The Least-Core of Threshold Network Flow
Games

Yoram Bachrach

Abstract

Network flow games model domains where a commodity can flow
through a network controlled by selfish agents. Threshold Network Flow
Games (TNFGs) are a form of such games where an agent coalition wins if
it manages to send a flow exceeding a certain threshold between a source
and a target vertex. Cooperative game theory predicts the agents’ actions
in such settings with solutions such as the core, the set of stable distri-
butions of a coalition’s gains among its members. However, some games
have empty cores, so every distribution is inherently unstable. When the
core is empty, one must use a more relaxed notion of stability, such as
the least-core. We examine several problems regarding the least-core in
general and restricted TNFGs.

1 Introduction

Game theory analyzes interactions between selfish agents, with implications
ranging from auctions to electronic commerce. A key aspect of agent interac-
tion is cooperation. Cooperation between selfish agents requires careful planning
as a stable coalition can only be formed if the resulting gains are distributed in
appropriately. Game theory suggests possible distributions of the gains, formal-
ized in solution concepts such as the core [11], and least-core [14].

We consider Threshold Network Flow Games (TNFGs), which model situ-
ations where a commodity (goods, information or traffic) can flow through a
network where selfish agents control parts of the network. In TNFGs, agents
form coalitions to guarantee a certain bandwidth (or a required flow) from a
source to a target node. In our model, a principal offers a single unit of reward
if a coalition can send a certain minimal flow between the source and the target,
but is not willing to offer a higher reward for achieving a higher flow.

Our Contribution: We examine stable gain distributions in TNFGs. When
the TNFG’s core is empty , a less demanding solution, the e-core, must be ap-
plied to find a “less unstable” distribution. We show that computing the e-core
of TNFGs is a hard, but provide polynomial algorithms for unit capacity net-
works and bounded layer-graphs with bounded integer capacities.

1.1 Preliminaries

A transferable utility coalitional game is composed of a set of n agents, I =
{1,2,...,n}, and a characteristic function mapping any subset (coalition) of
the agents to a rational value v : 2/ — @, indicating the total utility these
agents achieve together. We denote the set of all the agents except agent i
as I_; = I\ {i}. A game is monotone if for all coalitions C' C C' we have
v(C") < v(C). In a simple game, v only gets values of 0 or 1 (v : 2! — {0,1}).
We say a coalition C' C I wins if v(C) = 1, and say it loses if v(C) = 0. In
simple monotone games we say ¢ is a veto agent if she is present in all winning
coalitions, so when v(C) = 1 we have ¢ € C. It is easy to see that in such
games, 7 is a veto agent iff v(I) =1 but v(/_;) = 0. The characteristic function
only defines the gains a coalition achieves, but does not say how they are to
be distributed among the coalition’s agents. An imputation (p1,...,ps) is a
division of the gains of the grand coalition I among the agents, where p; € Q,
such that 7" | p; = v(I). We call p; the payoff of agent i, and denote the payoff
of a coalition C' as p(C) = >, .~ pi. Cooperative Game theory allows choosing
the appropriate imputation for the game.

A basic requirement for a good imputation is individual rationality, stating
that for all agents ¢ € C, we have p; > v({i})—otherwise, some agent is incen-
tivized to work alone. Similarly, we say a coalition B blocks the payoff vector
(p1,--.,pn) if p(B) < v(B), since B’s members can split from the original coali-
tion, derive the gains of v(B) in the game, give each member i € B its previous
gains p,—and still some utility remains, so each member can get more utility.
If a blocked payoff vector is chosen, the coalition is unstable. A prominent so-
lution focusing on stability is the core [11]. The core of a game is the set of all
imputations (pi,...,p,) that are not blocked by any coalition, so that for any
coalition C, we have: p(C) > v(C). The core can be empty, so every imputation
is blocked by some coalition. In this case we must relax the core’s requirements
to get a solution. One model for this assumes that coalitions that only have a
small incentive to drop-off from the grand coalition would not do so. This solu-
tion, which slightly core’s inequalities is the e-core [14]. The e-core is the set of
all imputations (p1, ..., pn) such that for any coalition C' C I, p(C) > v(C) —e.

