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Abstract

We introduce Transformation Games (TGs), a form of coalitional game
in which players are endowed with sets of initial resources, and have capa-
bilities allowing them to derive certain output resources, given certain input
resources. The aim of a TG is to generate a particular target resource; play-
ers achieve this by forming a coalition capable of performing a sequence
of transformations from a combined set of initial resources to the target
resource. TGs can model a number of natural settings, such as coopera-
tive proof systems, where a collection of agents having different expertise
work together to derive a proof for a target theorem, or supply chains, where
agents cooperate to create a target product from base resources. After pre-
senting the TG model, and discussing its interpretation, we consider possi-
ble restrictions on the transformation chain, resulting in different coalitional
games. Following the basic model, we consider the computational complex-
ity of several problems in TGs, such as testing whether a coalition wins,

∗This is an extended version of a conference paper with the same title [21], which was presented
at the 35th International Symposium on Mathematical Foundations of Computer Science (MFCS
2010), in Brno, Czech Republic. This new version contains additional results regarding computing
the Shapley value in Transformation Games as well as additional results on Transformation Games
with a bounded number of resources and transformations. We have also expanded our examination
of how the Transformation Game model can capture multiagent interactions in both supply chains
and proof systems, and included revised and extended proofs.
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checking if a player is a dummy or a veto player, computing the core of the
game, computing power indices, and checking the effects of possible restric-
tions on the coalition. Finally, we consider extensions to the model in which
transformations have associated costs.

1 Introduction
Many multiagent systems crucially rely on cooperation among agents. However,
in many such systems agents are also selfish, and act in their own interests. A
key tool in analysing interaction in such environments is game theory. Due to the
rising prominence of multiagent systems within the field of artificial intelligence,
many aspects of game theory have been studied in recent years, and game theoretic
techniques have been applied in domains such as electronic commerce, auctions,
voting, supply chains, and resource allocation [71]. Cooperation is key in many
such domains, and cooperative game theory provides a mathematical framework
that enables the analysis of agent behaviour in such domains.

Cooperative game theory considers questions such as which coalitions are
likely to form, and how the benefits of cooperation should be distributed between
coalition members. These notions are formalised as solution concepts such as the
core [46], the Shapley value [68], the Banzhaf index [22] and the nucleolus [67]
(see, e.g., [25] for a detailed discussion). An important question is the extent to
which these solutions can be effectively computed; thus, solutions from coopera-
tive game theory have also been studied by computer scientists [28, 36, 18].

We consider a new model of cooperative activity among self-interested play-
ers. In a Transformation Game (TG), players must cooperate to generate a cer-
tain target resource.1 In order to generate the resource, each player is endowed
with a certain set of initial resources, and in addition, each player is assumed to
be capable of transformations, allowing it to generate a certain resource, given
the availability of a certain input set of resources required for the transformation.
Coalitions may thus form transformation chains to generate various resources.
A coalition of players is successful if it manages to form a transformation chain
that eventually generates the target resource. Forming such chains is typically
complicated, as there are usually constraints on the structure of the chain. One

1We use the terms “product” and “resource” interchangeably. Both of these simply refer to
items in the set of all items. We usually refer to an item as a “product” if it is generated as a result
of some transformation, and as a “resource” if it is the input to a transformation. Of course, a
product of one transformation can be one of the resources used to derive a subsequent product.
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example of such a constraint is a time restriction, in the form of a deadline. Even
when there is no deadline, short chains are typically preferred, since we might ex-
pect that the more transformations a chain has, the higher the probability of some
transformation failing.

We consider a number of natural restrictions on transformation chains, and in-
vestigate the effect of these restrictions on solution concepts and the complexity of
computing them. Specifically, we study three types of domains: unrestricted do-
mains, where there is no restriction on the chain; makespan domains, where each
transformation requires a certain amount of time, and the coalition must generate
the target resource before a certain deadline; and limited transformation domains,
where the coalition must generate the target resource without performing more
than a certain number of transformations. We also consider two types of transfor-
mations: simple transformations, where a transformation models the production
of a single output resource from a single input resource, and complex transforma-
tions, where a transformation may require a set of input resources to generate an
output resource.

1.1 Motivating Examples
We consider two main motivations for our model of transformation game (TGs):
supply chains and cooperative proof systems.

1.1.1 Supply Chains

Consider a number of firms, each of which produces a different product from
some base resources. In many cases, the outputs produced by one firm are used
as input resources for another firm. For example, one firm may drill for crude
oil, another may produce refined oil from crude oil, another may package refined
oil in barrels for transportation, and yet another firm may transform refined oil
into petrol for cars sold to consumers. Thus, these companies form a chain that
generates an output product sold to consumers from various base resources. In
such cases, some of the firms may buy resources from several firms, or be capable
of generating more than one target product. Several key questions arise in such
economic domains. First, there may be several possible chains that generate the
ultimate product sold to consumers. Which of these chains are more likely to
be formed? Second, how would firms share the revenue obtained from selling
the product to consumers? Which contracts are likely to form among the firms?
Finally, which firm is most important in generating the output product? How can
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we quantify its importance and bargaining power with regard to other firms in the
market?

Our TG model enables the answering of such questions in simplified domains.
TGs model some important features of the domain, such as the inputs and outputs
of the firms, and constraints regarding the costs of transformations or deadlines.
However, TGs also omit some features of the domains, such as quantities of re-
sources and products, and consumption of resources during the transformations.
The simplicity of the TG framework makes it possible to compute some solutions
in polynomial time. Despite these positive results, we show that even such abstract
domains are combinatorially rich enough such that some interesting problems are
computationally hard. Thus, although TGs offer only a simplified model of sup-
ply chains, they can shed light on the behaviour of selfish agents in such domains.
TGs also complement other related work on planning within artificial intelligence,
which we discuss in Section 7.

