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ABSTRACT 
Address geocoding, the process of finding the map location for a 
structured postal address, is a relatively well-studied problem. In 
this paper we consider the more general problem of crosslingual 
location search, where the queries are not limited to postal 
addresses, and the language and script used in the search query is 
different from the one in which the underlying data is stored. To 
the best of our knowledge, our system is the first crosslingual 
location search system that is able to geocode complex addresses. 
We use a statistical machine transliteration system to convert 
location names from the script of the query to that of the stored 
data. However, we show that it is not sufficient to simply feed the 
resulting transliterations into a monolingual geocoding system, as 
the ambiguity inherent in the conversion drastically expands the 
location search space and significantly lowers the quality of 
results. The strength of our approach lies in its integrated, end-to-
end nature: we use abstraction and fuzzy search (in the text 
domain) to achieve maximum coverage despite transliteration 
ambiguities, while applying spatial constraints (in the geographic 
domain) to focus only on viable interpretations of the query. Our 
experiments with structured and unstructured queries in a set of 
diverse languages and scripts (Arabic, English, Hindi and 
Japanese) searching for locations in different regions of the world, 
show full crosslingual location search accuracy at levels 
comparable to that of commercial monolingual systems. We 
achieve these levels of performance using techniques that may be 
applied to crosslingual searches in any language/script, and over 
arbitrary spatial data. 

Categories and Subject Descriptors 
H.3.1: Content Analysis and Indexing; H.3.3: Information Search 
and Retrieval 

General Terms: Algorithms, Design 

Keywords: Crosslingual Information Retrieval. Address 
Geocoding. Location Search. 

1. INTRODUCTION 
Address Geocoding is the well-known problem of mapping a 
postal address to a geocode (a geographic identifier such as a 

location on a map). Address geocoding features prominently in 
several information retrieval scenarios, such as, locating an 
address, finding directions, visualizing geographic distribution of 
a set of addresses, etc.  Address geocoding is solved well by 
current commercial systems for certain countries [7]. A more 
general class of problem is Location Search, which deals with 
postal addresses, as well as informally specified textual 
descriptions of a location (e.g., “Corner of Grand Ave and Walnut 
St in Everett”).  Searching for locations with unstructured 
information is very useful when a precise postal address is not 
known, but other fragments, such as, street, locality, nearby 
landmark, etc., are known.  In this paper, we further extend the 
location search problem to what we call Crosslingual Location 
Search:  Allowing users to search using languages and scripts 
different from the one in which the underlying geographic data is 
stored. Popular map search services, such as Google Maps™, 
Yahoo Maps™ and Windows Live Local™, currently handle only 
the English version correctly. Figure 1 is a screenshot from our 
prototype system that shows the successful pinpointing of the 
location in Snohomish, Washington, given a complex query in 
Japanese. 

 
Figure 1: Crosslingual Location Search System 

 

Table 1 gives a set of search queries written in different languages 
for another location.  

Table 1: One sample address in multiple languages 

English Brunswick Park Gardens, 130, Barnet London 

Japanese ブルンズウィック・パーク・ガーデンズ、１３０、バーネット・ロンドン 

Arabic بارنيت لندن ،130 ،برنسويك بارك جاردن  
Hindi बर्ुिन्स्वक पाकर्  गाडर्न्स, 130, बानᱷट लंदन  
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Geographic data, and particularly map data, are intrinsically tied 
to given regions, and hence are available predominantly in local 
languages.  In addition, the business, resource and interoperability 
considerations often dictate that such data are created only for a 
small set of languages. Yet in today’s increasingly globalized 
world, there is a clear need for accessing geographic information 
across languages. Examples range from Indian citizens who want 
to query in their own local languages, the land records 
traditionally created in English, through cross-lingual geographic 
indexing of documents, to visitors at the 2008 Olympics who will 
want to find Beijing locations using many languages other than 
Mandarin Chinese. Despite the clear motivation for crosslingual 
location searches, to the best of our knowledge, there are no 
academic or commercial systems that support general crosslingual 
location search.  

A possible approach to crosslingual location search would be to 
create and represent all geographic entities in all languages, but 
this is financially and logistically unviable (for example, a country 
of the size of the US has several million unique streets, localities, 
landmarks, etc., and moreover, these are updated on a continual 
basis). Alternatively, one could use a machine 
translation/transliteration system to convert the query terms to the 
target language, and then process the results in a monolingual 
geocoder in the target language. However, as we show later in this 
paper, the linguistic ambiguities inherent in the process, increase 
the search space exponentially, and degrade the accuracy of 
results greatly. In addition, the fact that descriptions of locations 
and addresses are structured differently in different regions – or 
may be unstructured altogether – makes cross lingual location 
search a particularly challenging research problem.   