Given an imputation p, the excess of C is the difference between C’s value
and payoff: e¢(C) = v(C) —p(C). Under an e-core imputation, the excess of any
coalition is at most €. If € is large enough, the e-core is non-empty. A natural
question is finding the smallest € such that the e-core is non-empty, known as
the least-core. Given a game G we consider {e|the e-core of G is not empty}. It
is easy to see that this set is compact, and has a minimal element ¢,,;,. The
least-core of the game G is the €,,;,-core of G.

2 The Least-Core in TNFGs

Network domains give rise to natural game theoretic problems. A flow network
consists of a directed graph G = (V, E) with capacities on the edges ¢ : E — Q+,

a distinguished source vertex s € V and a sink vertex ¢t € V. A flow through
the network is a function f : E — Q+ which obeys the capacity constraints and
conserves the flow at each vertex (except for the source and sink), meaning that
the total flow entering a vertex must equal the total flow leaving that vertex.
The value of a flow f (denoted |f|) is the net amount flowing out of the source
(and into the sink). A maximum flow is a valid flow f* whose magnitude |f*|
is maximal of all possible flows, so for any valid flow f’ we have |f*| > |f’|.

A threshold network flow domain consists of a network flow graph G =
(V, E), with capacities on the edges ¢ : F — Q, a source vertex s, a target
vertex t, and a set I of agents, where agent ¢ controls the edge e; € E, and flow
threshold k. A coalition C' C I, controls the edges Ec = {e;i € C}. Given a
coalition C' we denote by G = (V, E¢) the induced graph where the only edges
are the edges that belong to the agents in C'. We denote by f¢ the maximum
flow between s and t in G¢. In a threshold network flow game (TNFG), a
coalition C wins if it can achieve a k-flow between s and ¢ and loses otherwise.
The characteristic function of the game, v, is:

1 if fo > k, so E¢ allows a flow of k£ from s to t;
v(C) =

0 otherwise;

TNFGs are simple games, since v can only get a value of 0 or 1. A Cardinal
Network Flow Game (CNFG) is defined in a similar manner, except the value
of a coalition is the maximum flow it can send from s to ¢. In CNFGs the
characteristic function is vonra(C) = fo.

We consider stable payoff distributions in TNFGs. Given a reward for al-
lowing a certain flow between the source and the target, the coalition must
decide how to distribute this reward to the agents who own the links. We wish
to distribute the gains in a way that minimizes the incentives of any subset of
agents to split off from the main coalition and form their own network. The
appropriate game theoretic solution for this is the core. TNFGs are simple and
monotone games, where the core is closely related to veto players. A folklore
theorem (see [15]) states that in simple monotone games, if there are no veto
agents then the core is empty, and if there are veto agents then the core is the
set of imputations that distribute all the gains solely to the veto agents. Thus,
computing the core in such games simply requires returning a list of veto players
in that game, and checking if the core is non-empty simply requires testing if
the game has any veto players. Unfortunately, TNFGs rarely have veto agents.
If there are two disjoint edge subsets that allow a k-flow, the core is empty ®.

Computational problems in TNFGS: we now define several important
problems regarding TNFGs: IMP-C, IMP-EC, IMP-LC, CNE, ECNE, LCV,
ME. The core, e-core and the least-core are all solution concepts that may con-
tain more than one possible imputation (or even, an infinite number of imputa-
tions). One key question given a TNFG is testing whether a certain imputation
p = (p1,...,pn) is stable (i.e. whether it is in the core, e-core or the least-core).

LConsider a unit capacity graph, and a target flow of one unit. In this case, if there are
two or more edge disjoint paths from the source to the target, then the core is empty.

We denote these problems for the core, € — core and least-core as IMP-C, IMP-
EC and IMP-LC. The core and e-core may be empty, so another problem is
testing for their emptiness, which we denote as CNE (for core non-emptiness)
and ECNE (e-core non-emptiness). Another problem is LCV (least-core value),
computing the €,,;, value of the least-core (i.e the minimal € such that the e-core
is non-empty). A solution for IMP-C and CNE in TNFGs was given in [5], using
a simple polynomial method for finding veto agents. Since the core in TNFGs
may be empty, we propose using the relaxed stability notions of the e-core and
the least-core. We show the above problems are closely related to the problem
ME (maximal excees), where we are given a TNFG with characteristic function
v and an imputation p = (p1,...,p,) and are asked to compute the maximal
excess of any coalition: maxccyv(C) — p(C). Both LCV and ME require out-
putting a rational value, but we consider the decision version of these problems,
where in the input we are given a rational number ¢ and are asked whether the
solution to the LCV or ME problem is greater than the specified value.