1.1.2 Cooperative Proof Systems

TG can be viewed as a strategic, game-theoretic formulation of proof systems. In
a formal proof system, the goal is to derive some logical statement from some
logical premises by applying logical inference rules. When modelled as a TG,
premises and proof rules are distributed across a collection of agents, and proof
becomes a cooperative process, with different agents contributing their domain ex-
pertise (premises) and capabilities (proof rules). In such a setting, game theoretic
solution concepts such as the Banzhaf index provide a measure of the relevant
significance of agents (and hence premises and proof rules) in the proof process.
Viewed in this way, TGs provide a formal foundation for cooperative theorem
proving systems such as those described in [32, 41], as well as cooperative prob-
lem solving systems in general [53].

As a concrete example, consider a set of experts who may cooperate to prove
a complex mathematical theorem. Each expert knows facts and proofs for various
simpler theorems that are likely to assist in proving the complex theorem, but none
of the experts can prove the complex theorem on her own. Suppose a coalition of
such experts decides to work together, and each of the participants shares all her
knowledge. Assuming that the joint knowledge of the coalition suffices to prove
the complex theorem, how can they decide who contributed most to generating the
proof? In other words, in domains where no single expert can generate a proof,
but various teams of experts can do so, how can we quantify (in some sense)
the contribution of each expert? TGs can be used to quantify agent contributions
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through the use of game theoretic tools (though, of course, in this scenario other
unmodelled considerations might also apply).

2 Preliminaries
We briefly discuss the basic game theoretic concepts that are later used in the con-
text of TGs (see, e.g., [59, 62, 25] for more detailed introductions). A transferable
utility coalitional game is composed of a set I = {a1, . . . , an} of n players and a
characteristic function v : 2I → R that maps any subset (coalition) of the players
to a real number. The value v(C) is the total utility the players C ⊆ I can obtain
together. The coalition I of all the players is called the grand coalition. Often
such games are increasing, i.e., for all coalitions C ′ ⊆ C we have v(C ′) ≤ v(C).
In simple transferable utility coalitional games, v only gives values of 0 or 1 (i.e.,
v : 2I → {0, 1}), and in this case we say C ⊆ I wins if v(C) = 1 and loses other-
wise. We say player i is critical in a winning coalition C if the removal of i from
that coalition would make it a losing coalition: v(C) = 1 and v(C \ {i}) = 0.

The characteristic function defines the value a coalition can obtain, but does
not indicate how to distribute this value among the players within the coalition.
An imputation (p1, . . . , pn) is a division of the gains of the grand coalition among
all players, where pi ∈ R, such that

∑n
i=1 pi = v(I). We call pi the payoff of

player ai, and denote the payoff of a coalition C as p(C) =
∑

i∈{j|aj∈C} pi.
Cooperative game theory offers a number of solution concepts, defining im-

putations that are likely to occur. A minimal requirement of an imputation is
individual-rationality (IR): for every player ai ∈ C, we have pi ≥ v({ai}). Thus,
individual rationality says that an agent must receive at least as much payoff as
it could obtain by working alone. Extending IR to coalitions, we say a coalition
B blocks the imputation (p1, . . . , pn) if p(B) < v(B). If a blocked imputation is
chosen, the grand coalition is unstable, since the blocking coalition can do better
by working without the other players. The most studied solution concept relating
to stability is the core. The core of a game is the set of all imputations (p1, . . . , pn)
that are not blocked by any coalition, so for any coalitionC we have p(C) ≥ v(C).

In general, the core can contain multiple imputations, and can also be empty.
Another solution, which defines a unique imputation, is the Shapley value. The
Shapley value of a player depends on his marginal contribution over all possible
coalition permutations. We denote by π a permutation (ordering) of the players,
so π : {1, . . . , n} → {1, . . . , n} and π is reversible, and by Π the set of all
possible such permutations. Denote by Sπ(i) the predecessors of i in π, so Sπ(i) =
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{j | π(j) < π(i)}. The Shapley value is then given by the imputation sh(v) =
(sh1(v), . . . , shn(v)) where

shi(v) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]

An important application of the Shapley value is that of power indices, which
try to measure a player’s ability to change the outcome of a game, and are used
for example to measure political power. A game theoretic concept that is also
used to measure power is the Banzhaf power index, which depends on the number
of coalitions in which a player is critical, out of all the possible coalitions. The
Banzhaf power index is given by: β(v) = (β1(v), . . . , βn(v)) where:

βi(v) =
1

2n−1

∑
S⊆I|ai∈S

[v(S)− v(S \ {i})]

More generally, power indices (of which the Shapley value and Banzhaf index
are specific examples) are game theoretic tools that enable the finding of a fair
division of the utility achieved among the participants in the game. They can
be characterized as solutions that fulfill various fairness axioms, such as giving
equal shares to players that are equivalent in the game, giving a share of zero to
players that have no influence on the outcome of the game (for any sub-coalition),
etc. Alternatively, they can be viewed as game theoretic tools for measuring the
relative importance of agents in the game, based on their impact on the revenue
generated under various assumptions on the coalition formation process. For a
more complete discussion of these issues, see [59, 1].

3 Transformation Games
Transformation games (TGs) involve a set of players, I = {a1, . . . , an}, a set of
resources R = {r1, . . . , rk}, and a certain goal resource rg ∈ R. It is assumed
that each player ai is endowed with a set of resources Ri ⊆ R. Players have capa-
bilities that allow them to generate a target resource when they have certain input
resources. We model these capabilities via transformations. A transformation is a
pair 〈B, r〉 where B is a subset B ⊆ R, indicating the resources required for the
transformation, and r ∈ R is the resource generated by the transformation. We
denote the set of all such possible transformations (overR) byD. The capabilities
of each player ai are given by a setDi ⊆ D. We say a transformation d = 〈B, r〉 is
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simple if |B| = 1 (i.e., it generates a target resource given a single input resource),
and complex if |B| > 1. At this point, it is worth mentioning some caveats:

• First, our model of TGs has no notion of resource quantity. For example,
the TG framework cannot explicitly express constraints such as “4 nails and
5 pieces of wood are required to build a table.”

