
Coalitional Voting Manipulation: A Game-Theoretic Perspective

Yoram Bachrach
Microsoft Research

Cambridge, UK

Edith Elkind
School of Physical and
Mathematical Sciences

Nanyang Technological University
Singapore

Piotr Faliszewski
AGH University

of Science and Technology
Kraków, Poland

Abstract

Computational social choice literature has success-
fully studied the complexity of manipulation in var-
ious voting systems. However, the existing mod-
els of coalitional manipulation view the manipulat-
ing coalition as an exogenous input, ignoring the
question of the coalition formation process. While
such analysis is useful as a first approximation, a
richer framework is required to model voting ma-
nipulation in the real world more accurately, and, in
particular, to explain how a manipulating coalition
arises and chooses its action. In this paper, we ap-
ply tools from cooperative game theory to develop
a model that considers the coalition formation pro-
cess and determines which coalitions are likely to
form and what actions they are likely to take. We
explore the computational complexity of several
standard coalitional game theory solution concepts
in our setting, and study the relationship between
our model and the classic coalitional manipulation
problem as well as the now-standard bribery model.

1 Introduction
Voting is a standard method of preference aggregation in
multi-agent environments. It allows the agents (voters) to
make joint decisions by selecting the most suitable alterna-
tive from a given set. However, in settings where voters
are selfish and aim to optimize their individual utility, vot-
ing suffers from a serious problem: essentially all voting
rules are manipulable, i.e., a voter may benefit from misrepre-
senting her preferences over the alternatives [Gibbard, 1973;
Satterthwaite, 1975]. Consequently, classifying voting rules
according to their resistance to manipulation has been an ac-
tive research topic in the last decade (see [Faliszewski and
Procaccia, 2010] for an overview)

While the possibility of manipulation by a single voter
presents a grave concern from a theoretical perspective, in
real-life elections this issue does not usually play a signifi-
cant role: typically, the outcome of a popular vote is not close
enough to be influenced by a single voter. Indeed, a more
significant problem is that of coalitional manipulation, where
a group of voters coordinates their actions in order to affect

the election outcome. The problem of coalitional manipula-
tion was first explicitly introduced by [Conitzer et al., 2007],
where the authors also initiated its analysis from the compu-
tational perspective. Since then, a number of results on the
computational complexity of coalitional manipulation for a
variety of voting rules have been obtained (see the Related
Work section below).

However, the model of coalitional manipulation proposed
in [Conitzer et al., 2007] abstracts away some of the issues
that are crucial for realistic modeling of coalitional manip-
ulation scenarios. Specifically, this model assumes that the
set of all voters is partitioned into two groups: the honest
voters and the manipulators. The honest voters have prefer-
ences over the candidates, while the manipulators are single-
minded: they simply want to get a specific candidate elected.
Thus, the set of manipulators is an exogenous variable, given
as a part of the input. This definition does not explain how the
manipulating coalition forms or how it decides which candi-
date to promote. Arguably, this provides an overly simplistic
view of reality: it is natural to expect that the would-be ma-
nipulators start out by having preferences over the entire set
of candidates, but then decide to cooperate with each other,
as they are not satisfied with the outcome of truthful voting.

Against this background, our goal in this paper is to pro-
vide an endogenous model of coalitional manipulation that is
based on coalitional game theory. We assume that all agents
have preferences over the set of candidates; we make the stan-
dard assumption that these preferences are common knowl-
edge. In addition, a subset of the agents are strategic and
would consider forming a manipulating coalition if they can
profit by doing so. Given this setup, each voting rule induces
a coalitional game, where the players are the strategic agents
(we will refer to them as colluders), and the set of outcomes
that are feasible for a coalition is determined by the set of
candidates that the players in that coalition can turn into elec-
tion winners. We consider a transferable utility model, where
the colluders have comparable utilities (given in a “common
currency”) for each candidate and that they can commit to
making payments to each other.