We consider the relation between TNFGs and another class of games, Weighted
Voting Games (WVGs). We show that the problem of LCV is NP-hard in TN-
FGs, using a similar hardness result [8] for WVGs. WVGs are simple games
with n agents I = {1,2,...,n}, where each agent i has a weight w;. Given a
coalition €' C I, we denote w(C) = > ;.o w;. The game has a threshold &,
and a coalition C' wins if w(C') > k, and loses otherwise. We use the fact that
TNFGs can easily express any WVG to obtain several negative results.

Theorem 1. LCV in TNFGs is NP-hard

Proof. Elkind et al. show [8] that LCV is NP-hard in WVGs. We reduce an
instance of LCV in a WVG to an instance of LCV in a TNFG. Given the
WVG instance with weights wy,...,w,, we construct a TNFG. The source s
is connected to the target ¢t by n edges, so that edge e; = (s,t) has capacity
¢; equal to the weight w; in the WVG. Any coalition C achieves a flow of
> (ileiery G = Yijec Wi = w(C). The TNFG has the same threshold as the
WVG threshold. Under these thresholds, coalition C' wins in the TNFG iff it
wins in the original WVG. The original and reduced instances define the same
game (have an identical characteristic function) and have the same least-core
value, so LCV in a TNFG is NP-hard as well. O

We now provide a negative result for the e-core, and then provide positive
results for restricted TNFGs. We begin with the IMP-EC problem where we
are given a TNFG, an imputation p = (p1,...,p,) and a value ¢, and are asked
whether p is in the € — core of the game.

Theorem 2. IMP-EC and ME are coNP-complete

Proof. IMP-EC is in coNP, as one can compute the excess of a given coalition
using any polynomial max-flow algorithm and test if it is higher than e or not.
The results in [8] show that testing if an imputation is in the e-core in WVGs is
NP-Hard. Using construction of Theorem 1, we express any WVG as a TNFG.
An imputation in the constructed TNFG is in the e-core iff it is in the e-core of

the original WVG. Finally, reducing IMP-EC to ME is trivial: by definition an
imputation is in the e-core if the maximal excess is at most €. O

ME is coNP-complete in general graphs, so we examine restricted cases.
One important restricted case is unit-capacity graphs, where all the edges have
a capacity of 1. Several results for cardinal network flow games (CNFGs) in
unit-capacity graphs are given in [13]. We provide positive results for threshold
network flow games (TNFGs). One result regarding CNFGs on unit-capacity
graphs is that they always have non-empty cores. However, is not the case in
TNFGs, as shown in the following example.

Figure 1: Example of a unit capacity TNFG with empty core.

Consider distributing a total reward of 1 among the edges in Figure 1.
Under any such imputation, either the path A = (s,a),(a,t) or the path
B = (s,b),(b,t) has a payoff of at most 0.5. Thus, the excess of at least one
coalition C'4 or C'p must be at least 0.5, and for any € > 0.5, the e-core is empty,
so the core is also empty. Note that the 0.5-core is not empty, as the imputation
giving each edge 0.25 has a excess of exactly 0.5 for the coalitions C4 and Cp,
and any other winning coalition has a lower excess.

We show that ME is solvable in polynomial time for unit-capacity graphs,
and use this to compute the least-core for unit-capacity TNFGs. We first ex-
amine the relation between ME and the min-cost-flow problem [17], defined as
follows. We are given a network flow graph, a target flow value d and a cost func-
tion a : E — Q, mapping each edge to the cost of sending a unit of flow through
that edge. Given a flow f(e) through edge e, the cost of the flow through the
edge is f(e) - a(e). We define the cost of a flow f as a(f) = > .cp f(e) - a(e).
We are asked to find a d-flow through the network, of minimal cost.

