Although these faults reflect pro-
grammer error in managing DMA operations, and should be
avoided, we did not observe any resulting system failures
during our experiments.

4.2.3 Memory faults

As shown in Table 5b, DM Check found two serious mem-
ory faults, which have been fixed. In particular, the gla2xxx
memory bug was previously unknown until reported by our
tool. Based on our report, the bug was eventually fixed in
the 3.2 release of the Linux kernel six years after the 2.6.18
version we used for our study. Because these bugs involve
memory that is exclusively used by the driver, they cannot
be detected using fault isolation techniques that only check
driver interaction with the kernel [5, 18, 45, 49, 50, 54]. For
example, the ¢/000 memory bug is an unsafe use of unini-
tialized stack data, while the gla2xxx memory bug is an out-
of-bounds read of memory-mapped device registers.
Furthermore, we use Table 5b to compare DMCheck
against existing kernel-mode memory fault detectors for the
Windows kernel (DDT [23]) and the Linux kernel (KAd-
drcheck [15], KMemcheck [30]). DDT and KAddrcheck track

memory addressability, and therefore can only detect the
out-of-bounds bug. KMemcheck, on the other hand, tracks
both memory addressability and initialization, and therefore
detected both the memory faults.

4.2.4 Fault detection summary

In summary, our evaluation validated our thesis that instruc-
tion-grained dynamic analysis can be used to improve the
reliability of device drivers by detecting bugs in their exe-
cution. Guardrail’s instruction-grained dynamic analysis en-
ables detection of a significant number of hard-to-find bugs
in production Linux drivers (i.e., data races, DMA buffer
faults, and memory faults) that are missed by other tools, in-
cluding a previously unknown buffer overflow in the gla2xxx
storage driver. Guardrail sometimes incurs a small number
of false positives, e.g., for data race detection. Guardrail’s
support for a variety of sophisticated checking tools demon-
strates its value as a general-purpose framework, in contrast
to fault-specific tools such as DataCollider.

4.3 Instruction-Grained Tracing Performance

Guardrail’s instruction-grained tracing of driver execution
can be implemented using software or hardware techniques.
To evaluate the performance of a purely software approach,
we obtained an early version of the Granary binary instru-
mentation framework for OS kernels [20] from the authors.
Granary can instrument individual kernel modules rather
than the entire kernel. In the version we used, Granary em-
ploys a trap-based mechanism to toggle instrumentation as
execution switches between the kernel and the instrumented
module. We modified Granary to stream the execution trace
of a module, containing program counter values, instruction
opcodes, and effective addresses, into a 256KB per-CPU
circular buffer®. We refer to our Granary modifications as
Granary-Trace.

We used the #g3 driver to measure the impact of Granary-
Trace on server throughput and CPU utilization. We com-
pared against running the server on a native Linux system
(i.e., Linux), and on a Granary system with no instrumen-
tation (i.e., Granary-Null). For this experiment, the server
system was running a 64 bit Linux 3.8.2 kernel version be-
cause Granary was implemented in that OS. The results, nor-
malized to Linux, are presented in Figure 7. We observed
that Granary-Trace noticeably impacts both throughput and
CPU utilization in most cases. Even Apache, which suffers
no throughput loss, more than doubles its CPU consumption.
Other benchmarks were impacted more significantly. For ex-
ample, Memcache suffered a 60% reduction in throughput,
while the Netperf consumed 4.6x and over 10x more CPU
cycles for TCP and UDP streaming, respectively. Although,
Granary-Null outperforms Granary-Trace, it still performs
poorly in some cases, such as a 23% reduction in Mem-

6 Trace records were overwritten when the buffer filled up.

716 client threads were used because of robustness issues in Granary.