• Second, we do not model resource consumption: thus when a player gener-
ates a resource from base resources, the player ends up with both the base
resources and the generated resource. This may at first sight seem a strange
modelling choice, but it is very natural in many settings; for example, as we
will see in Section 3.3, it makes sense when modelling cooperative logical
proofs.

• Third, in the basic model, there is no cost associated with a transformation.
Thus, performing a transformation does not reduce the utility obtained by
the coalition, and players do not incur costs for performing a transformation.
(In Section 6, we drop this assumption, and present a model which allows
for such costs.)

Bringing these components together, a TG, Γ, is a structure

Γ = 〈I, R,R1, . . . , Rn, D1, . . . , Dn, rg〉

where:

• I is a set of players (|I| = n);

• R is a set of resources (|R| = k);

• for each ai ∈ I , Ri ⊆ R is the set of resources with which player ai is
initially endowed;

• for each ai ∈ I , Di ⊆ D is the set of transformations that player ai can
carry out; and

• rg ∈ R is a resource representing the goal of the game.

We sometimes consider transformations that require a certain amount of time.
In such settings, let ai be a player with capability d ∈ Di. We denote the time that
player ai needs in order to perform the transformation as ti(d) ∈ N.
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3.1 Transformations
Given a TG, we can define the set of resources a coalition C ⊆ I can derive. We
say a coalition C is endowed with a resource r, and denote this by has(C, r), if
there exists a player ai ∈ C such that r ∈ Ri. We denote the set of resources
a coalition is endowed with as RC = {r ∈ R | has(C, r)}. We now define an
infix relation ⇒ ⊆ 2I × R, with the intended interpretation that C ⇒ r means
that coalition C can produce resource r. We inductively define the relation⇒ as
follows. We have C ⇒ r iff either:

• has(C, r) (i.e., the coalition C is directly endowed with resource r); or else

• for some {rb1 , rb2 , . . . , rbm} ⊆ R we have

C ⇒ rb1 , C ⇒ rb2 , . . . , C ⇒ rbm

and for some player ai ∈ C we have

〈{rb1 , rb2 , . . . , rbm}, r〉 ∈ Di.

3.2 Unrestricted and Restricted TGs
We now show how a TG Γ = 〈I, R,R1, . . . , Rn, D1, . . . , Dn, rg〉 induces a trans-
ferable utility coalitional game (I, vΓ). We first discuss a simple unrestricted form
of TGs, then consider various restrictions and their impact on the game.

Definition 1. Unrestricted-TG: An unrestricted TG (UTG) Γ with the goal re-
source rg induces a simple transferable utility coalitional game where a coalition
C wins if it can derive rg and loses otherwise:

vΓ(C) =

{
1 if C ⇒ rg

0 otherwise

The game Γ will usually be clear from context, and so we usually drop refer-
ence to it and write v rather than vΓ.

We can modify this model slightly to take into account the total number of
transformations used to generate resources, and the time required to generate a
resource. We denote the fact that a coalition C can generate a resource r using
at most k transformations by C ⇒k r. Consider a sequence of resource subsets
S = 〈Q1, Q2, . . . Qk〉, such that each Qi contains one additional resource over the
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previous Qi−1 (so Qi = Qi−1 ∪ {r′i}). We say C allows the sequence S if for
any index i, C can generate r′i (the additional item for the next resource subset in
the sequence) given base resources in Qi−1 (so C is capable of a transformation
d = 〈A, r′i〉, where A ⊆ Qi−1). A sequence S = 〈Q1, Q2, . . . Qk〉 (with k subsets)
that C allows is called a k−1-transformation sequence for resource r by coalition
C if r ∈ Qk and the first subset in the sequence is the subset of resources the
coalition C is endowed with, Q1 = RC (since C requires k − 1 transformations
to obtain r this way). If there exists such a sequence, we denote this by C ⇒k r.
We denote the minimal number of transformations that C needs to derive r as
d(C, r) = min{b | C ⇒b r}, and if C cannot derive r we denote d(C, r) =∞.

Definition 2. DTG: A transformation restricted TG (DTG2) with the goal resource
rg and with the transformation bound k is the game where a coalition C wins if it
can derive rg using at most k transformations and loses otherwise:

v(C) =

{
1 if C ⇒ rg and d(C, rg) ≤ k

0 otherwise.

Similarly, we consider the makespan domain, where each transformation re-
quires a certain amount of time. The main difference between the makespan
domain and the DTG domain is that transformations may be done simultane-
ously.3 We denote the fact that a coalition C can generate a resource r in time
of at most t by C ⇒t r. We define the notion recursively. If a coalition is en-
dowed with a resource, it can generate this resource instantaneously (with time
limit of 0), i.e., if has(C, r) then C ⇒0 r. Now consider a coalition C such that
C ⇒t1 rb1 , C ⇒t2 rb2 , . . . , C ⇒tm rbm , and player ai ∈ C who is capable of
the transformation d = 〈{rb1 , rb2 , . . . , rbm}, r〉 (so d ∈ Di), requiring a transfor-
mation time t, so ti(d) = t. Given a coalition C, we denote the time in which
a coalition can perform a transformation as tC(d) = minai∈C ti(d), the minimal
time in which the transformation can be performed, across all players in the coali-
tion. We denote the time in which the coalition can obtain all of the base resources
rb1 , . . . , rbm as s = max ti. The final transformation (which generates r) requires
a time of t, so C ⇒s+t r.