The Min-Cost Flow uses a pricing scheme where the cost of an edge is pro-
portional to the flow sent through the edge. We call this pricing scheme linear
pricing, as the cost of an edge increases linearly in the flow. A different pricing
scheme is requiring a payment for using an edge, so the cost of an edge is a(e) if
f(e) > 0, and the cost is 0 if f(e) = 0. We call this pricing scheme the All-Or-
Nothing scheme (AON pricing), as it either takes the full cost of an edge (for
edges e with flow f(e) > 0), or takes nothing at all (for edges e for which the
flow is f(e) = 0). The problem of Min-Cost Flow under AON-pricing is defined
as follows. We are given a network flow graph, a target flow value d and a cost
function a : E — Q, mapping each edge to the cost of sending any non-zero

flow through that edge. Given a flow f(e) through edge e, the AON-cost of the
flow through e is n(e) = a(e) if f(e) > 0 and n(e) = 0if f(e) = 0. We define the
AON-cost of a flow f as a9V (f) = .z n(e). We are asked to find a d-flow
through the network, f, of minimal AON-cost (i.e. to minimize a9V (f)).

Lemma 1. MFE and AON-Min-Cost-Flow are equivalent problems when we set
the AON-Min-Cost-Flow edge costs to be the edge payoff in the ME imputation:
a(e) = pe for any edge e.

Proof. Consider a k-flow f sending flow only through edges Cy. The payoff
p(Cy) under the imputation is exactly the AON-cost of f, a“N(f). ME finds
the minimal p(Cy) where f is a k-flow, and AON-Min-Cost finds the minimal
aON (f) where f is a k-flow, so their solution is the same. O

Theorem 2 shows that ME is coNP-complete, so due to Lemma 1, AON-Min-
Cost-Flow is also coNP-complete. However, the similar Min-Cost Flow problem
(under linear pricing) is solvable in polynomial time [17]. We show that for
unit-capacity graphs, AON-Min-Cost is solvable in polynomial time. We use a
lemma from [17] used in the analysis of the Min-Cost Flow problem, regarding
augmenting min-cost flows 2. A min-cost flow is a flow f, such that for any
other flow f’ such that |f| = |f’| we have a(f’) > a(f), i.e. it is impossible to
achieve a flow of equal magnitude with a lower cost (under linear pricing).

Lemma 2. If f is a min-cost flow, then any flow obtained from f by augmenting
along a minimum-cost path is also a min-cost flow.

We show that in unit-capacity graphs, one of the optimal k-flows is an all-
or-nothing flow. An All-Or-Nothing Flow (AON Flow) is a flow f such that any
edge is used up to its maximal capacity, or completely unused, so for any edge
e we either have f(e) = c(e) or we have f(e) = 0.

Theorem 3. For any unit-capacity graph G and an achievable integer flow
threshold k, there is a min-cost k-flow f (under linear pricing) that is an AON-
flow, i.e. either fully uses an edge, sending the mazximal possible flow of 1 unit,
or does not use the edge at all, sending a flow of 0 through it.

Proof. One possible way of finding a min-cost flow is starting with an empty
flow, and repeating the process of augmenting the flow through a min-cost aug-
menting path until the target flow threshold of & is reached [17]. Due to Lemma
2, after each augmentation we end up with a min-cost flow. The initial residual
graph has capacities of 1 on all the edges. Thus, the first augmenting path has a
capacity of one unit on all the edges along it. The first augmentation fully uses
the edges along a certain path. Thus, in the residual graph after the augmen-
tation, all the edges have either a capacity of 1, or -1 for the reverse direction.
This, in turn, means that the next augmenting path would also have a capacity

2For a complete introduction to the min-cost network flow problem we refer the reader to
[17]. A min-cost augmenting path is simply a minimal cost s-t path in the residual graph. We
use the lemma to prove certain properties of min-cost flow solutions.

of 1 all along it. Thus the next augmentation either fully uses some edges, or
completely stops using some previously unused edges. Thus, each augmentation
is done through a path of capacity one, and after each augmentation some edges
are changed from being unused to completely used, or from being fully used to
completely unused. Since the flow’s magnitude increases by one unit after each
step, the process terminates after k such steps, with a flow such that each edge
is either fully used or completely unused. O

