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Abstract: This paper considers two simple pricing schemes
for selling cloud instances and studies the trade-off between
them. We characterize the equilibrium for the hybrid system
where arriving jobs can choose between fixed or the market
based pricing. We provide theoretical and simulation based
evidence suggesting that fixed price generates a higher ex-
pected revenue than the hybrid system.

1 Introduction
Cloud computing provides on-demand and scalable access
to computing resources. Public clouds, such as Windows
Azure and Amazon EC2, treat infrastructure computing as
a service that can be purchased and delivered over the Inter-
net. A user purchases units of computing time on virtual ma-
chines (referred to as instances). The most commonly used
pricing mechanism for instances is pay as you go (hence-
forth, PAYG), where a user is charged a fixed price per unit
time per instance. However, given stochastic demand, such
fixed pricing may result in unused resources. Rather than
letting resources sit idle, the provider could operate a spot
market, selling unused resources at a reduced price via using
auction to users willing to tolerate delays and interruptions.

This paper examines the tradeoffs for a provider deliber-
ating whether or not to operate a spot market. On one hand,
operating a spot market can create price discrimination, as
users with low values and low waiting costs compete for
spot instances, thereby extracting payments from the users
who would balk if PAYG were the only option. On the other
hand, the spot market provides a cheaper alternative to users
with high value but low waiting cost, causing a loss of rev-
enue from the users who would have paid a higher PAYG
price if PAYG were the only option. In consequence, it is
not obvious if operating PAYG and the spot market simulta-
neously provides any net gain in the expected revenue to the
cloud service provider.

To quantify the trade-offs we construct a simple model of
a cloud computing service with users who are heterogeneous
both in their value for service and in their waiting cost. We
first analyze PAYG and a spot market in isolation and use the
resulting insights to analyze what happens when they oper-
ate simultaneously. Our analysis is not tied to any particular
pricing rule for the spot market. Instead, we use a character-
ization similar to the revenue equivalence theorem for auc-
tions [12] to compute the expected payment made by a user
in any equilibrium of any pricing rule. Moreover, while the
analysis of the queuing system with multiple priority classes
and multiple servers is complex (see, e.g., [7], [13]), an ap-

plication of the revelation principle [12] allows us to circum-
vent this complexity. We describe a general queuing system
for the spot market purely in terms of a waiting time func-
tion and exploit its properties for our analysis. Our main
contributions are:

• We model a cloud computing service as a queuing sys-
tem described by a waiting time function and apply tech-
niques from the theory of optimal auctions to analyze it.

• We show that, in equilibrium, users have a waiting cost
threshold that determines whether they participate in the
spot market or PAYG. Moreover, the expected payments
by the users in the spot market are independent of their
value for service and increasing in their waiting cost1.

• Using this equilibrium characterization, we provide the-
oretical and simulation evidence suggesting that operat-
ing PAYG in isolation provides a higher expected rev-
enue to the cloud service provider than operating PAYG
and a spot market simultaneously.

Our work is at the nexus of queuing theory and game the-
ory. Hassin and Haviv [9] provide a survey of this area. For
observable M/M/1 queues with identical customers, Bal-
achandran [4] derives a full information equilibrium strat-
egy. Hassin [8] and Lui [11] consider unobservableM/M/1
queues where customers with heterogeneous waiting cost
bid for preemptive priority using the first price auction. They
characterize an equilibrium where bids are increasing in the
waiting cost. Afèche and Mendelson [3] extend this to a
more general waiting cost function. Dube and Jain [6] con-
sider a different problem with competing GI/GI/1 priority
queues; arriving jobs decide which queue to join. They find
conditions for the existence of the Nash equilibrium. Per-
haps the closest to our work are papers that apply the theory
of optimal auction design to optimize pricing and service
policies in queuing system. Afèche [2] shows that delaying
jobs or choosing orderings that increase processing time can
increase revenue. Yahalom et al. [14] generalize [2] by relax-
ing the distributional assumptions on valuation and working
with convex delay cost. Katta and Sethuraman [10] design
a pricing scheme that, under some assumptions, is optimal
for an M/M/1 queuing system and certain generalizations of
it. Cui et al. [5] move beyond admission control through
priority pricing. Instead, they consider the problem of joint
pricing, scheduling, and admission control policy for rev-
enue maximization forM/M/1 queue and find solutions for
some special cases. Compared to previous work in this lit-

1Throughout this paper, “increasing” means “strictly increasing.”
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erature, the distinguishing aspects of our work are: (i) we
allow for an arbitrary queuing system with multiple servers
and arrival process which need not be memoryless; (ii) our
analysis is not tied to a specific auction mechanism for the
spot market; (iii) we allow PAYG and the spot market to
operate simultaneously and are not limited to analyzing a
system in isolation.