We study several natural computational problems regard-
ing the coalitional game induced by the voting domain, such
as finding the optimal action a coalition can take, identifying
coalitions whose optimal action is to support a certain can-
didate, calculating a player’s power in the game and testing



whether an outcome is in the core. While exploring these is-
sues, we also examine the relation between our model and the
classic coalitional manipulation model and the voting bribery
model [Faliszewski et al., 2009]. Our contributions fall into
two main categories. First, we introduce a cooperative game-
theoretic model of voting manipulation, and study the com-
plexity of natural solution concepts in this model. Second,
and on a more fundamental level, even though our work is
motivated by a critique of the standard framework of voting
manipulation, we show that many classic computational so-
cial choice results have natural interpretations in our game-
theoretic model. For example, results on the complexity
of coalitional manipulation—as defined in [Conitzer et al.,
2007]—translate into results on the complexity of computing
coalition values, and results on the complexity of bribery—as
defined in [Faliszewski et al., 2009]—translate into, e.g., re-
sults on the complexity of testing whether a given coalition is
stable. We believe that our model is a useful formalism that
captures many aspects of coalition formation in voting.
Related work The complexity of coalitional manipulation,
as defined in [Conitzer et al., 2007], received a lot of attention
in the recent literature (see, e.g., [Hemaspaandra and Hemas-
paandra, 2007; Faliszewski et al., 2010; Xia et al., 2009;
Walsh, 2009; Xia et al., 2010]; a more exhaustive list is pro-
vided in [Faliszewski and Procaccia, 2010]). However, none
of these papers discusses the issue of manipulating coalition
formation. A recently proposed model of safe strategic vot-
ing [Slinko and White, 2008] addresses this issue using an
approach that is different from ours: specifically, under this
model a single voter announces a manipulative vote, and may
be followed by other voters with the same preferences (see
also [Hazon and Elkind, 2010] for the algorithmic analysis
and extensions of the model of [Slinko and White, 2008]).
While the approach of [Slinko and White, 2008] is more suit-
able when it is difficult for the manipulators to coordinate, our
model is more appropriate when coordination is not an issue;
thus, the two approaches complement each other. There is
also a number of very recent papers that analyze strategic be-
havior in voting using the tools of non-cooperative game the-
ory (see [Desmedt and Elkind, 2010; Xia and Conitzer, 2010;
Meir et al., 2010] and the references therein).
Organization of the paper The paper is organized as fol-
lows. Section 2 provides background on (computational) so-
cial choice and coalitional game theory. In Section 3 we for-
mally introduce our model. Section 4 focuses on the problem
of computing coalitional values. In Section 5 we study the
complexity of testing if there is a manipulating coalition sup-
porting a given candidate. Section 6 considers players’ power
in the game, and, in particular, computing the Shapley val-
ues. Section 7 investigates coalitional stability. We conclude
in Section 8. We omit most proof due to space constraints.

2 Preliminaries
We write N = {0, 1, 2, . . . }, and given a vector x ∈ Rn and
a set S ⊆ {1, . . . , n}, we set x(S) =

∑
i∈S xi.

Voting. An election E = (C, V,P) is given by a set C =
{c1, . . . , cm} of candidates, a set V = {1, . . . , n} of voters,

and a preference profile P = (P1, . . . , Pn), where each Pi,
i ∈ V , is a linear order over C. The order Pi represents the
preferences of the i-th voter; for readability, we sometimes
write �i instead of Pi. We denote the set of all linear or-
ders over C by L(C); thus, for any election E = (C, V,P)
with |V | = n we have P ∈ L(C)n. For any U ⊆ V ,
we write PU = (Pi)i∈U and P−U = (Pi)i 6∈U ; we have
P = (PU ,P−U ).

A voting rule R is a mapping that given an election E =
(C, V,P) outputs a candidate c = R(E), which is called
the winner of E. When the sets C and V are clear from the
context, we will sometimes omit them from the notation and
write R(P) instead of R(E). Note that we require that each
election has a unique winner. Many classic voting rules are,
in fact, voting correspondences, i.e., they may output multi-
ple winners. We assume that whenever this is the case, the
resulting tie is broken lexicographically. We restrict our at-
tention to voting rules with a poly-time winner determination
algorithm.

