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Abstract. We look at a fragment of ASMs used to model protocol-like
aspects of software systems. Such models are used industrially as part
of documentation and oracles in model-based testing of application-level
network protocols. Correctness assumptions about the model are often
expressed through state invariants. An important problem is to validate
the model prior to its use as an oracle. We discuss a technique of using
Satisfiability Modulo Theories or SMT to perform bounded reachability
analysis of such models. We use the Z3 solver for our implementation
and we use AsmL as the modeling language.

Protocols are abundant; we rely on the reliable sending and receiving of email,
multimedia, and business data. But protocols, such as the Windows network file
protocol SMB (Server Message Block), can be very complex and hard to get
right. Model programs have proven to be a useful way to model the behavior
of such protocols and it is an emerging practice in the software industry [6,9,
11] to use model programs for documentation and behavioral specification of
such protocols, so that different vendors understand the same protocol in the
same way. The step semantics of model programs is based on the theory of
ASMs [7] with a rich background universe [3]. This enables a range of ASM
technologies [4] to be used for analysis of model programs. In the case of model
programs, correctness assumptions about the model are often expressed through
state invariants. It is important that the model is validated before it is used as a
specification or an oracle. We describe a technique of using satisfiability modulo
theories or SMT to perform bounded reachability analysis of a fragment of model
programs. We use the SMT solver Z3 [5] and we use AsmL [8] as the modeling
language. We extend the work in [10] through improved handling of quantifier
elimination and extended support for background axioms, in particular bag or
multi-set axioms.

The use of SMT solvers for automatic software analysis has recently been
introduced [1] as an extension of SAT-based bounded model checking [2]. One
advantage of the SMT approach is that it scales better for problems that de-
pend on complex background theories, and the formula for which satisfiability is
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checked is quantifier free, rather than propositional. The decision procedure for
checking the satisfiability of the formula may use combinations of background
theories. The formula is generated after preprocessing of the program. The pre-
processing yields a normalized program where all loops have been eliminated by
unwinding the loops up to a fixed bound. Unlike traditional sequential programs,
model programs operate on a more abstract level and often make use of compre-
hensions. Moreover, model programs use parallel updates and rich background
data structures like sets, maps and bags.

A model program is a finite collection of basic ASMs indexed by actions.
The following model program, called Credits, is an example of a model program
written in AsmL. It specifies how a client and a server need to use message ids,
based on a sliding window protocol. Here the client sends requests to the server
and the server sends responses back to the client.

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action]
Req(m as Integer, c as Integer)
require m in window and ¢ > 0

requests := Add(requests,m,c)
window := window difference {m}
[Action]

Res(m as Integer, c as Integer)
require m in requests
require requests(m) >= c
require c >= 0
//require requests.Size > 1 or window <> {} or ¢ > 0 <-- bug
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

[Invariant]
ClientHasEnoughCredits()
require requests = {->} implies window <> {}

The Credits model program illustrates a typical use of model programs as
protocol-specifications. Actions use parameters, maps and sets are used as state
variables and a comprehension expression is used to compute a set. Each action
has a guard and an update rule given by a basic ASM. For example, the guard
of the Req action requires that the id of the message is in the current window
of available ids and that the number of credits that the client requests from the
server is positive. The state invariant associated with the model program is that
the client must not starve, i.e. there should always be a message id available at
some point, so that the client can issue new requests.

There is a mistake in the model indicated by the missing require-statement.
There is a two-action trace leading to a state where the invariant is violated due
to this, e.g. the trace Req(0,1) ,Res(0,0).

There are several different ways of how model programs can be checked for
invariant violations. One way is to do explicit state exploration and to use model
checking techniques, e.g. this is supported in Spec Explorer [11]. Another ap-
proach, that does not require action parameter domains to be provided up-front,



is to represent the bounded reachability problem of the negated invariant as a
formula and to check for its satisfiability using a theorem prover.

The bounded reachability formula for a given model program P, step bound
k and reachability condition ¢ is:

Reach(Po. k) = IpAC N\ PIDACY i) 1)
0<i<k 0<i<k

where Ip is the initial state condition, P[i] is a formula describing step ¢ of the
model program, which is an application of some enabled action from the ¢’th
state, and ©[i] is ¢ in the ¢’th state. The reachability condition ¢ is typically
the negated state invariant. If Reach(P, ¢, k) is satisfiable, its model can be used
to extract an action trace that leads from the initial state to a state violating
the invariant. The formula Reach(P, ¢, k) is typically quantifier free, but involves
the use of background theories such as arithmetic, set and multi-set axioms, and
map axioms, which makes the use of an SMT solver such as Z3 possible for this
kind of analysis.
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