2 Model
Consider a cloud computing system where jobs arrive se-
quentially according to a stationary stochastic process with
independent interarrival time. Each job demands one in-
stance and is associated with a distinct user. We will use
the terms “users” and “jobs” interchangeably. The service
time for each job is independently drawn according to an
arbitrary distribution with the expected time of 1/µ. Jobs
differ in their values for service and the waiting costs. There
are two classes of jobs. Each job from class i has the same
value vi for job completion. Assume v1 > v2. The total
arrival rate of potential jobs is λ1 + λ2. Each job is inde-
pendently assigned class i with probability λi/(λ1 + λ2),
hence the total arrival rate of potential jobs from class i in
λi. Each job from class i incurs a waiting cost per unit time
which is an i.i.d. realization of a random variable Ci with
the cumulative distribution function (CDF) Fi(c). The exact
waiting cost of a job is its private information; however, the
probability distributions Fi’s are common knowledge. The
random variable Ci’s are independent of each other. If a job
from class iwith waiting cost c pays a total pricem for using
the instance and spends the total time w in the system (the
sum of the queuing time and the service time, referred to as
the waiting time) then its payoff is vi−cw−m. A job wants
to maximize its expected payoff from using an instance and
competes to acquire an instance only if its expected payoff is
nonnegative. Let fi(c) be the corresponding probability den-
sity function (pdf) of Fi(c); fi(c) is assumed to be strictly
positive for c ∈ [0, µvi]

2. Each job is infinitesimally small
and cannot affect the system dynamics on its own.

Modeling PAYG: PAYG is modeled as a GI/GI/∞ sys-
tem with service rate µ. A job arriving to PAYG joins imme-
diately and is served until completion. Each job is charged
a price p > 0 per unit time for using a PAYG instance. The
price p is known to everyone a priori. The expected payoff
of a job from class i with the waiting cost c from using a
PAYG instance is thus vi − (c + p)/µ. If c > µvi − p, the
job does not participate in PAYG.

Modeling the spot market: The spot market is modeled
as a GI/GI/k system with preemption where jobs bid for
priority. We will be mostly working with auctions where
a job with a higher bid is given priority over a job with a
lower bid and can preempt the lowest priority job under ser-
vice if needed; Section 3.1 provides further details on the
assumptions we make on the relationship between bids and

2Jobs from class i with waiting cost greater than µvi will always
balk, hence we restrict attention to range [0, µvi].

priorities. A job which is preempted goes back to the queue
and waits to resume from the point it left. The queue state
(i.e., the bid vector in the spot market) is unobservable to the
arriving jobs. Jobs are not allowed to renege or change their
bids. A job is charged based on its own bid and the bids of
others according to some spot pricing mechanism. Exam-
ples include the first price auction where jobs with k highest
bids are served and each pays its bid, and the (k+1)th price
auction where the jobs with k highest bids are served and
each job pays the (k + 1)th highest bid. We do not explic-
itly assume any specific spot pricing mechanism and abstract
away from it by considering the expected payment by a job
in a Bayes Nash Equilibrium (henceforth, BNE) using the
revenue equivalence theorem for auctions [12].

3 PAYG and Spot Market Analysis
3.1 Strategy, waiting time, and spot pricing

When a spot market is operating, either alone or in conjunc-
tion with PAYG, a job that decides to join it participates in an
auction and must decide how much to bid based on the pay-
ment rules of the auction. The optimal bid may depend in
a complicated way on its private information (value for ser-
vice and cost of waiting). However, we show in this section
that this complexity is inessential. Regardless of the auction
mechanism, jobs that enter the spot market with higher wait-
ing costs pay more and wait less time and these values are
(essentially) independent of the job’s class. The job’s class
does matter in determining whether the job participates in
the spot market, but this take the form of a simple cutoff
with jobs with waiting costs below the cutoff participating
and those with costs above not.