O Linux Granary-Null B Granary-Trace

5 1.01.0 1.0 1.0 1.01.0 1.01.0

£ 10

=) 0.8 0.8

3 2 os

_

E 2 06 0.5
0.4 -

g2

g g 04

= 0.2

EL™

S oo —— F

Apache Memcache TCP_STREAM UDP_STREAM
(@

c O Linux Granary-Null B Granary-Trace

5] 12 10.8

=]

S 10

_ 5

=

55 8

gﬁ 6 4446

3 .% 4 23 2.8

g%’ 2 1.013 101216 1.0 1.0

g , W ool B

2 Apache Memcache TCP_STREAM UDP_STREAM

(b)
Figure 7: Impact of software-based instruction tracing on (a)
server throughput and (b) CPU utilization.

cache throughput and a 4.4x increase in CPU utilization for
TCP streaming. The results show that while the overheads
of a software-based implementation of Guardrail instruc-
tion tracing are acceptable in test environments, hardware-
assisted instruction tracing is needed for practical deploy-
ment of Guardrail in production environments.

4.4 1/0O Interposition Performance

We studied the impact of Guardrail’s I/O interposition on au-
dio, video, network and storage I/O performance. For conve-
nience, we use the following naming convention to report the
results. Linux means a non-virtualized Linux system and is
the baseline in all experiments. Xen means Linux as a guest
OS on Xen VMM with directly assigned physical devices
(i.e., only CPU and memory are virtualized). /O-Interpose
is Xen with Guardrail’s I/O interposition enhancements. Un-
less stated otherwise, the reported results are the median of
10 runs.

4.4.1 Audio and video performance

We used Mplayer to measure the impact of /O-Interpose on
the audio and video quality of multimedia movie playback
using the workload shown in Table 1. Mplayer was config-
ured to use the ALSA audio output and the X// video out-
put modes. The results are summarized in Table 6, and show
that the playback was of similar audio and video quality on

y | Time (s) | Frame Rate | CPU (%) |
Linux 150.51 23.94 33
Xen 150.52 23.93 35
IO-Interpose | 150.52 23.91 36

Table 6: Impact of I/O interposition on movie playback.

Linux, Xen, and 10-Interpose, with virtually the same frame
rates achieved on all 3 systems. The CPU utilization of 10-
Interpose was 3% higher than Linux and 1% higher than Xen.
Overall, these results suggest that I/O interpositioning is un-
likely to degrade the user experience of modern multimedia
playback in any noticeable way.

4.4.2 Network performance

We used Apache, Memcache, and Netperf, and the workload
settings in Table 1 to study the impact of IO-Interpose on
server throughput or transaction rate (for request/response).
Figure 8 reports server performance normalized to Linux. In
most cases, I0-Interpose imposes at most 8% overhead on
server performance. Since Xen performs similarly in these
situations, most of the overheads could be attributed to it.
The exception is Memcache, which loses 38% of its through-
put on [O-Interpose. Xen appears to be responsible for over
half of this degradation. CPU utilization for Apache (Mem-
cache) was 35% (85%) on Linux, 52% (89%) on Xen, and
58% (92%) on I10-Interpose.

Olinux Xen

1.0 losros 1094 094 Logs096 1096094 Lo.96096

0.79
0.62

10-Interpose

(relative to Linux)
o
=

TCP upp TCP upp

Normalized Performance

APACHE MEMCACHE STREAM REQUEST/RESPONSE

Figure 8: Impact of I/O interposition on network performace.

Memcache’s exceptionally poor performance can be at-
tributed to (i) frequent device register accesses and (ii) high
CPU utilization in Linux. Memcache’s device register ac-
cess rate (184K/sec) is at least an order of magnitude higher
than the other benchmarks, which means “trap-and-emulate”
overheads are incurred more frequently. Furthermore, high
CPU utilization means there are fewer idle CPU cycles avail-
able to handle the frequent “trap-and-emulate” operations.