In this paper, we develop an underlying set of techniques to tackle 
the crosslingual location search problem. These techniques use a 
combination of transliteration, translation and abstraction to map 
text query fragments to spatial regions in the underlying map data, 
and spatial constraints among the elements of map data to narrow 
down the search space. We present our implementation as an end-
to-end system, which can successfully handle crosslingual queries 
of the kind listed in Table 1, accurately computing the geographic 
position to within 1 km in most cases. Our current implementation 
supports queries in 4 genetically distinct languages with different 
scripts (namely, Arabic, English, Hindi and Japanese), over 
geographic data (in English) from different regions (USA, UK, 
and India) of the world.  As no comparable systems exist 
currently, we evaluate our system by comparing its performance 
to two baselines: first, commercial monolingual location search 
systems and, second, a sequential approach of feeding 
transliteration results into these commercial monolingual 
geocoding systems. We show experimentally that our crosslingual 
system compares well with the state-of-the-art monolingual 
geocoders, and is significantly more robust and accurate than 
sequential transliteration followed by monolingual geocoding. 

The core strength and the novelty of our approach lies in its 
generality, and the way it completely integrates address 
translation/transliteration and spatial constraint processing. The 
key contributions of this paper are: 

1. A precise formulation of the crosslingual location search 
problem as an end-to-end problem. 

2. The use of spatial constraints to manage ambiguity 
introduced by transliteration and translation. 

3. A comparative evaluation of crosslingual location search for 
a variety of languages over geographic data covering 
different regions. 

Our approach has been implemented as a fully functional end-to-
end system, as described in [8]. 

2. BACKGROUND 
Address geocoding is a specific instance of location search, 
concerned with finding the geographic coordinates given a postal 
address. Address geocoding is central to services provided by 
companies such as ESRI™, as well as online location based 
services such as Google Maps™. Although the problems of 
address parsing and geocoding are widely studied [7,14,18], we 
find very few end-to-end address geocoding techniques discussed 
in the literature; [3] describes one such system, which is a 
geocoding system with an address parser based on HMMs and a 
rule-based matching engine, applied to the Australian National 
Address File system. 

In earlier work [17], we describe a system that supports 
monolingual location search queries. A location search query 
contains a subset of terms that, taken together, identify the spatial 
scope (typically, a location on a map) of the query. Location 
search queries can include structured (postal) addresses, as well as 
informal, or unstructured descriptions of  locations. In this paper, 
we present a precise formulation of the problem, and focus on 
computing the spatial scope of the query as accurately and as 
robustly as possible when the query is in a script that is different 
from that of the names of the underlying geographic entities in the 
geocoding system.  

Over the last decade, the CLEF [4] forum had been active in 
promoting crosslingual IR research, and one of its subtasks, 
namely GeoCLEF [6], specifically focuses on geographic 
information retrieval scenarios.  While the systems showcased are 
either text based systems or monolingual geocoders working on 
multiple languages, the system we present here is truly a 
crosslingual location search system. 

Location search is challenging even with the assumption that the 
query and the underlying spatial data share the same language.  
Figure 2 contains the key reasons for this.  

 

• Geometric coordinates need to be computed 
• Address formats differ widely across countries[15] 
• Unstructured queries can have endless variations in format 
• Terms in the query are not always delimited, so boundaries 

between terms can be ambiguous 
• Misspelled, irrelevant (not matching anything) or conflicting 

(e.g., a legitimate but wrong postal code) terms are present 
• Non-unique (e.g., many roads called “Main St”), or similar 

names (e.g., spelling variations of “Auckland”) are present 
Figure 2: Same-language location search challenges 

 
Nevertheless, there are several commercial location service 
providers, such as Google™ Maps, Windows™ Live Maps, and 
Yahoo™ Maps, which provide good results for several countries 
and are somewhat tolerant to misspellings and address variations. 
Crosslingual location search adds a significant level of difficulty 
to the monolingual location search problem, as the additional 
issues listed in Figure 3 need to be overcome.  



• Proper nouns need to be transliterated, a process that is 
inherently ambiguous. 

• Common nouns (such as “Hospital” or “Road”) may be 
transliterated or translated. 

• Orderings of terms may be changed because of language and 
local addressing conventions. 