By the revelation principle for BNE [12], it suffices to re-
strict our consideration to truthful direct revelation mecha-
nisms: mechanisms where jobs report their private informa-
tion and it is an equilibrium for them to do so truthfully. Any
implementable outcome is implementable by such a mech-
anism. Thus, a job reports a type (v, c); if it participates in
the spot market, it has an expected waiting time w̃(v, c) and
expected payment m̃(v, c). In principle, these could depend
on the value v of the job’s class, however, we show that it is
essentially without loss of generality to assume they do not.

LEMMA 1. For all truthful direct revelation mechanisms
for the spot market and all equilibria, there exists an equilib-
rium with the same expected utility where expected waiting
time and payments are independent of class for all values
of c where both classes participate in the spot market.

PROOF. A job of class i with waiting cost c that partici-
pates in the spot market chooses a report (v′, c′) to minimiz-
ing the expected total cost cw̃(v′, c′)+m̃(v′, c′). Thus, when
both classes participate, the set of optimal reports is class-
independent; in particular, both (v1, c) and (v2, c) belong to
the set of optimal reports. Let s1 and s2 be the (randomized)
equilibrium strategies for class 1 and class 2 with cost c.
Now, suppose that the job of class i with waiting cost c uses
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strategy s1 with probability λ1f1(c)/(λ1f1(c) + λ2f2(c))
and strategy s2 otherwise. Then the arrival process for the
strategies s1 and s2 remains identical to the original process,
hence the waiting time and the expected payment remain un-
changed. This new class-independent randomized strategy is
also an equilibrium for both classes.

Since jobs can undo any tie-breaking the mechanism does
on the basis of class, we assume for the remainder of the
paper that mechanisms have a class-independent expected
waiting time w̃(c) and expected waiting cost m̃(c). As we
are interested in what outcomes are implementable, again
by the revelation principle it is without loss of generality
to assume that jobs report truthfully and we do so for the
remainder of the paper. We now show that jobs with higher
waiting costs pay more and spend less time waiting.

LEMMA 2. In (the truthful) equilibrium, w̃(c) is nonin-
creasing in c and m̃(c) is nondecreasing in c for values of c
that participate in the spot market for some class.

PROOF. Consider ĉ > c. The optimality of truthful re-
porting implies:

ĉw̃(ĉ) + m̃(ĉ) ≤ ĉw̃(c) + m̃(c), (1)
cw̃(c) + m̃(c) ≤ cw̃(ĉ) + m̃(ĉ). (2)

Adding (1) and (2) implies w̃(ĉ) ≤ w̃(c). Using this and (2),
we get m̃(ĉ) ≥ m̃(c).

Thus far, our assumptions have been without loss of gen-
erality. We now make two assumptions that are not. First,
we assume that jobs with no waiting cost are served for free
in the spot market, hence m(0) = 0. Second, we assume
that, in equilibrium in the spot market, jobs with higher wait-
ing costs always have strictly higher priority than jobs with
lower waiting costs . Note that this is a stronger condition
than assuming that w̃(c) is decreasing. Since w̃ is the ex-
pected waiting time, if priorities are assigned randomly it is
possible to have a a strictly lower expected waiting time but
in some cases a lower priority. All mechanisms that assign a
strictly higher priority to the jobs with higher bids in the spot
market, admit an equilibrium where the spot market bids are
increasing in the waiting cost, and have no reserve price sat-
isfy these restrictions. For example, we show later in this
section that the first price auction satisfies these properties.

We now characterize the participation decision facing jobs.

LEMMA 3. For each class i there is a cutoff ci below
which jobs participate in the spot market and above which
they do not.