Different ways of obtaining the target resource result in different time bounds,
and we consider the optimal way of obtaining the target resource (the minimal

2DTG stands for Delimitated Transformation Game.
3E.g., if it takes 5 hours to convert oil to gasoline and 4 hours to convert oil to plastic, if we

have oil we can obtain both gasoline and plastic in 5 hours, using parallel transformations.
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time a coalition C requires to derive r). We denote the minimal transformation
time that C needs to derive r by t(C, r), where this value is defined as follows:

t(C, r) =

{
min{b | C ⇒b r} if C ⇒ r
∞ otherwise.

Similarly to DTGs, we define makespan (time limited) TGs:

Definition 3. TTG: A time limited TG (TTG) with goal resource rg and time limit
t is the game where a coalition C wins if it can derive rg with time of at most t
and loses otherwise:

v(C) =

{
1 if C ⇒ rg and t(C, rg) ≤ t

0 otherwise.

It is easy to see that all the above versions of TGs are increasing (monotone),
so if C ′ ⊆ C then v(C ′) ≤ v(C): adding more players makes more possible
transformations available to the coalition, so increasing the coalition keeps all the
previously possible transformation paths and potentially allows for more efficient
derivations.

3.3 Solving Transformation Games to Analyse Supply Chains
and Proof Systems

Earlier, we introduced two key motivating scenarios for TGs: supply chains
and proof systems. We now discuss how the TG model can be used as a framework
through which to analyse these frameworks.

3.3.1 Supply Chains

TGs provide an abstract model of supply chains. They capture many important
features of supply chains, such as the structure of the chains, possible transfor-
mations, costs, and deadlines. On the other hand, they do not capture some ele-
ments of significance in real-world supply chains, such as required quantities of
resources or the elimination of base resources in certain transformations. The TG
model is thus sufficiently rich to describe some industries, such as some sectors
in the pharmaceutical and electronics industries, where an important factor in the
supply chain is the expertise in transforming base resources to products, rather
than quantities of resources. As we later demonstrate, while it is easy to devise
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a richer model that captures many more properties of supply chains, making the
model richer is likely to make it computationally intractable to answer many im-
portant questions regarding the supply chain.

We now discuss key questions that arise when analysing supply chains and
their relation to various game theoretic notions. In Section 1.1.1 we considered
a simple supply chain domain, and important questions regarding such chains.
First, there may be several possible chains that generate the ultimate product sold
to consumers. Which of these chains are more likely to be formed? Second, how
would the firms share the revenue obtained from selling the product to consumers?
Which contracts are likely to form among the firms? Finally, which firm is most
important in generating the output resource? How can we quantify its importance
and bargaining power with regard to other firms in the market?

Our first question regarding a supply chain domain was which chains are likely
to form. More formally, we may wish to determine which coalitions can generate
the target product with the minimal cost, time, or number of transformations. We
may also try and find the set of coalitions that can generate the target product with
a cost or time below a certain threshold (or determine if any such coalitions exist).
These problems deal with finding the optimal coalitions.

The remaining questions relate the agreements between firms across the sup-
ply chain regarding sharing the income from selling the target product. Consider a
supply chain where the target product could be sold for its market price, providing
the generating coalition a certain monetary reward. This value generated from the
target product could be distributed among the participants of the forming chain
in many ways. We might want to predict how this value would be distributed or
shared among the members of the chain. This could be formulated as solving the
game. Several game theoretic solution concepts can be used, depending on the
specific question asked regarding the distribution of payoffs.

Power indices, such as the Banzhaf index and the Shapley value, make it pos-
sible to identify the most critical parts of the chains—those that have the biggest
impact on the revenue generated. Alternatively, they could be considered as fair
ways of allocating the revenue among the participants of the chain, in the sense
that they distribute greater value to the more critical parts of the chain. The core
can be used to determine which coalitions (chains) are stable and are likely to be
long-lasting. Some agreements regarding sharing the utility are not likely to last
long, as a subset of the firms in the chain could form an alternative agreement that
is more profitable for them. By computing a game theoretic solution to the TG,
we can identify reasonable agreements among firms in the supply chain.

As discussed above, some key questions regarding supply chain domains can
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be formulated as computing optimal coalitions in TGs,4 or as solving the TG
using various game theoretic concepts, such as the core, the Banzhaf index, or the
Shapley value. Therefore, characterizing the computational complexity of solving
these problems is an important research question.

3.3.2 Proof Systems

Structurally, TGs are similar to logical proof systems (see, e.g., [44, p.48]). In a
proof system in formal logic, we have a set of formulae of some logic, known as
the premises, and a collection of inference rules, the role of which is to allow us to
derive new formulae from existing formulae. Formally, if L is the set of formulae
of the logic, then an inference rule ρ can be understood as a relation ρ ⊆ 2L × L.
Given a set of premises ∆ ⊆ L and a set of inference rules ρ1 . . . , ρk, a proof is a
finite sequence of formulae φ1, . . . , φl, such that for all i, 1 ≤ i ≤ l, either:

1. φi ∈ ∆ (i.e., φi is a premise); or else

2. there exists some subset ∆′ ⊆ {φ1, . . . , φi−1} and some ρj ∈ {ρ1, . . . , ρk}
such that (∆′, φi) ∈ ρj (i.e., φi can be derived from the formulae preceding
φi by some inference rule).

Typical notation is that ∆ `ρ1,...,ρk φmeans that φ can be derived from premises
∆ using rules ρ1, . . . , ρk. Such proofs can be modelled in our framework as fol-
lows. Resources R are logical formulae L, and the initial allocation of resources
R1, . . . , Rn equates to the premises; capabilities D1, . . . , Dn equate to inference
rules.

Notice that the assumption that resources are not “consumed” during the trans-
formation process is very natural when considered in this setting: in classical logic
proofs, premises and lemmas can be reused as often as required (although this is
not the case in “resource aware” logics such as linear logic [50]). Clearly the
relationship between TGs and proofs is very natural: such formal proof systems
can be directly modelled within our framework. There are two main differences,
however, as follows.