Figure 3: Crosslingual sources of ambiguity 
The bulk (not all) of words in geographic entity names are proper 
nouns, and in general cannot be translated readily like other parts 
of speech (such as, common nouns, adjectives, verbs, etc.) that are 
a part of standard bilingual dictionaries. Where source and target 
language share the same script, the problem is not readily 
apparent as the proper nouns are generally identical (for example, 
“Berlin” is correct in German, English, and Italian, though some 
variations in orthography and pronunciation exist, such as, 
“Antwerp” is “Antwerpen” in Dutch, “London” is “Londres” in 
Spanish, etc.). For different scripts, a name in the source language 
needs to be transliterated, that is, converted into a string in the 
target script which preserves the original pronunciation of the 
source word, yet conforming to the pronunciation rules of the 
target language.  

Since the mapping between pronunciation and spelling is not fully 
deterministic in both languages, transliteration is an inherently 
ambiguous process. For example, the transliterations of “بلمر” 
(representing "Palmer") could be “Palmer”, “Bilmar” etc. [1], as 
Arabic does not distinguish between “b” and “p” and short vowels 
may not be represented in Arabic orthography.  Similarly, the 
English transliterations of Hindi syllable “की” could be highly 
ambiguous, as many English phonetic constructs, such as, “key”, 
“kee”, “ki” and “kea” are possible. As a consequence, for each 
source word, several transliteration candidates have to be 
considered to achieve a reasonable confidence that the correct 
transliteration is included. This leads to a large number of possible 
interpretations of a multiword query, as illustrated in  Table 2, 
which shows some machine transliteration results for the Arabic 
address fragment  “ لندن ريدبريدج رود بلمر “, which should be 
transliterated as “Palmer Road Redbridge London”. 

Table 2: Transliteration ambiguity example 

 لندن ريدبريدج رود بلمر
blemer 
plemer 
belmer 
balmer 
blimer 
… 

rod 
rud 
rood 
rhod 
road 
… 

redbridge 
redpridge 
ridbridge 
ridpridgere
dpredge 
… 

landon 
lendon 
lindon 
landen 
lenden 
… 

 
Another source of ambiguity is that queries can contain common 
nouns, which can both be translated and transliterated. For 
example, depending on context, either the transliteration “al-
matar” or the translation “airport” may be preferable for the word 
 in an Arabic language query. Consider the impact of ”المطار“
having to consider many alternatives to each word in the query, 
especially in the absence of tokens such as commas to delimit one 
potential term from another. If k transliterations/translations need 
to be considered for each word in an n word query, which can be 
partitioned into subsequences in 2n-1 ways, then the total number 

of possible combinations of non-overlapping subsequences to be 
considered is kn 2n-1, which, even for the short (four word) Arabic 
query above, with k=5, amounts to 5000 combinations. 

The crosslingual challenges summarized in Figure 3 compound 
with the monolingual challenges listed in Figure 2. In fact, we 
claim in this paper  that the ambiguity in spellings, names and 
orderings inherent in crosslingual matching make simple 
composition of translation/transliteration with monolingual 
location search an unviable option. Our experimental results in 
Section 5 confirm this. 

3. APPROACH AND ALGORITHMS 
A key aspect of our approach is harnessing the power of spatial 
constraints to resolve the ambiguities discussed above. In the 
above example there were many possible interpretations for the 
English candidate transliterations of the Arabic location query. 
However, of these, only sets of entities that spatially overlap are 
plausible candidates. Thus the fact that 3 particular entities named 
“Palmer Road”, “Redbridge”, and “London” (in the U.K.) all 
spatially overlap, gives a powerful reason to pick this 
interpretation from all possible interpretations of the query, as 
illustrated in Figure 4. Moreover, the region of overlap (the gray 
region in the figure) of these three entities defines the geometric 
scope of the result. 

 
To systematically exploit such spatial constraints, we reformulate 
the crosslingual location search problem as an end-to-end 
problem, perhaps for the first time. Our definition is intentionally 
more general than location search over map data – it covers 
monolingual and crosslingual text based search over arbitrary 
spatial data.  

3.1 Problem Definition 
The following definition of the crosslingual and monolingual 
location search problem is a more precise and general form of the 
definition in [17], which considers only monolingual location 
queries. A query is a text string about which our only assumption 
is that it can be parsed into a list of tokens (typically, words, 
numbers, etc.), represented by Q = (q1, q2, q3,…,qn).  Collectively, 
the terms in query Q are assumed to identify some spatial region. 
A query subsequence is a list of contiguous tokens of Q. We 
represent the subsequence (qi, qi+1, qi+2, …, qj) as qi-j (i≤j). For 
example, given the sample query “ブリジュポート  ウェイ   と   
パシフィク ハイウェイ、  レクウ”, q2-3 represents subsequence 
“ウェイ   と.” 

Some subsequences (such as "Palmer Road", perhaps after 
translation or transliteration) are expected to refer to named 
entities in a spatial repository consisting of geometric objects. 