Lemma 3. In unit-capacity graphs, under the same cost function a(e), the
AON-cost of a flow f, a*ON(F), is bounded from below by the linear cost of a

flow, a(f), i.e a(f) < a®ON(f)

Proof. The graph is a unit-capacity graph, so for any edge f(e) < 1. We
note that the cost of each edge only increases when we use AON-pricing. For
used edges the full cost is incurred even if the edge is only partially used, and
for unused edges both pricing schemes charge nothing: a(f) = > . cpale) -

fle) =2 ceripe)soale) fle) + X eempeymoale) - f(€) < Xcepipe)=oale) -1+
ZeeE|f(e)=0 a(e) - f(e) = aON(f) O

Lemma 4. In unit-capacity graphs, under the same cost function a(e), the cost
of an AON-flow is the same under linear-pricing and AON-pricing. In other
words, if f is a AON-flow, then a(f) = a9V (f).

Proof. Similarly to the analysis in Lemma 3 we decompose the flow to used
and unused edges, and note that the cost for each edge is the same under the
two pricing models. Under both models, an unused edge incurs no cost, and
a fully used edge incurs a cost of a(e), since for a AON-flow if f(e) > 0 then
f(e) = c(e) = 1. Thus the following holds: a(f) =) ..z ale) - f(e)

= D cen|fe)>0a(€) f(€) + X cpiper—oale) - f(&) = Xcepmpe)=oale) - 1+
D oeenf(ey=o ale) -0 =aON(f) [

Theorem 4. In unit-capacity graphs, under a certain cost function a(e), a
min-cost k-flow (under linear pricing) is also a AON-min-cost k-flow.

Proof. Due to Theorem 3, a certain AON-flow f* is a min-cost k-flow, under
linear pricing. Thus, for any other k-flow f’ we have a(f’) > a(f*). Due to
Lemma 4, since f* is a AON-flow, then a(f*) = a*°N(f*). Due to Lemma 3,
for any k-flow f we have a9V (f) > a(f). Thus for any k-flow f, aON(f) >
a(f) > a(f*) = a9V (f*), so f* is a AON-min-cost k-flow. O

Corollary 1. MFE is in P for unit-capacity TNFGs.

Proof. Lemma 1 shows that ME and AON-Min-Cost-Flow are equivalent. Due
to Theorem 4 solving AON-Min-Cost simply requires solving Min-Cost Flow
(under the linear pricing model). Polynomial algorithms for solving Min-Cost-
Flow that rely on the all-or-nothing augmenting paths used in Theorem 3 are
given in [17]. Note that the proof in Theorem 3 is constructive, and allows find-
ing such a Min-Cost Flow which is also an AON-flow for unit capacity graphs,
thus solving the ME problem for such graphs. O

Theorem 5. ECNE is in P for unit-capacity TNFGs.

Proof. We consider an exponential-size program linear program (LP) for com-
puting an imputation in the e-core. Consider all 2" possible coalitions over n
players, C1,...,Con. The e-core’s definition is a LP over the variables p1, ..., py,
with a constraint for each coalition:

Table 1 Exponential LP for the e-core

Feasible (p1,...,ps) s.t.:
VO :v(C1) = Y ccpi <€ (Coalition constraints)
Yo pi =v(I) (Imputation constraint)

A violated constraint is a coalition Cj, such that v(Cj) — Y ,cc, pi > €
TNFGs are simple games, so any losing coalition C; cannot yield a violated
constraint, as v(C;) = 0. Thus the violated constrain is due to a winning
coalition such that p(C;) < v(C;j) — e = 1 —e. The algorithm of Corollary 1
returns a maximal excess coalition C, where e(C) = v(C) =, p; is maximal.
If ¢(C) > €, we have a violating constraint: v(C) — .o, pi > € If e(C) <,
then all the constrains hold: e(C) is the maximal excess, so for any C; # C we
have d(C;) = v(C;) — Ziecj pi < e(C) < e. Thus this algorithm can serve as
a separation oracle for the above LP, and we can solve it in polynomial time.
Thus, given € we can, in polynomial time, compute an imputation in the e-core
if one exists, or reply that no such imputation exists. O

Corollary 2. LCV is in P for unit-capacity TNFGs.