First, in proof systems inference rules are usually given a succinct specifica-
tion, as a “pattern” to be matched against premises. The classical proof rule modus

4The wording optimal coalition relates to several possible definitions: coalitions that generate
the target product while minimizing costs; coalitions minimizing the time to generate the product;
coalitions that can construct the target product using as few transformations as possible.
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ponens, for example, is usually specified as the following pattern:

φ; φ→ ψ

ψ

This pattern says that if we have derived φ, and we have derived that φ → ψ,
then we can derive ψ. Here, φ and ψ are meta-logical variables, which can be
instantiated with any formula.

Second, we take a strategic view: a proof modelled within our system is ob-
tained through a cooperative process. TGs can be understood as a formulation
both of cooperative theorem proving systems [32, 41], as well as cooperative prob-
lem solving systems in general [53]. In such systems, agents have different areas
of expertise (= resources) as well as different capabilities (= transformations).
Game theoretic concepts such as the Banzhaf index provide a measure of how
important different premises and inference rules are with respect to being able to
prove a theorem.

In Section 1.1.2 we considered a set I of experts that could work together to
prove a complex theorem φ. We can denote the set of base theorems that expert i
can prove as Ti. Although for any i the theorems in Ti are correct, only expert i
knows how to prove them, so she can easily reveal the theorems she knows, as this
information is not useful without the proof itself. The key question in the proof
system was identifying the most influential experts—those who contributed most
to the proof of the final theorem. When it is impossible to prove the target theorem
unless all the experts are present, one could argue that all of them are equally
important (each of them is critical for the grand coalition). Also, when any of the
experts can prove the target theorem on its own, they are all equally important.
However in many such systems there would be many subsets of experts that could
devise a proof for the target theorem, which requires a more methodical way of
assessing their importance. Formally, consider a possible proof P for the target
theorem, which only uses the base theorems S ⊆

⋃
i∈I Ti. Consider the expert

coalition C. If the base theorems that P uses, Sp, is one such that Sp ⊆
⋃
i∈C Ti

then C can prove φ. A coalition C can prove that target theorem if there exists a
proof P such that Sp, the base theorems that P uses, is such that Sp ⊆

⋃
i∈C Ti.

Thus, the proof system domain partitions the set of possible expert coalitions into
two—those that can prove the target theorem, and those that cannot.

Such a proof system domain can be expressed as a TG, where the “resources”
are facts and theorems, and transformations enable the derivation of further the-
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orems using simpler theorems.5 In such a system, a proof that requires fewer
transformations could be considered a simpler proof, which is desirable. The TG
represents the proof system domain in a way that allows capturing the notion of
an expert’s relative importance or influence through game theoretic tools.

Consider the case where we wish to give each agent an influence measure,
such that the sum of these measures is a single unit. There are many possible
desirable properties for such a measure of influence. For example, if an expert is
not critical for any expert set C,6 we would want its measure of influence to be
zero. Also, if two experts i and j are interchangeable, so for any expert subset C
such that i /∈ C and j /∈ C the coalition C ∪ {i} can prove the target theorem
iff C ∪ {i} can prove it, we would want i and j to have an identical measure of
influence. Such desiderata are called fairness axioms.

As discussed in Section 2, game theoretic solutions such as the Shapley value
and Banzhaf index fulfill different such sets of fairness axioms. For example, both
these solutions give an expert that is not critical for any set a share of zero, and
give interchangeable experts equal shares. A more complete discussion of the
axioms that the Banzhaf index and Shapley value fulfill is given in [59, 1]. Thus
these indices can be used to determine the relative importance of experts in proof
system domains, again highlighting the importance of examining the complexity
of computing them.

4 Problems and Algorithms
Section 3.3 discussed the potential uses of the TG model for analysing supply
chains and proof systems. Each of these domains raises important natural prob-
lems regarding TGs. We now formally define these problems, based on the defini-
tions of TGs in Section 3. We consider a TG Γ = 〈I, R,R1, . . . , Rn, D1, . . . , Dn, rg〉.
We assume the game is given in a concise form, consisting of a list of the agents I ,
a list of the resources R, a list Ri for every agent i consisting of all the resources
an agent is endowed with, a list of transformations Di for every agent i (each with
the input resources and output given as a list) and the identity of the goal resource

5We can consider standard inference rules to be transformations, so the agents would all have
the same set of transformations but different base resources, or we could consider more sophisti-
cated transformations.

6Following the definitions of Section 2, we say an expert i is critical for a subset C of agents
(such that i ∈ C) if C can prove the target theorem, but C \ {i} cannot.
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rg.7 We examine the following problems regarding the game.

Definition 4. COALITION-VALUE (CV): Given a coalition C ⊆ I , compute
vΓ(C) (i.e., test whether a coalition is successful or not).

Definition 5. VETO (VET): Given a player ai, check if it is a veto player, so for
any winning coalition C, we have ai ∈ C.

Definition 6. DUMMY (DUM): Given a player ai, check if it is a dummy player,
so for any coalition C, we have vΓ(C ∪ {ai}) = vΓ(C).

Definition 7. CORE: Compute the set of payoff vectors that are in the core, and
return a representation of all payoff vectors in it.

Definition 8. SHAPLEY (SH): Compute ai’s Shapley value shi(vΓ).

Definition 9. BANZHAF (BZ): Compute ai’s Banzhaf power index βi(vΓ).

We now summarise the results of the present paper, and prove them in the
remainder of the paper:

• We provide polynomial algorithms for testing whether a coalition wins or
loses (CV) for UTGs, DTGs, and TTGs with simple transformations, and
for UTGs and TTGs with complex transformations, but show that testing
whether a coalition wins is NP-complete for DTGs with complex transfor-
mations.

• We provide polynomial algorithms for testing for veto players and comput-
ing the core in all domains where CV is computable in polynomial time, but
show the problem is co-NP-hard in DTGs with complex transformations.