بلم
 ر

لندن رود ريدبريد
 ج

Redbridge 

London 

Palmer 
Road 

Lindon 

Ridbridge 

Balmerod 

? ? ? 

Figure 4: Illustrating use of spatial constraints 



The presence of these subsequences is the defining aspect of 
location search queries. We model the underlying spatial 
repository as a set of entities that have geometry (points, lines, 
polygons, etc., embedded in a universal metric space) and one or 
more textual names. The spatial repository typically includes 
entities whose geometry represents the spatial boundaries of 
landmarks, roads, rivers, city boundaries, etc. Names typically 
identify an entity (e.g. “Redbridge"), but they can also represent 
classifications of the entity (e.g., “park”). Entities can have 
multiple names (e.g., a street can have multiple names), and the 
same name can apply to multiple entities (e.g., many streets can 
share the name “Main Street”). An entity, e, is thus represented as 
a pair, e = (g, {n1, n2,…, nn}), where g represents its geometry, 
and the ni’s are the names associated with the entity. 

An Interpretation, I, of a query Q, with respect to spatial 
repository S, is a set of one-to-one mappings from non-
overlapping subsequences of Q, to distinct spatial entities in S. An 
interpretation thus has the form {(qi1-j1,e1), (qi2-j2,e2), …, (qim-

jm,em)}. There are a very large number of possible Interpretations, 
but only a small number are consistent, and, informally, the goal 
of location search is to find the most consistent interpretations. 

Consistent Interpretations have two key properties: 

1. There must be textual affinity between each subsequence and a 
name of its corresponding entity in the Interpretation. 
Informally, the subsequences should “sound like”, or more 
generally, be “related to”, the names of the entities that they are 
mapped to. This needs to hold true even if the query is in a 
different script from that of the names of the entity. For 
example, the subsequences “Bridge Port Way”, and also 
“ブリジュポート ウェイ” (roughly "BuRiJyuPorTo Wai" in 
Japanese Katakana script)  both have textual affinity to an 
entity named “Bridgeport Way”. Textual affinity can include 
semantic or ontological similarities, as between “Main Street” 
and “Main Road.”   

2. There must be spatial coherence amongst all entities in the 
Interpretation. Informally, this means that all the entities in the 
Interpretation must roughly overlap in space. We define spatial 
coherence as a Boolean property of a set of entities, 
parameterized by a boundary-width parameter β. A set of 
entities is spatially 
coherent with boundary-
width β if there is a region 
in space, where all the 
entities, first expanded 
outwards by β, overlap. 
The region of overlap is 
called the geometric scope 
of the Interpretation. In 
Figure 5, the entities e1 
and e2 (but not e3) are 
spatially coherent, with 
geometric scope indicated by the shaded area. 

In terms of these definitions, we now define the crosslingual 
location search problem as follows: 

Find a set of Interpretations that maximizes textual affinity 
while preserving spatial coherence, and return the geometric 
scopes of these interpretations. 

The definition can be made more precise by introducing a textual 
affinity function, say α, that computes a textual similarity score 
for an interpretation, and cast the problem as: jointly optimize for 
maximum α and minimum β.  However, the definition of α, and of 
the joint optimization function are highly domain specific and not 
easy to pin down. In this paper we take the pragmatic approach of  
using fixed values of  β for each entity type, and crafting an α that 
improves end-to-end performance of the system with respect the 
specific domain of cross lingual location search over geographic 
(map) data. 

3.2 Computing Interpretations 
Our algorithm that computes a ranked list of Interpretations first 
constructs an ordered list of “match candidates” (MCs). Each MC, 
(qi-j, name), maps query subsequence qi-j to a name name in the 
spatial repository, S. Recall that many entities in S may share the 
same name. Let Entities(S, name) be the set of entities that share 
the name name. Figure 6 contains our algorithm, XL-QUERY. 
Figure 7 illustrates our system that implements the algorithm.  
The algorithm computes the list of match candidates using a 
combination of transliteration and translation, abstraction (defined 
later), and approximate text lookup. The algorithm then 
incrementally computes Interpretations, preserving spatial 
coherence, using a depth first algorithm.  
XL-QUERY uses several pre-built indexes and access functions: 
1. One or more language-specific dictionaries, with access 

function LSD(l,w), that returns for a word w in language l, its 
translations (if any) in the language of the underlying data.   

2. A second Fuzzy Text Index, FIA(S), used for looking up 
abstractions (defined below) of the names in S. 

The algorithm uses several pluggable functions: 
1. A Machine Transliteration (MT) function, T(l, w), that 

performs machine transliteration of word w in language l to 
the target language, as elaborated in the next section. 