Proof. Due to Theorem 5, for a given € we can test if the e-core is non-empty.
We can perform a binary search on the minimal value of € such that the e-core
is not empty. Since the maximal value of a coalition in TNFGs is 1, we search
for € between 0 and 1. This finds the minimal € such that the e-core is not
empty, up to any given degree of accuracy. We can then use the algorithm from
Theorem 5 to return a least-core imputation. Alternatively, we can consider
program in Theorem 5’s proof as a program over the variables p1, ..., p,, € and
set the target function to be min e (rather than being a feasibility program). O

We propose a polynomial algorithm for computing the least-core of a TNFG
with non-unit capacities under restrictions on the graph’s structure. A graph
G = (V,E) is a layer graph with w layers if we can partition the vertices into
layers Lo, L1, Lo, ..., L, (where each L; is a subset of vertices L; C V and the
L,’s are disjoint so if ¢ # j then L; N L; = @) such that edges only occur between
vertices of consecutive layers. In other words, we require that if (u,v) € E then
we have u € L; and v € L;y; for some 0 < i < w. A layer graph is h-bounded
if each layer L; has at most h vertices (so |L;| < h for any 0 < ¢ < w). For
flow networks we denote the source s as the first layer so Ly = {s} and the
target ¢ as the last layer L,, = {t} (in layer graphs vertices other than s or t
in the source/target layers do not influence the maximum flow). The bound h

only applies to the number of vertices in each layer so the number of layers is
unbounded. A flow network has c-bounded integer capacities if all edge capacities
are integers bounded from above by ¢, so for any e € E, ¢(e) € {0,1,2,...,c}.

In Lemma 1 we noted that solving ME is equivalent to AON-Min-Cost-Flow,
where for any edge e we have a(e) = p. (edge costs are the payoffs in the ME
imputation). We show that AON-Min-Cost-Flow can be solved in polynomial
time in bounded layer-graphs with bounded integer capacities.

Theorem 6. AON-Min-Cost-Flow is in P for bounded layer-graphs with bounded
nteger capacities.

Proof. Consider a layer-graph with w + 1 layers Lg, Lq,...,L,. Denote the
source s as Lo = {s}, the target as L,, = {t}, the bound on the number of
vertices in each layer as h and the maximal capacity as c¢. Denote by p(e)
the AON-price of an edge e in the AON-Min-Cost-Flow input. The maximal
achievable flow is at most b = h - ¢ as there are at most h edges going out of s
and each has a capacity at most c¢. The border between any two layers forms an
s — t-cut in the graph, so the incoming flow into any vertex is at most b = h - c,
the bound on the flow leaving 5. Given a layer L; C V of I; vertices v}, v5, ..., v}
we define an incoming flow configuration for that layer, representing the amount
of flow entering each vertex in that layer. An incoming flow configuration for
layer L; is a sequence (f1, fa,..., fi,) of integers where 0 < I; < b. A layer has
at most h vertices and each has a possible incoming integer flow of 0 < f; < b,
so there are at most (b + 1)* = (h - ¢+ 1)" possible flow configurations for any
layer L;. Denote the bound on the possible flow configurations for any layer as
qg=(b+1)" = (h-c+1)". Since h and c are constants, g is constant.

We provide an algorithm to compute the minimal cost to achieve a d-flow
to the target. It operates by iterating through the layers and computing the
minimal cost to achieve a specific flow configuration. We say an edge e = (u,v)
occurs before layer L; if w € L, and v € L, where a < ¢ and b < i (since no
edges are allowed within a layer, this also means that a <i—1). We say a flow
configuration f = (f1, fo,..., f1,) for L; is achievable with price p if there is a
subset of edges E’ that all occur before layer L; with total cost }__ . p(e) <p
which allows simultaneously sending a flow of f; to vi, fo to v5 and so on
through a flow of f;, to v; using only the edges of E’.