7Our input size is thus polynomial in the number of agents, resources and transformations.
An alternative representation is a full characteristic function, mapping every agent subset to their
value in the TG. This alternative representation is of course exponential in the number of agents,
so it is not tractable. Similarly to pseudo-polynomial algorithms which operate on inputs given in
unary rather than in a binary representation, algorithms on the naive representation are likely to be
polynomial in the input size, as this input size is so big. We are interested in algorithms that are
polynomial in the size of the input game when it is given in the concise form—such algorithms
must be polynomial in the number of agents, resources and transformations, making them usable
in practice.
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UTG DTG TTG
CV P P (NPC) P

VETO P P (co-NPC) P
DUMMY co-NPC co-NPC (co-NPH) co-NPC

CORE P P (co-NPC) P
SHAPLEY #P-Hard #P-Hard #P-Hard
BANZHAF #P-Hard #P-Hard #P-Hard

Table 1: Complexity of TG problems. If the results differ for simple and complex transfor-
mations, the results for complex transformations are given in parentheses. Key: P = polynomial
algorithm; NPH = NP-hard; NPC = NP-complete co-NPC = co-NP-complete; co-NPH = co-NP-
hard.

• We show that testing for dummy players and computing the Shapley value
are co-NP-hard in all the TG domains defined, and provide a stronger re-
sult for the Banzhaf power index, showing that it is #P-hard in all these
domains.8

Table 1 summarises our results relating to TGs with simple transformations.
We now present proofs for these results.

Theorem 1. CV is in P, for all the following types of TGs with simple transforma-
tions: UTG, DTG, TTG. CV is in P for UTGs and TTGs with complex transforma-
tions.

Proof. First consider UTG. Denote the set S of resources with which C is en-
dowed, S = {r | has(C, r)}. Denote the set of transformations of the players
in C as DC = ∪ai∈CDi. We say that a set of resources S matches a transfor-
mation d = 〈B, r〉 ∈ D if B ⊆ S. If S matches d then using the resources
in S the coalition C can also produce r through transformation d. Consider a
basic step of iterating through all transformations in DC . When we find a trans-
formation d = 〈B, r〉 that S matches, we add r to S. A test to see whether a
transformation d matches S can be done in time at most |R|2 (where R is the set
of all resources), so the basic step takes at most |DC | · |R|2 time. If after perform-
ing a basic step no transformation in DC matches S, S holds all the resources

8The complexity class #P expresses the hardness of problems that “count solutions”. Infor-
mally, NP deals with whether a solution to a combinatorial problem exists, while #P deals with
calculating the number of solutions. Counting solutions generalizes the checking of their exis-
tence, so we usually regard #P-hardness as a more negative result than NP-hardness.
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that C can generate, and we stop performing basic steps. If S has changed dur-
ing a basic step, at least one resource is added to it. Thus, we perform at most
|R| basic steps to compute the set of all resources C can generate, so S can be
computed in polynomial time. We can then check whether S contains rg. We
note that the suggested algorithm works for simple as well as complex transfor-
mations. Now consider TTGs with simple transformations. We build a directed
graph representing the transformations as follows. For each resource r the graph
has a vertex vr, and for each transformation d = 〈rx, ry〉 the graph has an edge
ed from vrx to vry . Given a coalition C we consider GC , the subgraph induced
by C. GC = 〈V,EC〉 contains only the edges of the transformations available to
C, so EC = {

〈
vrx , vry

〉
| 〈rx, ry〉 ∈ DC}. The graph GC is weighted, and the

weight of each edge e = 〈rx, ry〉 is w(e) = minai∈C ti(〈rx, ry〉), the minimal time
to derive ry from rx across all players in the coalition. Denote the weight of the
minimal path from ra to rg in GC as wC(ra, rg). The coalition C is endowed with
all the resources in RC and can generate all of them instantly. The minimal time
in which C can generate rg is minra∈RC

wC(ra, rg). For each resource ra ∈ RC ,
we can compute wC(ra, rg) in polynomial time, so we can compute in polynomial
time the minimal time in which C can generate rg, and test whether this time ex-
ceeds the required deadline. For simple transformations, we can simulate a DTG
domain as a TTG domain, by having each transformation require 1 time unit (and
setting the threshold to be the threshold number of transformations9).

Finally, we show how to adapt the algorithm used for UTGs (with either simple
or complex transformations) to be used for TTGs with complex transformations.
For the TTG CV algorithm for a coalition C, for each resource r we maintain
m(r), a bound from above on the minimal time required to produce r. All the
m(r) of resources endowed by some player in the coalition C are initialized to
0, and the rest are initialized to ∞. Our basic step remains iterating through all
the transformations in D. When we find a transformation d = 〈B, r〉 which S
matches, where the transformation requires t(d), we compute the time in which
the transformation can be completed, c(d) = maxb∈Bm(b) + tC(d) (if S does not
match a transformation d, we denote c(d) =∞). During each basic step, we com-
pute the possible completion times for all the matching transformations, and apply
the smallest one, argmind∈Dc(d). To apply a transformation d = 〈B, r〉, we sim-
ply add r to S, and update m(r) to be c(d). During each basic step we only apply
one transformation (although we scan all the possible transformations). A simple

9With complex transformations, this is no longer possible, since if a transformation requires
several base resources, the shortest time to produce each of them may be different.
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induction shows that after each basic step, for any resource r such that m(r) 6=∞
the value m(r) is indeed the minimal time required to generate r. Again, the al-
gorithm ends if no transformations were applied during a basic step. As before,
a basic step requires time of |DC | · |R|2 time, and we perform at most |R| basic
steps, so the algorithm requires polynomial time. We can then check whether S
contains rg, and whether m(rg) is smaller than the required time threshold.

Corollary 1. VETO is in P, for all the following types of TGs with simple trans-
formations: UTG, DTG, TTG, and for UTGs and TTGs with complex transforma-
tions.

Proof. A veto player ai is present in all winning coalitions: TGs are increasing,
so simply check whether v(I−ai) = 0.