2. An Abstraction function, A(w), that transforms a word w into 
a form that captures the “phonetic essence” of w along the 
lines of SOUNDEX [16]. The same abstraction function 
must be used both for building FIA(S) and during query 
processing. 

3. A ranking function R(I) that assigns a real number score to 
Interpretation I. This function constructs a composite score 
for all the MCs that make up the Interpretation. This function 
is used to create the final ranking of the Interpretations found 
during query processing.   

The FindInterpretations function implements the TEXSPACE 
algorithm from [17]. The algorithm’s input includes a geometric 
region or scope, called Focus. The scope is successively narrowed 
as the working interpretation grows.    The Filter function needs 
to compute the boolean expression “Entities(namey) are spatially 
coherent with Focus.” This may seem computationally expensive, 
since this is asking the question: does the scope represented by 
Focus spatially overlap any of the entities with name namey (after 
first growing their respective boundaries by β as explained in the 
previous section). However, as explained in [8], by using the 
linear quadtrees [5] to represent the spatial extents of the 
collection of spatial entities, as well as Focus, we can efficiently 
compute spatial coherence. In fact, we have found that the overall 
computation time taken up by function FindInterpretations is 
typically less than 15% of the overall execution time.  

e3

e2 

e1 

β

Figure 5: Illustrating
spatial coherence 



 

3.3 Machine Transliteration 
The transliteration process, T(l, w) can be implemented either by 
using hand-crafted language specific transliteration rules, or by a 
system which uses machine learning to build a statistical 
transliteration model from training data. Unlike rule-based 
systems, statistical transliteration systems have the advantage that 
they scale well for many languages pairs, as they follow generic, 
language-independent approaches and need only appropriate 
training data to be adapted to new language pairs. 
Such statistical machine transliteration systems typically calculate 
the transliteration probability P(t|s) (the probability of a target 
language name t being the transliteration of a source language 
name s), by segmenting s and t into n Transliteration Units (TUs) 
that typically represent zero or more characters, and expressing 
the transliteration probability as:  

 
where, s is represented as the sequence (s1… sn) and, t, by (t1...tn). 
Early papers [10] used a generative approach that explicitly models 
the transliteration of a source language TU string s to a target 
language string t  (i.e. P(t|s)) as a series of conversions from the 
grapheme space (spelling) of the source language to the phoneme 
space (pronunciation), and then to the grapheme space of the target 
language. However, subsequent research publications report [1,13] 
that a direct mapping from source to target TUs without an 
intermediate phonetic representation often leads to better results. 
Such grapheme-to-grapheme transliteration approaches usually 
follow a two-step training process: First, an alignment algorithm is 
used on the name pairs in the training data to align each TU of a 
source language word with a TU in the corresponding target 
language word, to build a probability model based on the evidence. 
Then, a classifier is trained to predict the probability of a target 
language TU, given a source language TU and its context (e.g. the 
preceding and following TUs).  
A range of different statistical machine transliteration systems were 
compared in [13]. They find that, in scenarios where pronunciation 
information for the source word cannot be looked up from an 
external resource (e.g. pronunciation dictionary), grapheme-to-
grapheme transliteration using a maximum entropy classifier (and a 
context window of n preceding and following source TUs) 
outperforms all other approaches [9]. As we show later in Section 4, 
the maximum entropy classifier based transliteration used in our 
crosslingual location search system, performs at a level comparable 
to the best of the breed [11]. Given that there are no available 
pronunciation dictionary resources for worldwide geographical 
entities written in diverse scripts, this is an appropriate approach to 
machine transliteration for crosslingual location search. 

4. IMPLEMENTATION 
We have implemented an end-to-end location search system that 
takes a location search query in one of the supported languages as 
input and directly produces Interpretations. Distinguishing features 
of our implementation are that the geocoding is deeply integrated 
within the system and that it uses no language- or region-specific 
rules. Instead, our system employs the machine-learning based 
transliteration and the general text/space processing algorithms 
presented in the previous section. This has allowed us to easily build 
a system to support new languages and diverse geographic regions. 
Our system currently supports source queries in Arabic, English, 
Hindi and Japanese, for underlying map data that is in English. We 

XL-QUERY(Q, S, F) 
// Return a ranked list of Interpretations of query Q given spatial 
// repository S and initial focus F. See text for explanation.  
1. for each token qi in query Q 

a. Detect language l from qi 
b. xi ← T(l, qi), a list of transliterated candidate words 
c. yi ← LSD(l, qi), a list of translated words (if any) 
d. zi ← A(xi), a set of phonetic abstractions of transliterations 

2. for each n(n+1)/2 possible subsequences qi-j of Q 
a. LTL ← a list of top ranked k candidate subsequences 

derived from the xi’s and yi’s, based on transliteration 
probabilities 

b. LA ← a list of top ranked k candidate abstracted sequences 
derived from the zi’s 

c. MCLTL ← set of MCs resulting from looking up  LTL in 
precomputed approximate  index FI(S) 

d. MCLA ← set of MC's resulting from looking up LA in 
precomputed approximate abstracted index FIA(S) 

e. MCList  ← MCLTL  ∪ MCLA   
f. FoundInterpretations ← FindInterpretations(MCList, F, 

{}) 
g. return FoundInterpretations, ordered by composite 

Interpretation ranking function  R. 
 