Manipulation and Bribery. Two well-studied forms of dis-
honest behavior in elections are manipulation, i.e., cheating
by voters, and bribery, i.e., cheating by an external party that
wants to influence the outcome of the election. Below, we
define the variants of these problems that are relevant to our
work, namely, coalitional manipulation and priced bribery.

Definition 2.1 ([Conitzer et al., 2007]). For a voting ruleR,
an instance I = (E,S, c) of R-COALITIONAL MANIPULA-
TION problem is given by an election E = (C, V,P), a set of
manipulators S, S ∩ V = ∅, and the manipulators’ preferred
candidate c ∈ C. It is a “yes”-instance if there is a vector
PS = (Pi)i∈S ∈ (L(C))|S| such that R(P−S ,PS) = c;
otherwise, it is a “no”-instance.

Observe that in the traditional definition of coalitional ma-
nipulation the manipulators, unlike honest voters, do not have
preferences over the candidates: they simply want to get a
particular candidate elected. This definition is convenient be-
cause it eliminates the problem of deciding which candidates
the manipulators should support.

Definition 2.2 ([Faliszewski et al., 2009]). For a voting rule
R, an instance I = (E,b, B, c) of R-$BRIBERY problem is
given by an election E = (C, V,P) with |V | = n, a vector
of prices b = (b1, . . . , bn) ∈ Nn, a budget B ∈ N, and the
briber’s preferred candidate c ∈ C. It is a “yes”-instance if
there is a vectorP ′ = (P ′1, . . . , P

′
n) overC and a set of voters

S such that Pi = P ′i for i 6∈ S, R(P ′) = c, and b(S) ≤ B;
otherwise, it is a “no”-instance.

We will also consider settings with weighted voters, where
each voter i ∈ V has a non-negative integer weight wi; we
denote the weight vector by w = (w1, . . . , wn). To apply a
voting rule R to a weighted election, we replace each voter
i with wi voters whose preferences are identical to those of
i. The definitions of coalitional manipulation and $bribery
can be adapted to this setting in a straightforward manner; in
particular, when a voter of weight wi is bribed or participates
in a manipulation, we require that allwi “copies” of this voter
vote in the same way.



Computational Complexity. We assume familiarity with ba-
sic notions of computational complexity, such as polynomial-
time algorithms and classes NP and coNP. A somewhat less
standard notion is that of strong NP-hardness: a problem is
said to be strongly NP-hard if it remains NP-hard even if all
numbers in the input (such as, e.g., bribery prices) are given
in unary. A related notion is that of a pseudopolynomial al-
gorithm: an algorithm is said to be pseudopolynomial if its
running time is polynomial in the numeric value of the input.

Coalitional Games. Coalitional games model settings where
players form coalitions and derive benefits from collabora-
tion. We assume transferable utility model, that is, the mem-
bers of a coalition can freely distribute the benefits they obtain
by working together. It is convenient to think of these bene-
fits as monetary. Formally, a coalitional game G = (N, v) is
given by a set of players N = {1, . . . , |N |} and a character-
istic function v : 2N → R+ ∪ {0}, which for each coalition
of players S ⊆ N outputs the total amount of money that the
players in S can earn by working together. It is standard to
normalize the characteristic function by requiring v(∅) = 0.
A game is called monotone if v(S) ≤ v(T ) for any S, T ⊆ N
such that S ⊆ T . A player i ∈ N is called a dummy if
v(S) = v(S \ {i}) for all S ⊆ N .

An outcome of a game G is a vector x = (x1, . . . , x|N |)
that satisfies xi ≥ 0 for all i ∈ N and x(N) = v(N). An
outcome x is said to be stable if x(S) ≥ v(S) for any S ⊆ N ;
the set of all stable outcomes of a game is called the core.