PROOF. A job participates in the spot market if the payoff
is better than its alternative (0 if the spot market is operated
in isolation or max{0, vi− (p+ c)/µ} if PAYG with price p
is available). The payoff from participation is vi − cw̃(c)−
m̃(c). Let c be any type that participates. Taking the case
of the spot market in isolation first, if vi − cw̃(c)− m̃(c) ≥
0 then vi − ĉw̃(c) − m̃(c) > 0 for all ĉ < c. Thus, if

a job of class i with cost c participates, all lower cost jobs
do as well. This argument also implies that if a job with
waiting cost c does not participate, then neither does any job
with waiting cost ĉ > c . Thus, there is some threshold
ci below which jobs participate and above which they do
not. The argument with PAYG as an option is essentially the
same because the minimum possible value of w̃(c) is 1/µ,
the same as the waiting time under PAYG.

In order to characterize an equilibrium where jobs use cut-
offs (c1, c2), we need to analyze the expected waiting time
for a job with waiting cost c in the spot market with cutoffs
(c1, c2). It suffices to characterize some properties of the
waiting times for arbitrary choices of cutoffs. Given a queu-
ing system for the spot market, define the waiting time func-
tion w(c; c1, c2) as the expected waiting time of a job with
cost c when jobs of class i use cutoff ci. Note that we are
defining w for arbitrary cutoffs, not just equilibrium ones.
The following lemma gives the relevant properties of w.

LEMMA 4. The waiting-time function w(c; c1, c2) is well
defined whenever (

∑
i=1,2 λiFi(ci))/(kµ) < 1. It is an in-

creasing function of
∑
i=1,2 λi [Fi(ci)− Fi(c)]

+. In partic-
ular, this implies:

(i) w(c; c1, c2) is decreasing in c for c ∈ [0, c1 ∨ c2]3,
w(c; c1, c2) > 1/µ if c < c1 ∨ c2, and w(c; c1, c2) =
1/µ if c ≥ c1 ∨ c2.

(ii) w(c; c1, c2) is increasing in c1 and c2 for ci ∈ [0, µvi].

(iii) For any c1 > ĉ2 > c2 and t ∈ [ĉ2, c1], w(t; c1, c2) =
w(t; c1, ĉ2).

PROOF. The condition (
∑
i=1,2 λiFi(ci))/(kµ) < 1 en-

sures the queue is stable so that the expected waiting time
is finite. This must be true in equilibrium. Since priority
is given to the job with a higher waiting cost, the expected
waiting time of a job with waiting cost c increasing with the
total arrival rate of the jobs with waiting cost higher than c,
which is equal to

∑
i=1,2 λi [Fi(ci)− Fi(c)]

+. The job with
waiting cost greater than or equal to c1 ∨ c2 gets the high-
est priority and is served immediately with no interruptions.
The enumerated properties follow easily.

Next, we use a characterization similar to the revenue equiv-
alence theorem for auctions [12] and show that the expected
payment by any job with waiting cost c is uniquely deter-
mined by the waiting time function w; in particular, it is the
same for any spot pricing mechanism.

Suppose that the truthful reporting with cutoffs (c1, c2)
constitutes a BNE for the given spot pricing mechanism. Let
m(c) be the expected payment made by a job with waiting
cost c (the expected payment is independent of its class). For
a BNE to exist, the following incentive compatibility (hence-
forth, IC) constraint must hold: for any ĉ, c ≤ c1 ∨ c2, and
3Here, a ∨ b = max{a, b}.

3

93



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

any i,

vi− cw(c; c1, c2)−m(c) ≥ vi− cw(ĉ; c1, c2)−m(ĉ). (3)

By analogy with [12], the next lemma relates the expected
payment with the waiting time function w and shows that
the properties of the waiting time function along with the
expected payment given by (4) ensure that the IC constraint
(3) is satisfied. The proof can be found in the full version of
this paper [1].

LEMMA 5. A necessary condition for (3) to hold is:

m(c) =

∫ c

0

w(t; c1, c2)dt− cw(c; c1, c2). (4)

Hence, the expected payment by a job with waiting cost c
is uniquely determined by the function w and is same for
all spot pricing mechanisms that satisfy our assumption that
m(0) = 0. Moreover, Lemma 4 and (4) together satisfy the
IC constraint (3).

Since w(c; c1, c2) is decreasing in c for c ∈ [0, c1 ∨ c2],
the proof of Lemma 2 can be used to establish a stronger
monotonicity of the expected payment m.