Now consider the problem of computing the core in TGs. The core focuses on
stability of the payoff allocations. Under a core imputation, no subset of agents
is incentivised to defect and form their own team. When the core is non-empty,
it contains all the stable imputations; when it is empty, the coalition would be
unstable no matter how we divide the utility among the agents. We first note
that it is not always possible to represent the core in a succinct way, since it may
contain an infinite number of imputations. However, in the case of TGs without
costs, there does exist a succinct representation for the core.

All forms of TGs without costs (in Definition 1, Definition 2 and Definition 3)
are simple cooperative games. In a simple cooperative game, the value of a coali-
tion is either 1 or 0 (i.e., a coalition either wins or loses). Our TGs are also mono-
tone games—adding players to a winning coalition never makes it lose, as we only
allow the use of more resources and transformations. The core is a very demand-
ing concept in simple cooperative games. A veto player is a player that is present
in all winning coalitions, so if ai /∈ C we have v(C) = 0. It is a well-known
fact that in monotone simple coalitional games, the core is non-empty if and only
if there is at least one veto player in the game, and that if the core is non-empty
it allocates all the reward only to the veto players [25] (further, if there are veto
players, any imputation that does not allocate any reward to the non-veto players
is in the core). Consider a simple coalitional game that has no veto players, so for
every agent ai we have a winning coalition C that does not contain ai. Take an
imputation p = (p1, . . . , pn) where pi > 0. Since

∑n
i=0 pi = 1 and since pi > 0

we know that p(C) ≤
∑

pj∈I−ai
pj < 1, so p(C) < v(C) = 1. This makes C a

blocking coalition. On the other hand, examine any imputation p where non-veto
players get nothing. Such an imputation must be in the core: any coalition C that
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can potentially block p must have v(C) = 1 (if v(C) = 0 then it cannot block),
and must contain all the veto players, so

∑
pj∈C pj = 1, and thus cannot block p.

Due to the above characterization of the core in simple cooperative games,
in such games the core can be represented as a set Iveto, consisting of all the
veto players in that game. This set represents all core imputations: an imputation
p = (p1, . . . , pn) is in the core if

∑
i∈Iveto pi = 1 (note that it must be the case that∑

i∈I pi = 1 for p to be an imputation). Thus, given this representation we can find
a core imputation in polynomial time (if such an imputation exists), for example
by equally sharing the utility among the veto players. Given this representation
we can also answer core membership queries (i.e., testing if a given imputation p
is in the core), by making sure the utility is distributed only to the veto players.
From Corollary 1 we know we can test all the agents and find the set of veto agents
Iveto in polynomial time, allowing us to return the veto agent representation of the
core of the game. This gives the following:

Corollary 2. CORE is in P, for all the following types of TGs with simple transfor-
mations: UTG, DTG, TTG, and for UTGs, DTGs and TTGs with complex trans-
formations.

Computing dummy players, however, is more complex.

Theorem 2. DUMMY is co-NP-complete, for all the following types of TGs with
simple transformations: UTGs, DTGs, TTGs, and for UTGs and TTGs with com-
plex transformations. For DTGs with complex transformations, DUMMY is co-
NP-hard.10

Proof. Due to Theorem 1, we can verify in polynomial time whether ai is ben-
eficial to C by testing if v(C ∪ {ai}) − v(C) > 0. Thus DUMMY is in co-
NP for UTGs, DTGs, and TTGs with simple transformations, and for UTGs and
TTGs with complex transformations. We reduce SAT to testing if a player in a
UTG with simple transformations is not a dummy (TG-NON-DUMMY). Show-
ing that DUMMY is co-NP-hard in UTGs is enough to show that it is co-NP-hard
for DTGs and TTGs, since it is possible to set the threshold (of the maximal

10We could not prove that DUMMY is even in co-NP for DTGs with complex transformations.
To show membership in coNP we must show the existence of a proof that an agent ai is a non-
dummy which is verifiable in polynomial time. Such a proof can include a coalition C such that
C∪{ai}wins butC loses, and a sequence of transformations through whichC∪{ai} generates the
target resource. However, this does not suffice, as we must also be able to verify that C loses—we
could not find a way to verify this in polynomial time.
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allowed transformations or allowed time) so high that the TG is effectively unre-
stricted. Hardness results also apply to complex transformations as well, since the
restricted case of simple transformations is hard.

Assume w.l.o.g. that the SAT instance is in CNF, and let this instance be φ =
c1∧c2∧· · ·∧cm over propositions x1, . . . , xn, where ci = li1∨· · ·∨lik , where each
such lj is a positive or negative literal, either xk or ¬xk for some proposition xk.
The TG-NON-DUMMY query is regarding the player ay. For each literal (either
xi or ¬xi) we construct a player (axi and a¬xi). These players are called the literal
players. The generated TG game has a resource ry, and only ay is endowed with
that resource. The game also has the resource rz, with which all the literal players
are endowed. For each proposition xi we also have a resource rxi . For each clause
cj in the formula φ we have a resource rcj . The goal resource is the resource rg.

For each positive literal xi we have transformation dxi = 〈rz, rxi〉. For each
negative literal we have transformation d¬xi = 〈rxi , rg〉. For each clause cj we
have transformation dcj =

〈
rcj , rcj+1

〉
, where for the last clause cm we have a

transformation dcm = 〈rcm , rg〉. Player ay is only capable of d0 = 〈ry, rc1〉. Player
axi is capable of dxi , and player a¬xi is capable of d¬xi . If xi occurs in its positive
form in cj (i.e., cj = xi ∨ li2 ∨ · · · ) then axi is capable of dcj . If xi occurs in its
negative form in cj (i.e., cj = ¬xi ∨ li2 ∨ · · · ) then a¬xi is capable of the dcj .