Another useful solution concept is that of Shapley value,
which measures players’ average marginal contributions in
the game. Given a set of playersN , by Π(N) we mean the set
of all permutations of N and for a permutation π ∈ Π(N) we
write Nπ

i to mean the set of players preceding i with respect
to permutation π (not including i). Shapley value of player i
in game G = (N, v) is defined as

φi(G) =
1
|N |!

∑
π∈Π(N)

(v(Nπ
i ∪ {i})− v(Nπ

i )) .

3 Voting Manipulation Games
We consider the scenario where in a given election E =
(C, V,P) a subset of votersM ⊆ V have an established com-
munication channel and can agree to act jointly if this can be
beneficial for all of them. The two most important issues here
are (1) whether the players in a group have a course of action
that is more beneficial for them than truthful voting, and (2)
whether the players can agree on such a course of action so
that no subgroup of players can benefit by deviating from it.

To formally model this scenario, we need to define what
actions are considered feasible for a coalition and how the
players outside of the coalition are expected to behave.

Definition 3.1. Given an election E = (C, V,P), a set M ⊆
V and a voting rule R, we say that a candidate c ∈ C is
feasible for a coalition S ⊆M if there is a preference profile
P ′S such that R(P ′S ,P−S) = c. We denote the set of all
candidates that are feasible for S by F (S). When the voters
in S vote according to a profile P ′S andR(P ′S ,P−S) = c, we
say that S manipulates in favor of c, or supports c.

Note that the winner of E is feasible for any coalition
S ⊆ M , i.e., we have R(E) ∈ F (S). Also, we emphasize
that when the voters in S are trying to decide which candi-
dates are feasible for them, they assume that all other vot-
ers (including the remaining voters in M \ S) vote truthfully.
We believe that this assumption is appropriate for the follow-
ing reasons. First, the issue that we are most interested in
in this paper is the process of forming a manipulating coali-
tion. We view this problem from the perspective of a voter
that wants to initiate a manipulation. His primary concern
is whether he can find partners who are willing to engage in
a mutually beneficial collaboration with him. Once he has
found such a group of like-minded voters, it is plausible that
other potential manipulators—who were not invited to join
the coalition—will not notice that a manipulating coalition
has been formed, or will decide not to react, e.g., because, un-
less they coordinate among themselves, the consequences of
such a reaction are uncertain. One could, of course, posit that
the remaining potential manipulators will respond by form-
ing one or more manipulating coalitions among themselves,
and try to counteract the actions of the original manipulator.
However, to study the resulting model, one needs to resort to
non-cooperative game theory, and non-cooperative game the-
ory models of voting appear to be hard to analyze in all but
a handful of settings (see, e.g., [Desmedt and Elkind, 2010;
Xia and Conitzer, 2010; Meir et al., 2010]). An adversar-
ial model, where the players in a coalition assume the worst
about the actions of other players, suffers from some difficul-
ties of its own. Thus, we decided to employ the current model
because it gives a good approximation of the issues we want
to focus on in this paper.

We consider the case where colluders, i.e., members of the
set M in Definition 3.1, have cardinal utilities for all candi-
dates. and can make side payments to each other. Formally,
any voter i ∈ M has a utility function ui : C → R+ ∪ {0},
which satisfies ui(c) ≥ ui(c′) if and only if c �i c′. This
definition can be extended to coalitions by setting uS(c) =∑
i∈S ui(c) for any S ⊆ M and any c ∈ C. Note that we

allow agents to assign the same utility to two different can-
didates. Indeed, in many voting scenarios a voter may be
indifferent between some of the candidates. While the voting
rule usually requires voters to provide total orders, there is no
need to impose such requirements on utility functions.