FindInterpretations(MCList, Focus, WorkingInterpretation) 
// Recursively grow partially constructed Interpretation 
// WorkingInterpretation, and narrowing Focus, by trying 
// successive elements of MCList in turn. 
3. if  MCList is empty 

then return {WorkingInterpretation} 
4. NextMC  ← head of MCList 
5. NewWorkingInterpretation ← append NextMC to end of  

WorkingInterpretation 
6. newFocus ← geometric intersection of Focus and  entities 

in NextMC 
7. CompatibleMCs ← Filter(NextMC,  MCList, newFocus) 
8. // Perform recursive depth-first-search 

return  
      FindInterpretation (CompatibleMCs, NewFocus,  
                                         NewWorkingInterpretation))  
      ∪ FindInterpretation (MCList - NextMC, Focus, 
                                             WorkingInterpretation) 

 
Filter (NextMC, MCList, Focus) 
// Return the MCs in MCList that are textually non-overlapping 
// and spatially coherent with NextMC.  
9. (qi-j, name) ← NextMC 
10. filteredList ← {} 
11. for each  (qk-l, namey) in MCList 

a. if   ( qk-l does not textually overlap  qi-j ) 
     ∧ ( Entities(namey) are spatially coherent with    
           Focus  ) // See text for explanation. 
then add (qk-l, namey) to filteredList 

12. return filteredList 

Figure 6: Computing Interpretations 



have indexed detailed map data to build a system that supports 
cross-lingual queries over several large cities in three countries. 

 
 
Figure 7 illustrates our system, which implements the XL-QUERY 
algorithm described in Figure 6.  We now explain how a query 
flows through the various components of our system. The query is 
first passed into a Word Breaker and Language Detector, which 
detects the language based on Unicode code pages (this could be 
extended to other language detection algorithms), and breaks the 
character stream into words using whitespace and punctuation 
marks as guidelines. The individual words are then passed into our 
Machine Transliteration (MT) and Selective Translation (ST) 
components. MT implements a Maximum Entropy classifier, details 
of which are provided later in this section. The ST component 
contains language-specific dictionaries that contain a relatively 
small set of common words which often are translated instead of 
transliterated (translations for “road”, “garden”, “lane” etc.). While 
our current implementation translates only common nouns as above, 
the ST component may be enhanced with known mappings between 
the query language entities and target language entities (for 
example, “Vienna” is “Wien” in German, and “Becs” in Hungarian). 
Such mapping may be obtained from multilingual Gazetteers, and 
when implemented, may improve the quality of crosslingual 
location search significantly.  The MT component suggests multiple 
transliterations for each input word, and the ST may add additional 
words. The set of word alternatives are then combined into a set of 
most promising transformed subsequences of the query, by taking 
the cross-product of the word-level candidates. This set of 
transformed subsequences is ranked by probabilistic estimates 
provided by the MT system and a small number (currently 4) of top-
ranked candidate subsequences are then passed on to the next stage. 
This number was determined based on experiments on the efficacy 
of considering various numbers of transliteration permutation 
alternatives. The multiple transformed subsequences are then passed 
through our abstraction component, a more discriminating form of 
the SOUNDEX technique, which reduces textual variations inherent 
in transliteration. The transformed subsequences, along with their 
abstracted versions, are then passed on to our Approximate 
Footprint Lookup (AFL) component, which looks up the spatial 
footprint (a linear quad-tree [5] representation ) of entity names that 
approximately match each transformed subsequence. Our 
approximate text matching system is based on [2]. The resultant 
spatial footprints are passed into our Interpretation Finder, which 

implements the FindInterpretations depth-first-search described in 
the previous section, to come up with a ranked list of candidate 
Interpretations. Finally, found interpretations are ranked by a 
pluggable Ranker, which presents the more relevant results first. 
The Ranker is not specific to crosslingual search and its role is 
described in [17] and in more detail in [8]. 