LEMMA 6. Given cutoffs (c1, c2), the expected payment
m(c) is increasing in c for c ∈ [0, c1 ∨ c2].
3.2 Revenue and equilibria for isolated markets

First consider PAYG in isolation. If PAYG price is p, a job
from class i with waiting cost c obtains an expected payoff
vi− (p+ c)/µ by using a PAYG instance. A job will partici-
pate in PAYG if this payoff is nonnegative. Thus, a job from
class i participates in PAYG if its waiting cost c ≤ µvi − p.
The effective arrival rate of class i jobs is then λiFi(µvi−p)
where Fi(µvi − p) = 0 if p ≥ µvi. Each such job uses a
PAYG instance for an expected duration of 1/µ and pays p
per unit time. Hence, the expected revenue to the cloud ser-
vice provider per unit time, denoted by Rpayg(p), is:

Rpayg(p) ,
p

µ

( ∑
i=1,2

λiFi(µvi − p)
)
, (5)

and the optimum revenue is maxpR
payg(p).

Next, consider the spot market in isolation. Given the cut-
offs (c1, c2), the expected payment by a job with waiting
cost c in any BNE is given by (4). Thus, we need to compute
the cutoff for each class i when the spot market is operated
in isolation; denote the cutoffs in this case by cs , (cs1, c

s
2).

From (4), the expected payoff of a job from class iwith wait-
ing cost c is vi −

∫ c
0
w(t; cs)dt. A job will participate in the

spot market as long as its expected payoff is nonnegative.
Hence, the cutoff vector cs must satisfy:

vi −
∫ c

0

w(t; cs)dt

{
≥ 0 if c < csi ,
= 0 if c = csi .

(6)

Theorem 1 below shows that there is an unique cutoff vec-
tor cs satisfying (6) and uses it to characterize the BNE for
the spot market in isolation. The proof can be found in the
full version of this paper [1].

THEOREM 1. The following holds:

(i) There is a unique solution to the following system of
equations in (x1, x2):∫ x1

0
w(t;x1, x2)dt = v1,∫ x2

0
w(t;x1, x2)dt = v2.

(7)

(ii) Choose the cutoff vector cs as the unique solution of
(7). Then cs satisfies (6), cs1 ≥ c, and cs2 ≤ c. Here c
uniquely satisfies

∫ c
0
w(t; c, c)dt = v2.

(iii) In all BNE, a job from class i with waiting cost c par-
ticipates in the spot market if and only if c ≤ csi .

To highlight the explicit dependence of the expected pay-
ment on the cutoffs vector cs, we use m(c; cs); i.e,

m(c; cs) =

∫ c

0

w(t; cs)dt− cw(c; cs). (8)

Using Theorem 1, the expected revenue to the cloud service
provider per unit time when the spot market is operated in
isolation, denoted by Rs, is:

Rs ,
∑
i=1,2

λi

∫ csi

0

m(t; cs)fi(t)dt. (9)

3.3 Revenue and equilibria in the hybrid market

We now leverage the insights gained from analyzing PAYG
and the spot market each in isolation and move to analyzing
the hybrid system where both are operated simultaneously.
As mentioned in Section 3.1, for a given PAYG price p, we
look for a cutoff vector c(p) , (c1(p), c2(p)) such that a
job from class i with waiting cost c joins the spot market if
and only if c < ci(p), and if so, it reports its waiting cost
truthfully; otherwise it joins PAYG as long as c ≤ µvi − p
(the cutoff for class i if PAYG is operating in isolation).

A job from class i with waiting cost c gets the expected
payoff vi −

∫ c
0
w(t; c(p))dt from using a spot instance and

reporting its waiting cost truthfully, while its expected payoff
from using a PAYG instance is vi−(p+c)/µ. It will pick the
one which offers a higher expected payoff. If the PAYG price
is too high for a class, then no jobs from that class goes to
PAYG. Theorem 2 below finds the unique cutoff vector c(p)
and uses it to characterizes the BNE of the hybrid system.
The proof can be found in the full version of this paper [1].