Under these assumptions, a coalition S ⊆ M can benefit
from manipulating in favor of a candidate c ∈ C if and only
if uS(c) > uS(R(E)). Indeed, if this holds, the voters in S
who prefer c toR(E) can compensate the other voters in S by
making side payments to them. Thus, a manipulating coali-
tion should aim to elect a feasible candidate that maximizes
its total utility. Formally, for any S ⊆M we set

opt(S) = {c ∈ F (S) | uS(c) ≥ uS(c′) for all c′ ∈ F (S)}.

Since we haveR(E) ∈ F (S) for any S ⊆M , it follows that
opt(S) 6= ∅ for any S ⊆M . In what follows, we assume that
if |opt(S)| > 1, then the manipulators in S agree on a unique
alternative in S using some commonly known tie-breaking
rule; therefore, abusing notation, we will treat opt(S) as an
element of C (rather than as an element of 2C).

We are now ready to define the (transferable utility) coali-



tional game that can be associated with this setting.

Definition 3.2 (Voting Manipulation Game). Given an elec-
tion E = (C, V,P), a set M ⊆ V , a vector u = (ui)i∈M
of utility functions and a voting rule R, a voting manipu-
lation game R-GE,M,u is a coalitional game with a set of
players M and a characteristic function v given by v(S) =
uS(opt(S))− uS(R(E)) for any S ⊆M .

For weighted voters, the description of the game needs to
be augmented with a weight vector w = (w1, . . . , w|V |); we
denote the resulting game byR-GE,M,u,w.

Informally, the value of a coalition S is the maximum joint
improvement over the status quo that the member of S can
achieve, assuming other voters vote truthfully. We do not nor-
malize the utility functions. Indeed, some voters may be in-
different to the election outcome, whereas others have strong
preferences over outcomes. For computational reasons, we
rescale utilities so that they are nonnegative integers.

4 Computing Coalition Values
As argued above, we always have R(E) ∈ F (S), so v(S) ≥
0 for any S ⊆ M . However, a voting manipulation game
is not necessarily monotone. For example, it may be that
opt(S) = opt(S ∪ {i}) = c for some i ∈ M \ S, but
R(E) �i c. That is, the new voter i does not share the coali-
tion’s goal but is too insignificant to affect the action chosen
by the coalition. This does not mean that i is unwilling to
take part in the manipulation: the monetary transfer he gets
from other manipulators induces him to participate. However,
the remaining players in S may be unwilling to accept him:
they can manipulate in favor of c even if i does not join, and
would have to make transfers to i to keep him happy. Thus,
the grand coalition M might not have a higher value than its
proper subsets. Thus, we wish to identify coalitions with the
highest value. A more basic question is whether we can com-
pute the value of a given coalition. The complexity of these
problems is related to the complexity of $bribery and coali-
tional manipulation for the underlying voting rule.

Theorem 4.1. Let R be a voting rule. There exists a poly-
time algorithm for computing the characteristic function of
the voting manipulation game R-GE,M,u if and only if R-
COALITIONAL MANIPULATION is poly-time solvable.

Proof sketch. For the “if” direction, given a coalition S, we
check, for each c ∈ C, if S can make c the winner, and choose
the best feasible candidate. For the “only if” direction, we set
ui(c) = 1, ui(x) = 0 for x ∈ C \ {c} for all i ∈M , where c
is the manipulator’s preferred candidate.

Theorem 4.2. Let R be a voting rule. If R-$BRIBERY is
poly-time solvable, then there exists a poly-time algorithm
that given a voting manipulation game R-GE,M,u computes
a coalition S such that v(S) ≥ v(T ) for any T ⊆M .