4.4.3 Storage performance

We used the GNU Make compilation utility and the Post-
mark benchmark with the workload settings in Table 1 to
evaluate how I/O interpositioning affects disk storage per-
formance. The results, in terms of normalized performance
relative to Linux, are reported in Figure 9. Compilation is
32% slower on 10-Interpose compared to Linux. Also, 10-
Interpose consumes about 93% of the CPU, which is about
8% higher than Linux. On the other hand, Xen’s perfor-
mance is identical to /O-Interpose, which suggests that in
this case most of IO-Interpose overheads are due to Xen
(i.e., CPU and memory virtualization). For Postmark, the
read, write, and transaction rates of I0-Interpose are 9-10%
lower than Linux. Again, the performance of Xen is similar

to 1O-Interpose. The CPU utilization of Linux, Xen, and 10-
Interpose were 7%, 11%, and 8% respectively.

O Linux 10-Interpose

é 0! 1.00 1.00 1.00
<= 10 0.900.91 0.900.90 0.910.90
%D 2 08 0.68 0.68
£ § 0.6
o 04
SE 02
T3 00
5 (-j4) Read rate Write rate Tx rate
z

Make Postmark

Figure 9: Impact of I/O interposition on storage performance.

4.4.4 1/0 interposition performance summary

Our evaluation shows that Guardrail’s I/O interposition layer
imposed at most 10% overheads on common I/O workloads
in most cases, and that code compilation (32%) and Mem-
cache (40%) were the exceptions. All of the code compi-
lation overheads and over half of the Memcache overheads
could be attributed to CPU and memory virtualization. Fi-
nally, the combination of Memcache’s frequent device reg-
ister accesses and high CPU utilization in Linux is a worst-
case scenario for Guardrail.

4.5 End-to-End Performance

We evaluated the end-to-end performance impact on com-
mon I/O workloads of using Guardrail for online protec-
tion of persistent device state from defective drivers. We ran
Guardrail in permissive mode (Section 2) to ensure that the
experiments ran to completion without being abruptly halted
for detected driver faults. We conducted this experiment in
simulation so as to study the benefits of hardware logging
support. We specifically measured the performance of I/O
workloads while the corresponding driver is being monitored
by the Guardrail checking tools—DRCheck, DMACheck,
and DM Check—normalized to the workload’s performance
without driver monitoring in a non-virtualized Linux system.
Robustness issues of the device models forced us to reduce
the workload size and study only the 7g3 and sym53c8xx
drivers.

4.5.1 Network performance

Apache received a total of 1600 requests, Memcache was
loaded by 16 client threads issuing 1K get requests each,
and Netperf runs for 5 seconds. The results are presented in
Figure 10. With the exception of network streaming using
TCP and UDP, Guardrail imposed modest overheads on the
workloads (< 6%). However, the throughput reduction for
TCP streaming was up to 60% (DMCheck) and for UDP
streaming, up to 53% (DMCheck). The high rate of device
register accesses (up to 300K/sec) of network streaming
caused these high overheads, because the driver had to be
stalled for the checking tool to catch up.

ODMA MEMORY RACE

[P 099 097 058 100 .00 100 1,00 100 100

1.0 -

5

2 os 07

oo

E; 0ss

o 06 oas 047 047,

£ oa

[

& o2

=

E 00

s Tcp uppP Tcp upP
APACHE | MEMCACHE REQUEST/RESPONSE STREAM

Figure 10: Network performance with Guardrail protection.

ODMA MEMORY RACE
1.0 0.91 0.91 0.91 0.8g 0-92 0.92 0.87 091 0.91

2

S os

&

Ed

2 o6

=

=

= 04

o

S

£ 0.2

o

Z 0.0

TRX RATE READ RATE WRITE RATE

Figure 11: Postmark performance with Guardrail protection.

4.5.2 Storage performance

Postmark’s workload setting was configured as in Table 1,
except with 1K input files. The normalized transaction, read,
and write rates of the benchmark with Guardrail monitoring
are reported in Figure 11. The overheads were less than 10%
in most cases. The sole exceptions were a 12-13% reduction
in read and write rates for DMACheck. The relatively better
performance compared to network streaming is because the
device register access rate of Postmark is orders of magni-
tude lower (i.e., 3K/sec.).