THEOREM 2. Let c and cs be as given by Theorem 1
and p be a PAYG price. Choose the cutoff vector c(p) as
follows:

(i) If p ∈ (0, µv2− c], then there is a unique x ∈ [0, c] sat-
isfying (p + x)/µ =

∫ x
0
w(t;x, x)dt. Choose c1(p) =

c2(p) = x. Each ci(p) ∈ (0, c] and is increasing in p.

(ii) If p ∈ (µv2−c, µv1−cs1], then there is a unique (x1, x2)
such that x1 ≥ x2 that satisfies the following system of
equations: ∫ x1

0
w(t;x1, x2)dt =

p+x1

µ ,∫ x2

0
w(t;x1, x2)dt = v2.

(10)
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Choose c1(p) = x1 and c2(p) = x2. c1(p) ∈ (c, cs1]
and is increasing in p, c2(p) ∈ [cs2, c) and is decreasing
in p, and

∑
i=1,2 λiFi(ci(p)) is increasing in p.

(iii) If p > µv1 − cs1, choose c1(p) = cs1 and c2(p) = cs2.

Then in any BNE, a job from class i with waiting cost c par-
ticipates in the spot market if and only if c < ci(p), it par-
ticipates in PAYG if ci(p) ≤ c ≤ µvi− p. If µvi− p < ci(p)
then no class i job participates in PAYG4.

Our analysis so far characterizes a truthful BNE for the
system where PAYG and the spot market are operating si-
multaneously. This equilibrium can be implemented by as-
signing higher priority to the jobs with the higher waiting
cost and collecting the payment according to (4). In the first
price auction, the bid is same as the payment; a byproduct of
our analysis is that the payment rule (4) and cutoffs given by
Theorem 2 characterize the bidding strategy if the first price
auction is used for the spot market.

The expected revenue to the cloud service provider per
unit time is the sum of expected revenue from the spot mar-
ket and PAYG. From (5), (9), and Theorem 2, given a PAYG
price p, the expected revenue per unit time for the hybrid
system, denoted by Rh(p), is:

Rh(p) ,
∑
i=1,2

λi

(
p

µ
[Fi(µvi − p)− Fi(ci(p))]+

+

∫ ci(p)

0

m(t; c(p))fi(t)dt

)
, (11)

and the optimum revenue is maxpR
h(p).

The next theorem provides theoretical evidence suggest-
ing that PAYG in isolation can provide a higher expected
revenue to the cloud service provider than operating PAYG
and the spot market simultaneously.

THEOREM 3. Suppose the optimal price ph of the hybrid
system is such that ph ≤ µv2 − c, i.e., case (i) of Theo-
rem 2 holds. Then the optimum expected revenue per unit
time from PAYG in isolation is higher than the optimum ex-
pected revenue per unit time from the hybrid system; i.e.,
maxpR

h(p) = Rh(ph) < maxpR
payg(p).

PROOF. It suffices to show that Rpayg(ph) > Rh(ph).

If ph ≤ µv2 − c, then c1(ph) = c2(p
h) ≤ c, implying

µvi − ph ≥ c ≥ ci(p). Then from (5) and (11),

Rpayg(ph)−Rh(ph) =
∑
i=1,2

λi

(
ph

µ
Fi(ci(p

h))

−
∫ ci(p

h)

0

m(t; c(ph))fi(t)dt

)
. (12)

4It is assumed that jobs break ties between the spot market and
PAYG in favor of PAYG.

At c = ci(p
h), a job is indifferent between PAYG and the

spot market. Hence,

ci(p
h)w(ci(p

h); c(ph))−m(ci(p
h); c(ph)) =

ci(p
h) + ph

µ
.

Since c1(ph) = c2(p
h), w(ci(ph); c(ph)) = 1/µ. Hence,

m(ci(p
h); c(ph)) = ph/µ. From Lemma 6, m(t; c(ph)) is

increasing in t for t ∈ [0, ci(p)]. This and (12) imply:

Rpayg(ph)−Rhybrid(ph) >∑
i=1,2

λi

(
ph

µ
Fi(ci(p

h))−
∫ ci(p)

0

ph

µ
fi(t)dt

)
= 0. (13)

This completes the proof.

4 Simulations
The revenue ranking result of Theorem 3 is for the case when
the optimal price ph of the hybrid system is such that ph ≤
µv2 − c. However, we conjecture that the revenue ranking
result holds in general and present simulation evidence.