Proof sketch. Given a voting manipulation game R-GE,M,u

with E = (C, V,P), for each c ∈ C we construct an instance
Ic = (E,bc, Bc, c) of R-$BRIBERY as follows. We set w =
R(E), U = max{ui(a) | i ∈ M,a ∈ C}. For each i ∈ V ,
we set bci = (n + 1)U . Further, we set Mc = {i ∈ M |

ui(c) > ui(w)} and for each i ∈ Mc we set bci = 0. Finally,
for each i ∈ Qc = M \Mc we set bci = ui(w) − ui(c), and
Bc =

∑
i∈Mc

(ui(c)− ui(w)).
If Ic is a “no”-instance of R-$BRIBERY, we discard this

value of c. Otherwise, we use binary search to identify the
smallest value B̂c such that Îc = (E,bc, B̂c, c) is still a
“yes”-instance of R-$BRIBERY. Finally, we pick the can-
didate c that corresponds to the maximum value of uMc

(c)−
uMc

(w) − B̂c, over all non-discarded candidates, and let S
be the coalition that consists of all voters in Mc together with
all voters that receive non-zero bribes in Îc. Observe that we
have v(S) ≥ uMc

(c)− uMc
(w)− B̂c.

Clearly, our algorithm runs in polynomial time. To see that
S is a coalition with the maximum value of the characteris-
tic function, observe that our bribery instances can be inter-
preted as follows: the colluders that benefit from getting c
elected pool their profits from making c the winner and use
them to bribe other colluders; the cheapest successful bribery
corresponds to a coalition that minimizes the disutility of the
colluders who prefer w to c, and therefore maximizes the to-
tal utility, among all coalitions that manipulate in favor of c.
We omit the formal proof due to space constraints.

5 Manipulating in Favor of a Given
Candidate

From a candidate’s perspective, a natural question is whether
there exists a coalition that is willing to manipulate in her fa-
vor. One might think that the answer to this question is given
by the proof of Theorem 4.2: indeed, in this proof we deter-
mine, for each candidate c, if there is a coalition that can profit
from manipulating in favor of c. However, this does not nec-
essarily answer the question above: it may happen that any
coalition that can manipulate in favor of c would in fact pre-
fer to manipulate in favor of some other candidate a. Indeed,
it turns out that finding a coalition S such that opt(S) = c for
a given candidate c is hard even for Plurality, and even if the
number of candidates is bounded by a small constant.
Theorem 5.1. Given a voting manipulation game Plurality-
GE,M,u with E = (C, V,P) and a candidate c ∈ C, it is
NP-complete to decide if there exists a set S ⊆ M such that
opt(S) = c. The hardness result holds even if |C| = 5.

Theorem 5.1’s proof proceeds by a reduction from PARTI-
TION, and uses the fact that the players’ utilities are given in
binary. If the number of candidates is non-constant, finding
a coalition that manipulates in favor of a given candidate is
hard even if all utilities are given in unary.
Theorem 5.2. Given a voting manipulation game Plurality-
GE,M,u withE = (C, V,P) and a candidate c ∈ C, deciding
whether there exists a set S ⊆ M such that opt(S) = c is
strongly NP-complete.

Under Plurality—as well as under many other rules—if
both the number of candidates is bounded by a constant and
the utilities are given in unary then finding a coalition that
is willing to manipulate in favor of a particular candidate (or,
determining if one exists) is easy. We postpone a formal state-
ment of this fact till the next section, as it is closely related to
the results presented there.



6 Computing Players’ Power
We now explore the role of individual players in voting ma-
nipulation games. We first consider the complexity of deter-
mining whether a player is a dummy. This problem is hard
even for Plurality if the number of candidates is constant, or
if utilities are given in unary (but not both).

Theorem 6.1. Given a voting manipulation game Plurality-
GE,M,u with E = (C, V,P) and a player j ∈ M , it is
coNP-complete to decide whether j is a dummy in Plurality-
GE,M,u. The hardness result holds even if |C| = 5.

Theorem 6.2. Given a voting manipulation game Plurality-
GE,M,u with E = (C, V,P) and a utility vector (ui)i∈M ,
and a player j ∈ M , it is strongly coNP-complete to decide
whether j is a dummy in Plurality-GE,M,u.

However, for a constant number of candidates we can
check if a player is a dummy in pseudopolynomial time. We
can also extend this result to the problem of computing a
player’s Shapley value (since our game is not monotone, a
player may have Shapley value of 0 without being a dummy).