Consider a flow configuration f* = (f{, f3,..., f|.) for L;, a flow configuration

At = (f l’ﬁ) for layer L;11 and an edge subset E’ that occur
between L; and L;;1. Suppose that p is the minimal price such that f; is
achievable for layer L; with price p. Given f; and E’ we may achieve various
flow configurations in L;11: if each vertex in L; has an incoming flow as specified
in f;, we may route this flow through E’ to the vertices in L;, 1 in several ways.
It is possible to check if fi*! is achievable from f* through the edges E’ in
polynomial time. To do this, we create a small flow network with a source s
connected to each of the vertices in L, through edge with capacities as specified
in f; (i.e. sis connected to v; € L; through an edge of capacity f}), maintain
the edges E’ connecting L; and L; 1 with their current capacities and connect

each vertex in L;y; to t with capacities as specified in firt (i.e. v; € Ligq is
connected to ¢t through an edge of capacity f;“). If this created network allows
a flow of Zé;i f;“ then given flow configuration f* for L; we can achieve
the flow configuration fi*! for layer L;,; by using only the edges E’ between
L; and L;+q. This check can be done in polynomial time using a max-flow
algorithm. The total cost of the edge subset E' is p(E') = > s e, so if f* is
achievable with cost p then fi*! is achievable with cost of at most p + p(E’) by
simply adding the edges E’ and routing the flow through them appropriately.
We denote by achievable—flow(f;f, E, li“) the algorithm that checks whether
given a flow configuration f; for layer ¢ and an edge subset E’ (occurring between
L; and L;;1) we can achieve a flow configuration f,i“ for layer L;41.

For each layer L;, our algorithm maintains a bound p; for the minimal cost
to achieve any of the possible ¢ flow configurations (for j € {1,...,q}). We
denote the set of all flow configurations for layer i as Q°. Layer L., contains the
single target vertex so L,, = {t} and a valid flow configurations for L,, is simply
the possible flow values to the target vertex. We denote the flow configuration
where a flow of d enters the target vertex as fy so we denote the cost of achieving
a flow of k is p%,. Layer Lo contains the single source vertex so Ly = {s} so
similarly a valid flow configuration for Lq is simply the possible flow values
to the target vertex. We denote the cost of a flow configuration where s has
an “incoming” flow of x as p(}z. Since s is the source it may achieve an any
“incoming” flow at a zero cost. When iterating through layer L; our algorithm
relaxes the bounds by examining any possible edge subset E’ occurring between
L; and L;;;. We denote by q} the 7’th flow configuration for the i'th layer in
the graph. There are at most ¢ flow configurations for each layer, so 1 < j < q.

1. For i =1 to w:
(a) For each ¢} € Q": p} = o0
_ _ C 0
(b) Forz=0tob=h-c: p; =0
2. For i =1 to w:
(a) For each ¢} € Q, each g™ € Q! and each E' C By
i. If achievable — flow(q;-, E gy pitt = min(p?j'l,p;» + p(E"))

3. return p“fd

An induction through the layers shows that the algorithm correctly computes
p; for any layer i and configuration j for layer 7. It returns p¥,, the minimal cost
for a d-flow to the t, i.e. the AON-Min-Cost-Flow solution. The update loop’s
runtime is w - |Q*| - |Q+!| - 2/Fx:l. For any i the configuration number |Q?| is
bounded by the constant g. Also, |Ey,| is the number of edges between L; and
Li,1, bounded by the constant h2. Thus the runtime is bounded by w - ¢ - oh’
or by g-w where g is a constant, so this is a polynomial algorithm. The runtime
is bounded by w-¢?- 2h* where q= (b+1)" = (h-c+1)" so it can be expressed
as O(f(h,c) - w) so this is a fized parameter tractable (FPT) algorithm?. O

3Fixed parameter tractability with parameter a (a-FPT) means the running time is f(a)-

10

The equivalence of ME and AON-Min-Cost-Flow obtains the following.

Corollary 3. ME is in P for TNFGs over bounded layer-graphs with bounded
integer capacities.

Theorem 7. ECNE and LCV are in P for TNFGs over bounded layer-graphs
with bounded integer capacities.