4.5.3 End-to-end performance summary

Our experiments showed that online protection of the persis-
tent state of I/O devices from subtle driver bugs (e.g., mem-
ory faults, data races) can be achieved with minimal impact
on the end-to-end performance of most I/O intensive bench-
marks. Network streaming was the exception to this, and we
observed up to 60% drop in throughput. However, we expect
that these overheads can be significantly reduced through
software [29, 33, 37, 38] and hardware [6, 48] techniques
for accelerating dynamic analysis.

5. Conclusion

While device driver code is both (i) critical to proper sys-
tem operation and (ii) more susceptible to bugs than other
system software, relatively little work has been done in the
area of online driver correctness monitoring (perhaps due to
the performance-sensitive nature of driver software). The re-
sults of this paper demonstrate that decoupled correctness-
checking together with VM-based I/O interpositioning can
provide a high performance driver monitoring framework
that achieves each of our system goals: generality, detec-
tion fidelity, containment, response flexibility, and trustwor-
thiness. Guardrail represents a promising direction in driver
correctness-checking that provides better safety not only for

system devices, but also for the user data entrusted to those
devices.

Acknowledgments. We are grateful to Peter Goodman, An-
gela Demke Brown and Ashvin Goel from the University
of Toronto for providing us an early copy of Granary for
our evaluation. We also thank Michael Swift (University of
Wisconsin-Madison) and Brad Chen (Google) for their valu-
able input on this research. This work is supported in part by
a grant from the National Science Foundation and by the In-
tel Science and Technology Center for Cloud Computing.

References

[1] T. Ball, E. Buonimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustunner.
Thorough Static Analysis of Device Drivers. In EuroSys,
2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield. Xen and The Art of
Virtualization. In SOSP, 2003.

[3] M. Botincan, M. Dodds, A. F. Donaldson, and M. J. Parkin-
son. Safe Asynchronous Multicore Memory Operations. In
ASE, 2011.

[4] S. Boyd-Wickizer and N. Zeldovich. Tolerating Malicious
Device Drivers in Linux. In USENIX, 2010.

[5] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donelly, P. Barham, and R. Black. Fast Byte-Granularity
Software Fault Isolation. In SOSP, 2009.

[6] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos. Flexible Hardware Acceleration for Instruction-
grain Program Monitoring. In ISCA, 2008.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform
for In-Vivo Multi-Path Analysis of Software Systems. In
ASPLOS, 2011.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
Empirical Study of Operating Systems Errors. In SOSP, 2001.

[9] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling Dynamic
Program Analysis from Execution in Virtual Environments.
In USENIX, 2008.

[10] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware
Analysis via Hardware Virtualization Extensions. In CCS,
2008.

[11] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan. High
Performance Network Virtualization with SR-IOV. In HPCA,
2010.

[12] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking Sys-
tem Rules using System-specific, Programmer-written Com-
piler Extensions. In OSDI, 2000.

[13] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective Data-Race Detection for the Kernel. In OSDI, 2010.

[14] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.

Necula. XFI: Software Guards for System Address Spaces.
In OSDI, 2006.

[15] P. Feiner, A. D. Brown, and A. Goel. Comprehensive Kernel
Instrumentation via Dynamic Binary Translation. In ASPLOS,
2012.

[16] C. Flanagan and S. N. Freund. FastTrack: Efficient and Pre-
cise Dynamic Race Detection. In PLDI, 2009.

[17] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP
Kernel Crash Analysis. In LISA, 2006.

[18] V. Ganapathy, M. Renzelmann, A. Balakrishnan, M. Swift,
and S. Jha. The Design and Implementation of Microdrivers.
In ASPLOS, 2008.

[19] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2ndStrike:
Toward Manifesting Hidden Concurrency Typestate Bugs. In
ASPLOS, 2011.

[20] P. Goodman, A. Kumar, A. D. Brown, and A. Goel. Granary:
A Sane Framework for Instrumenting an Insane Environment.
Manuscript, 2013.

[21] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
Hardware Device Failures in Software. In SOSP, 2009.

[22] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data
Race Bugs: Telling the Difference with Portend. In ASPLOS,
2012.