Theorem 6.3. Given a voting manipulation gameR-GE,M,u

with E = (C, V,P) and a player i ∈ M , we can test if i is a
dummy and compute i’s Shapley value in pseudopolynomial
time as long as |C| is bounded by a constant.

This algorithm can be adapted to check if there exists a
coalition that supports a given candidate.

Corollary 6.4. Given a voting manipulation game R-
GE,M,u with E = (C, V,P) and a candidate c ∈ C, we
can test if there exists a coalition S such that opt(S) = c and
if so, to compute this coalition in pseudopolynomial time as
long as |C| is bounded by a constant.

We remark that if a player is a dummy in a voting manip-
ulation game, it does not mean that he does not influence the
outcome of the election. Indeed, by adding a player to a coali-
tion we can change the identity of the candidate promoted by
this coalition, without changing its total payoff.

Example 6.5. Suppose that our voting rule is Plurality com-
bined with the lexicographic tie-breaking rule, C = {a, b, c},
the honest voters grant 1 point to a, 2 points to b, and 2 points
to c, M = {1, 2}. Suppose that u1(a) = 3, u1(b) = 2,
u1(c) = 0 and u2(c) = 2, u2(a) = 1, u2(b) = 0, and
hence a �1 b �1 c, c �2 a �2 b. Under truthful vot-
ing, c wins. On her own, player 1 cannot change the elec-
tion outcome to a, but she can change it to b, so we have
v({1}) = u1(b)− u1(c) = 2. On the other hand, 1 and 2 to-
gether can change the outcome to a. However, since 2 prefers
c to a, he would have to be compensated. Indeed, we have
uM (a) = 4, uM (b) = 2, uM (c) = 2, so opt({1, 2}) = a and
v({1, 2}) = 2 = v({1}). Also, it is clear that v({2}) = 0,
since 2 does not want to change the election outcome. Thus,
player 2 is a dummy in our voting manipulation game, yet
when he joins a coalition, the coalition changes its behavior.

Conversely, a player can change the value of a coalition
without changing the candidate that this coalition supports.

Example 6.6. Consider again Plurality with lexicographic
tie-breaking and C = {a, b, c}. Suppose there are 10 honest

voters who vote for a and 8 honest voters who vote for c, as
well as four manipulators {1, 2, 3, 4}who strictly prefer b to c
to a. Set S = {1, 2, 3}. We have opt(S) = c, opt(S∪{4}) =
c, and hence v(S ∪ {4}) = v(S) + u4(c) − u4(a) > v(S),
i.e., 4 is not a dummy. However, 4 does not have to change
his vote when he joins the manipulating coalition, and neither
do the voters in S. That is, 4 simply free-rides on S.

These two examples motivate the following definition.
Definition 6.7. We say that a player i is powerless in a voting
manipulation game R-GE,M,u if for any S ⊆ M \ {i} we
have opt(S) = opt(S ∪ {i}).

Intuitively, a player is powerless if whenever he joins a
coalition neither himself nor the players already in the coali-
tion can benefit from changing their vote. The discussion
above illustrates that a player can be a dummy without being
powerless (Example 6.5) and vice versa (Example 6.6). How-
ever, checking whether a player is powerless has the same
complexity as checking whether it is a dummy.
Corollary 6.8. Given a voting manipulation game Plurality-
GE,M,u with E = (C, V,P), it is coNP-complete to decide
if a player is powerless. This holds even if |C| = 5 or if all
utilities are given in unary. However, this problem is pseu-
dopolynomial time-solvable if |C| is bounded by a constant.

7 Coalitional Stability
From game-theoretic perspective, it is important to know
whether a given coalition of manipulators can be sustained,
i.e., whether the core of the voting manipulation game is non-
empty. This problem is easy whenever $bribery is easy.
Theorem 7.1. If R-$BRIBERY is in P, then there is a poly-
time algorithm that given a game R-GE,M,u with E =
(C, V,P) and a vector x decides whether x is in the core
ofR-GE,M,u.