Proof. Similarly to Theorem 5, we use the ME algorithm of Corollary 3 as a
separation oracle for the e-core LP, so ECNE can be solved in polynomial time.
Similarly to Theorem 2, we perform a binary search on the minimal value of €
that makes the e-core non-empty, so LCV is solvable in polynomial time. O

3 Related Work and Conclusions

We examined computing the core,e-core and the least-core in TNFGs. The core
was introduced in [11], and the e-core and least-core relaxations for the case
where it is empty were presented in [14]. An early treatment of computational
aspects of such solutions was given in [7]. One restricted domain that has
received much attention is the weighted voting games (WVG) model of decision
making. Computing the least-core of WVGs was analyzed in [9].

We focused on solving TNFGs. The similar CNFG model was introduced
in [13], showing that unit capacity CNFGs have non-empty cores. Further
core related questions in CNFGs were studied in [10]. Other network task
games, such as network formation, connectivity and security were studied in [18,
12, 6, 3]. Despite the superficial similarity between CNFGs and TNFGs, they
have very different computational and game theoretic properties. TNFGs were
introduced in [4], which considered the Banzhaf index. An extended version of
that paper [5] also considered computing the core of TNFGs. Further work [16]
focused on solving TNFGs using the core-related Cost of Stability introduced
in [2, 1] for weighted voting games and general cooperative games.

We showed that, as opposed to CNFGs, in TNFGs the core can be non-
empty even if the graph has unit-capacities, and that for general graphs, even
finding the maximal excess of a coalition under an imputation (the ME problem)
is coNP-complete. We provided polynomial-time algorithms for computing the
e-core and least-core for unit-capacity graphs and bounded layer-graphs with
bounded integer capacities. Some questions remain open. First, one might
examine other game theoretic solutions in TNFGs. Also, it would be interesting
to examine other restrictions that allow tractably computing the least-core.

References

[1] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe,
and J. Rosenschein. The cost of stability in coalitional games. SAGT, 2009.

p(n) where f(a) may be any function (e.g. an exponential or even superexponential function),
and p(n) is a polynomial function in the input length n.

11

[2] Y. Bachrach, R. Meir, M. Zuckerman, J. Rothe, and J. Rosenschein. The
cost of stability in weighted voting games. In AAMAS, 2009.

[3] Y. Bachrach and E. Porat. Path disruption games. In AAMAS, 2010.

[4] Y. Bachrach and J. S. Rosenschein. Computing the Banzhaf power index
in network flow games. In AAMAS, 2007.

[5] Y. Bachrach and J. S. Rosenschein. Power in threshold network flow games.
Autonomous Agents and Multi-Agent Systems, 2009.

[6] Y. Bachrach, J. S. Rosenschein, and E. Porat. Power and stability in
connectivity games. In AAMAS, 2008.

[7] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solu-
tion concepts. Math. Oper. Res., 19(2):257-266, 1994.

[8] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. Compu-
tational complexity of weighted threshold games. In AAAI 2007.

[9] E. Elkind and D. Pasechnik. Computing the nucleolus of weighted voting
games. In SODA, 2009.

[10] Q. Fang, R. Fleischer, J. Li, and X. Sun. Algorithms for core stability,
core largeness, exactness, and extendability of flow games. Computing and
Combinatorics, pages 439-447, 2007.

[11] D. B. Gillies. Some theorems on n-person games. PhD thesis, 1953.

[12] S. Goyal and F. Vega-Redondo. Network formation and social coordination.
Games and Economic Behavior, 50(2):178-207, 2005.

[13] E. Kalai and E. Zemel. Generalized network problems yielding totally
balanced games. Operations Research, 30:998-1008, September 1982.

[14] M. Maschler, B. Peleg, and L. S. Shapley. Geometric properties of the
kernel, nucleolus, and related solution concepts. Math. Oper. Res., 1979.

[15] M. J. Osborne and A. Rubenstein. A Course in Game Theory. The MIT
Press, Cambridge, Massachusetts, 1994.

[16] E. Resnick, Y. Bachrach, R. Meir, and J. Rosenschein. The cost of stability
in network flow games. MFCS, 2009.

[17] R. E. Tarjan. Data Structures and Network Algorithms. Society for Indus-
trial and Applied Mathematics, 1983.

[18] A. van den Nouweland. Models of network formation in cooperative games.
Cambridge University Press, 2005.

12