Our MT system uses Viterbi training alignment and a Maximum 
Entropy classifier to generate target language transliteration 
candidates for a source language word. We use our own alignment 
algorithm to align each single character of a training source word 
with zero or more characters in the target language transliteration. 
Because it takes the strictly monotonic nature of alignments in 
transliteration into consideration, it is better suited for the task than 
general machine translation alignment tools. Based on the resulting 
alignments, we train a maximum entropy classifier (adapted from 
[12]) to estimate the probability that source language character, in 
the context of the 3 preceding and the 3 following source characters, 
should be transliterated to a given target language string. After 
training (on 15000 name-pairs for each source-target language 
combination) is finished, a beam search decoder is used to obtain 
the n most likely transliteration candidates for a (previously unseen) 
source language word.  
Figure 8 illustrates transliteration performance for transliteration 
from three different languages into English, obtained on a test set of 
2,700 words. It plots the probability that a transliteration, which 
either exactly matches the reference transliteration (“exact”) or has 
an edit distance of at most one character (“∆ ≤ 1 char”), is found 
among the highest ranked n (“Top n”) transliteration candidates. 
The graph shows that there is a high probability (70% for Arabic, 
86% for Hindi and 88% for Japanese) of having at least one very 
close match (within one char edit distance) amongst the top four 
transliteration candidates, and the quality improvements are 
asymptotic beyond top four candidates. 
Our location search system indexes around 240,000 entities (street 
names, locality names, postal codes etc.) belonging to three big 
cities, one each from UK, USA and India, on a 3.2GHz (Pentium 4) 
system with 2GB RAM. The generation of 15 transliteration 
candidates for a source word takes approximately 30 ms (without 
any optimization for speed) while fuzzy text lookup performs within 
10 ms per subsequence. 

 
Figure 8: Transliteration performance 

The approximate text lookup for a full query can be expensive 
since a single location search can yield several tens of 
subsequences with word breaking, transliteration/translation and 
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subsequence regeneration. We use caching to reduce the overall 
cost of Approximate Footprint Lookup.  

5. RESULTS 
In this section, we first establish a baseline using our 
transliteration module and commercial monolingual location 
search systems, since no other comparable crosslingual location 
search system exists. Based on our experiments, we find that our 
system enables broad crosslingual support for a wide variety of 
location search queries, with results that compare well with the 
best monolingual location search providers. Furthermore, we 
establish that straightforward approach of transliteration followed 
by monolingual geocoding, performs poorly across the board. 

5.1 Experimental Data  
A set of 275 random English address queries, both structured and 
unstructured, covering geographic regions from the United States 
and India were collected from users and user location search 
query logs. The Arabic, Hindi and Japanese versions of these test 
queries were created manually by an external agency to remove 
any bias. Thus, we have 275 test queries in each of these 
languages, making up a total of 825 crosslingual queries.  A 
sample query, along with its transliterations in all three languages, 
is given in Table 1. For each English query, the gold standard 
geographic location (Latitude, Longitude) was obtained by 
majority consensus among multiple commercial location search 
engines, namely, Google Maps™, Windows Live Local™, and 
Yahoo Maps™, or by manually locating it on a map. 

5.2 Baseline Definition 
As there are currently no commercial or academic crosslingual 
location search systems available, we construct a baseline, using 
our transliteration system and the commercial location search 
engines (referred to as, T + CS) listed above, as follows: we first 
transliterate each of the test queries (in Arabic, Hindi and 
Japanese) to English using our transliteration engine, and then 
send the four highest ranked transliteration candidates to the three 
commercial location search engines.  We also experimented with 
larger number of transliteration candidates, but found moving 
beyond 4 transliterations did not improve the baseline result 
quality significantly. This is also corroborated by the graph in 
Figure 8, which shows only asymptotic improvement in 
transliteration quality, beyond the top-4 candidates, especially for 
the fuzzy matching.  For example, consider the Japanese query 
“835, セントラル・アベニューエン, ケント, ワシングトン"  (a manually 
created Japanese version of “835, Central Ave N, Kent”).  For this 
Japanese query, the machine transliteration system would 
typically create candidates such as "835 sentral avenu en kento", 
etc.  It should be noted here that our geocoder contains data for 
specific regions in India, US and UK, and hence we were 
restricted to selecting the test queries only for these areas.  To 
ensure parity in comparing our results with commercial services 
that are set up for the whole world, we make one important 
modification.  We append the names of the region and country, in 
error-free English, to each query that were sent to the commercial 
engines to narrow down the scope of the search.   
We evaluated the three commercial location search engines, and 
here we are presenting as the baseline, the performance of the best 
of the three commercial services, when supplied with the four 
highest ranked transliterations from our transliteration system.  

5.3 Experimental Results 
Of the 275 test queries, 155 were structured addresses, 
conforming to the local conventions for postal addresses, and the 
rest were unstructured addresses informally describing a 
geographic location.   