Moreover, when R-$BRIBERY is in P, we can check if the
core ofR-GE,M,u is non-empty by formulating this problem
as a linear program and using the algorithm from Theorem 7.1
as a separation oracle (see, e.g., [Elkind et al., 2009] for an
exposition of this technique). It is not clear if the converse
of Theorem 7.1 also holds. However, we now present a con-
struction that reduces a wide class of R-$BRIBERY instances
to testing nonmembership of an imputation x in the core of
anR-GE,M,u voting game. Whenever the bribery problem is
NP-hard, our construction may be used to prove NP-hardness
of testing core nonmembership.

We start with an R-$BRIBERY instance I = (E,b, B, c),
where E = (C, V,P) and where we assume the following:
(a) At least one voter has bribery cost 0.
(b) There are at least two candidates and w = R(E) 6= c.
(c) The sum of the bribery prices is greater than B.

We form a voting manipulation game R-GE,M,u, where
M = V (we rename voters so that M = {1, . . . , n + 1} and
so that the bribery price of voter n + 1 is 0). We set u and
the imputation x as follows. For each voter i ∈M \ {n+ 1}
we set ui(w) = bi, xi = 0, and ui(d) = 0 for each candidate
d ∈ C \ {w}. Also, we set un+1(c) = B + 1, xn+1 = 0 and



un+1(d) = 0 for each d ∈ C \{c}. We see that under truthful
voting uM (w) = b(M) and that v(M) = 0 (recall that by
our assumption, b(M) > B). We also see that x is unstable
if and only if there is a coalition S such that c ∈ F (S) and
uS ≤ B. Such a coalition exists if and only if our input R-
$BRIBERY instance is a “yes”-instance.

The above construction is particularly useful if R-
$BRIBERY is NP-hard, and the proof of its NP-hardness can
easily be adapted to output instances that satisfy our require-
ments. In particular, our requirements are satisfied if the
NP-hardness ofR-$BRIBERY is derived by combining Theo-
rem 4.6 of [Faliszewski et al., 2009] (a general reduction from
the coalitional manipulation problem to the $bribery prob-
lem) and the fact that R-COALITIONAL MANIPULATION is
NP-hard (even if there are at least two truthful voters). Thus,
we have the following corollary.
Corollary 7.2. Suppose thatR-COALITIONAL MANIPULA-
TION is NP-hard even if there are at least two nonmanipula-
tors. Then given a gameR-GE,M,u and an imputation x it is
NP-hard to decide if x is not in the core ofR-GE,M,u.

Our construction is more general and can be used, e.g., if
either we do not have a complexity result for coalitional ma-
nipulation but we do have one for $bribery, or when coali-
tional manipulation is easy yet $bribery is NP-hard. As an
example, we show that testing core nonmembership for an
imputation is NP-hard for weighted Plurality.
Theorem 7.3. Given a game Plurality-GE,Mu,w with E =
(C, V,P,w) and a vector x, it is NP-hard to check whether
x is not in the core of Plurality-GE,Mu,w.

8 Conclusions
We proposed a model for collusion in voting settings that
takes into account the process of forming the manipulative
coalition. Our model is based on cooperative game theory
and predicts which coalitions and agreements are likely to
occur. Our research shows that computational problems pre-
viously studied in the context of voting manipulation, COALI-
TIONAL MANIPULATION and $BRIBERY, which are non-
game-theoretic in nature, constitute important building blocks
in cooperative game-theoretic study of election manipulation.

Several questions remain open for future research. First, a
key assumption of our model is that agents have comparable
utilities (given in a common currency) and that they can make
monetary transfers.What happens when monetary transfers
are not allowed? Second, we focused on the core and the
Shapley value, but other interesting solutions concepts, such
as the ε-core or the nucleolus, remain to be studied. Finally,
it would be interesting to examine the relation between our
model and noncooperative models for voting domains, using
solution concepts such as strong Nash equilibrium.
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