[23] V. Kuznetsov, V. Chipounov, and G. Candea. Testing Closed-
Source Binary Device Drivers with DDT. In USENIX, 2010.

[24] A. Lenharth, V. S. Adve, and S. T. King. Recovery Domains:
An Organizing Principle for Recoverable Operating Systems.
In ASPLOS, 20009.

[25] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gtz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level Device Drivers: Achieved Performance.
J. Computer Science and Technology, 20, 2005.

[26] F. Mérillon, L. Réveillere, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for Hardware Programming. In
0SDI, 2000.

[27] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically Classifying Benign and Harmful
Data Races Using Replay Analysis. In PLDI, 2007.

[28] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In PLDI,
2007.

[29] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Paral-
lelizing Security Checks on Commodity Hardware. In ASP-
LOS, 2008.

[30] V. Nossum. Getting started with KMemcheck.

http://www.mjmwired.net/kernel/Documentation/kmemcheck.txt,

2012.

[31] N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and
G. Muller. Faults in Linux: Ten Years Later. In ASPLOS,
2011.

[32] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
PinPlay: A Framework for Deterministic Replay and Repro-
ducible Analysis of Parallel Programs. In CGO, 2010.

[33] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A
Low-Overhead Practical Information Flow Tracking System
for Detecting Security Attacks. In MICRO-39, 2006.

[34] V. Raychev, M. Vechev, and M. Sridharan. Effective Race
Detection for Event-driven Programs. In OOPSLA, 2013.

[35] M. Renzelmann and M. Swift. Decaf: Moving Device Drivers
to a Modern Language. In USENIX, 2009.

[36] M. J. Renzelmann, A. Kadav, and M. M. Swift. SymDrive:
Testing Drivers without Devices. In OSDI, 2012.

[37] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan. Parallelizing Dynamic
Information Flow Tracking. In SPAA, 2008.

[38] O. Ruwase, S. Chen, P. B. Gibbons, and T. C. Mowry. Decou-
pled Lifeguards: Enabling Path Optimizations for Dynamic
Correctness Checking Tools. In PLDI, 2010.

[39] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming
Device Drivers. In EuroSys, 2009.

[40] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser.
Automatic Device Driver Synthesis with Termite. In SOSP,
20009.

[41] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A Dynamic Race Detector for Multithreaded
Programs. ACM TOCS, 15(4), 1997.

[42] K. Serebryany and T. Iskhodzhanov. ThreadSanitzer - Data
Race Detection in Practice. In WBIA, 2009.

[43] Simics. Wind River Simics Full System Simulator.
http://www.simics.net/, 2010.

[44] M. F. Spear, T. Roeder, O. Hodson, G. C. Hunt, and
S. Levi. Solving the Starting Problem: Device Drivers as Self-
describing Artifacts. In Eurosys, 2006.

[45] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In SOSP, 2003.

[46] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering Device Drivers. ACM TOCS, 24(4), 2006.

[47] M. Tiwari, S. Mysore, and T. Sherwood. Quantifying the
Potential of Program Analysis Peripherals. In PACT, 2009.

[48] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Fal-
safi, P. B. Gibbons, and T. C. Mowry. Paral.og: Enabling
and Accelerating Online Parallel Monitoring of Multithreaded
Applications. In ASPLOS, 2010.

[49] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-based Fault Isolation. In SOSP, 1993.

[50] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device Driver Safety through a Reference Valida-
tion Mechanism. In OSDI, 2008.

[51] Xen. Xen PCI Passthrough.
http://wiki.xen.org/wiki/XenPClpassthrough, 2012.

[52] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. ReTrace: Collecting Execution Trace with Vir-
tual Machine Determinstic Replay. In MoBS, 2007.

[53] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient
Detection of Data Race Conditions via Adapative Tracking.
In SOSP, 2005.

[54] F. Zhou, J. Condit, Z. Anderson, 1. Bagrak, R. Ennals, M. Har-
ren, G. Necula, and E. Brewer. SafeDrive: Safe and Recover-

able Extensions Using Language-Based Techniques. In OSDI,
2006.