Table 3: Experimental Results 

 

Queries geocoded within 1 km (in %) 
STRUCTURED  UNSTRUCTURED 

USA India USA India 

La
ng

ua
ge

 

T+CS Our T+
CS Our T+

CS Our T+
CS Our 

ENG 98 85 18 94 22 93 1 92 

ARA 34 73 8 79 4 75 0 83 

HIN 53 76 12 85 6 85 0 92 

JAP 8 78 9 91 3 88 0 86 

 
Table 3 shows our experimental results for both structured and 
unstructured test addresses from US and India. The numbers 
denote the percentage of queries for which the geocoding result 
was within 1 km distance of the gold standard location.  
In the left half of Table 3, we show the results for geocoding 155 
structured or full postal addresses, in English, Arabic, Hindi and 
Japanese. It should be noted that in the monolingual case, the 
unmodified English test queries were provided to the baseline 
system (along with the region and country information), as well as 
to our implementation. We observe that our system's performance 
is marginally poorer than the baseline on monolingual structured 
data for the USA, but it is significantly better on monolingual 
Indian queries. For crosslingual structured queries, our system 
considerably outperforms the baseline combination of 
transliteration and commercial location search engine in all 
scenarios. 
In the right half of Table 3, we present results for experiments 
with 120 random unstructured queries. For these, we synthesized 
unstructured location descriptions by selecting combinations of 
overlapping features from the underlying repository from each 
city such as intersecting roads, localities, etc. (described in more 
detail in [17]).  We followed the same process of transliterating 
and appending the region and country information as in structured 
queries. The results show that for unstructured queries our system 
very significantly outperforms the baseline system in the 
monolingual case, and even more so for in the crosslingual case. 
Our claim that integrating transliteration results in an end-to-end 
system (rather than combining transliterations and monolingual 
geocoding) will lead to crosslingual performance that is close to 
monolingual levels is clearly supported by our experimental 
results illustrated in Figure 9. The figure shows performance 
(queries geocoded within 1 km, on structured data for US 
locations) for crosslingual queries, relative to the performance on 
the original monolingual (English) queries. It illustrates that, even 
if queries are written in a completely different language and 
script, our system can still geocode (within 1 km) between 85% 
(for Arabic) and 90% (Hindi, Japanese) of the queries it can 
geocode in English.  In comparison, the baseline system supplied 
with the highest ranked 4 transliterations of the foreign language 
queries, achieves only 8% (Japanese), 35% (Arabic) and 54% 



(Hindi) of the monolingual baseline performance.  We have 
deliberately chosen structured queries for US  locations as a basis 
for demonstrating the relative crosslingual performance, because 
this is the scenario where the commercial baseline has strongest  
performance on monolingual queries. 
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 Figure 9: Relative crosslingual performance 
Our system performs dramatically better than the baseline of 
transliteration followed by monolingual geocoding. Even for the 
USA, where the baseline outperforms us on structured 
monolingual data, we achieve between 75% and 88% on 
crosslingual unstructured data, whereas the baseline is between 
3% and 6%. 

6. CONCLUSIONS AND FUTURE PLANS 
In this paper we addressed, possibly for the first time, the problem 
of processing complex crosslingual location search queries, 
where the underlying map data are in a different language than 
that of the query. We demonstrate empirically that the simple 
composition of machine transliteration followed by monolingual 
geocoding performs poorly, as the ambiguities in the 
transliteration/translation process compound to unacceptable 
levels for multi-word queries. We then reformulate the 
crosslingual location search as an end-to-end problem: finding the 
geometric scope of a query by simultaneously maximizing the 
crosslingual textual affinity and spatial coherence (i.e., 
innovatively using spatial constraints to effectively resolve 
translation ambiguities).  We provide results for queries in Arabic, 
English, Hindi and Japanese, over detailed English map data 
covering multiple cities. Experiments confirm full crosslingual 
location search accuracy at levels comparable to that of 
commercial monolingual systems.  
We are pursuing several promising extensions to this work: 
Currently,  we are working on extending our algorithms to include 
“what” terms, to support local search queries such as “hospitals 
near Bellevue downtown” (and their crosslingual versions).  In 
addition, our current prototype system [8] that is deployed in 3 
demographics supporting 4 languages, is being extended as a 
distributed system that can handle two orders of magnitude larger 
data than that used for results in this paper. In addition, we are 
also exploring improving coverage of entity translation between 
languages, by mining comparable corpora for equivalent entities.  
Our approach is generic, and may be used for crosslingual 
searches in any language/script, over arbitrary spatial data. We 
hope that this facilitates its adoption in spatial domains beyond 
geographic location search, such as crosslingual queries over 
scientific spatial data. 
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