We model the spot market as k parallel M/M/1 queues.
Jobs bid for preemptive priorities using the first price auc-
tion. An arriving job is randomly and uniformly sent to one
of the k queues where it is served according to its priority
order, determined by its bid, in that queue. We extend the
results from [11] to compute the waiting time function:

w(c; c1, c2) =
1

µ
(
1−

∑
i=1,2

ρi [Fi(ci)− Fi(c)]+
)2 , (14)

where ρi , λi/(kµ). Recall that the payment rule (4) and
cutoffs given by Theorem 2 characterize the bidding strategy
for the first price auction for the spot market. The proof of
Theorem 2 provides a recipe for numerically computing the
cutoff vector c(p) as a function of PAYG price p.

Simulations are carried out by randomly generating the
values of vi’s, λi’s, and k. The service rate µ is kept constant
at one and Fi is uniform in the interval [0, µvi]. We gener-
ate over a hundred random configurations (vi’s, λi’s, and k).
For each realized configuration, we observe that the opti-
mal revenue from PAYG in isolation is always higher than
the optimal revenue from the hybrid system where PAYG
and the spot market are operating simultaneously, even for
the case where the optimal price ph of the hybrid system is
greater than µv2−c. An example plot where ph > µv2−c is
shown in Figure 1. Observe that if PAYG price is low, most
of the jobs in the hybrid system use PAYG and pay a small
price, leading to a small expected revenue. As PAYG price
increases, jobs move to the spot market, reaching a point
where all jobs use the spot market. At p = µv2, the entire
class 2 jobs balk from PAYG leading to a kink in the plot
for PAYG in isolation. Simulations with exponentially dis-
tributed waiting costs are also consistent the revenue ranking
that we conjecture.
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Figure 1: Expected revenue from PAYG in isolation, the spot market in
isolation, and the hybrid system as a function of PAYG price.

5 Discussion and Future Work
Our analysis in Section 3 characterizes a truthful BNE for
the system where PAYG and the spot market are operating
simultaneously. Our theoretical results show that in many
cases the revenue raised by a PAYG system in isolation with
a well chosen price p dominates that of this hybrid system.
Simulations suggest that this may be true in general. How-
ever, this analysis was based on a number of assumptions.
We conclude by discussing how relaxing them affects our
results, which points to several areas for future work.

• We assumed that the PAYG system has infinite capac-
ity, which we believe is reasonable given that capacity
is endogenous and PAYG jobs are more profitable than
spot market jobs. However, it would also be good to un-
derstand what happens in situations where this is not the
case. In cases with excess demand for PAYG instances,
jobs with high value and high delay cost can compete for
the spot instances, possibly paying a price higher than
the PAYG price. However, this can populate the spot in-
stances and increase the waiting time, possibly causing
some low value jobs to balk all together.
• We assumed that the arrival process is independent of

job type. This may not be true if both arrival pattern and
value depend on underlying characteristics of the job. In
this case, it is possible that there are equilibria where
jobs of different classes but the same cost have different
outcomes. However, as both classes have the same set of
optimal outcomes, this requires an amount of coordina-
tion on tiebreaking that may be unreasonable in practice.
• Because jobs can get interrupted in the spot market, pro-

grammers may need to write more robust code and in-
terruption may be unsuitable for tasks that require high
availability. This can be modeled as an upfront cost of
participating in the spot market. Are there reasonable
scenarios where this makes a hybrid system optimal?
• We assumed that m(0) = 0. Choosing a larger value

amounts to setting a reserve price. The equilibrium struc-
ture would be similar, although the cutoffs would change
and there are additional cases. Our theoretical revenue
analysis still holds despite a reserve price.

• We assumed that the higher priority is given to the jobs
with higher waiting cost and use this to derive properties
of the waiting time function w. This excludes systems
where, in equilibrium, a variety of types pay the same ex-
pected price and receive the same expected waiting time
(PAYG could be viewed as an example of this). While
this would require a more general equilibrium character-
ization, our theoretical revenue analysis still applies.

• Our analysis is for a monopolistic provider. The effect
of competitive pressures needs to be investigated.
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