We identify an assignment with a coalition, and identify a coalition with an
assignment candidate (which possibly contains both a positive and a negative as-
signment to a variable, or which possibly does not assign anything to a variable).
Let A be an assignment to the variables in φ. We denote the coalition that A rep-
resents as CA = {axi | A(xi) = T} ∪ {a¬xi | A(xi) = F}. There are only two
resources with which players are endowed: ry and rz. It is possible to generate
rg either through a transformation chain starting with rz, going through rxi (for
some variable xi) and ending with rg, or through a transformation chain starting
with ry, going through rc1 , through rc2 , and so on, until rcm , and finally deriving
rg from rcm (no other chains generate rg).

Given a valid assignment A, CA does not allow the conversion of rz to rg,
since to do so CA needs to be able to generate rxi from rz (for some variable xi)
and needs to be able to generate rg from rxi . However, the only player who can
generate rxi from rz is axi , and the only player who can generate rg from rxi is
a¬xi , and CA can never contain both axi and a¬xi (for any xi) by definition of CA.

Suppose A is a satisfying assignment for φ. Let cj be some clause in φ. A
satisfies φ, so it satisfies cj through at least one variable xi. If xi occurs positively
in φ, A(xi) = T so axi ∈ CA, and if xi occurs negatively in φ, A(xi) = F so
a¬xi ∈ CA, so we have a player a ∈ C capable of dcj . Thus, CA can convert rc1 to
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rc2 , can convert rc2 to rc3 , and so on. Thus, given rc1 , CA can generate rg. Player
ay is endowed with ry, and can generate rc1 from ry, so CA∪{ay}wins. However,
ay /∈ CA, and CA cannot generate rc1 . Since A is a valid assignment, CA cannot
generate rg through a chain starting with rz, so CA is a losing coalition. Thus, ay
is not a dummy, as v(CA ∪ {ay})− v(CA) = 1.

On the other hand, suppose ay is not a dummy, and is beneficial to coalition
C, so C is losing but C ∪ {ay} is winning. Since C loses and cannot contain both
axi and a¬xi (for any xi), as this would allow it to generate rxi from rz and to
generate rg from rxi (and C would win without ay). Consider the assignment A:
if C contains axi we set A(xi) = T , and if C contains a¬xi we set A(xi) = F (if
C contains neither axi nor a¬xi we can set A(xi) = T ). Since C ∪ {ay} wins, but
cannot generate rg through a chain starting with rz, it must generate rg through
the chain starting with ry and going through the rcj ’s. Thus, for any clause cj , C
contains a player capable of transformation dcj =

〈
rcj , rcj+1

〉
. That player can

only be axi or a¬xi for some proposition xi. If that player is axi ∈ C then cj
has the literal xj (in positive form) and A(xi) = T , so A satisfies cj , and if it is
a¬xi ∈ C then cj has the literal ¬xj (negative form) and A(xi) = F , so again A
satisfies cj . Thus A satisfies all the clauses in φ.

Theorem 3. For DTGs with complex transformations, determining if a coalition
C wins (i.e., the CV problem) is NP-complete. The problem is hard even in TGs
with a single player. For DTGs with complex transformations, VETO and CORE
are co-NP-complete.

Proof. We first show the problems are in NP / coNP. A proof that a coalition
C wins consists of a valid sequence of transformations to generate the target re-
source, such that the base resources for every transformation are either resources
the members of C are endowed with, or the result products of previous transfor-
mations. We can verify if a transformation sequence is valid in polynomial time by
keeping track of the resources generated by the transformations. TGs are mono-
tone, and adding more agents to a winning coalition never makes it lose. Thus if ai
is a non-veto player, the coalition I \{ai}must be winning. Again, a proof for this
can be a valid transformation sequence for generating the target resource, which
can be verified in polynomial time. Thus, for DTGs with complex transforma-
tions, the problem of testing if a coalition C wins is in NP, and VETO is in co-NP.
CORE is also in co-NP in DTGs with complex transformations. To show that an
imputation is not in the core, we have to find a non-veto agent which receives a
non-zero reward. This can be demonstrated by a polynomially verifiable proof
that a specific agent is a non-veto agent (as it is easy to check in constant time
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whether that agent receives a non-zero reward in a given imputation), as discussed
above.

To show NP-hardness, we reduce VERTEX COVER to DTG CV. In the VER-
TEX COVER problem, we are given a graph G = 〈V,E〉 and an integer K, and
are asked if we can select a vertex subset X ⊆ V of size k such that each edge
e ∈ E is connected to some vertex u ∈ X (i.e., if the edge is e = (x, y) then either
x ∈ X or y ∈ X). VERTEX COVER is a prominent NP-hard problem [43].

Examine the VERTEX COVER instance on the graph G = 〈V,E〉 with ver-
tices V = {v1, . . . , vn} and edges E = {e1, . . . , em} where ei is from vi,a to vi,b
and a target cover size of k. We construct the following DTG. We have a resource
rt and goal resource rg, a resource rei for each edge ei, and a resource rvi for each
vertex. We have a transformation from rt to each vertex resource rvi . If ei is from
vi,a to vi,b we have two transformations: from rvi,a to rei , and from rvi,b to rei . We
have a complex transformation from {re1 , . . . , rem} to rg. A single player has rt
and all the above transformations. The target maximal number of transformations
for the DTG is k + m + 1. Now, G = 〈V,E〉 has a vertex cover of size k iff the
player wins in the game so defined.

Corollary 3. Testing whether the Shapley value or Banzhaf index of a player in a
TG exceeds a certain threshold is co-NP-hard for all the following types of TGs:
UTG, DTG, and TTG, with simple or complex transformations.

Proof. Theorem 2 shows DUMMY is co-NP-hard in these domains. However,
the Shapley value or Banzhaf index of a player can only be 0 if the player is a
dummy player. Thus, computing these indices in these domains (or the decision
problem of testing whether they are greater than some value) is co-NP-hard.

We now show a stronger result for the Banzhaf index, using a reduction from
#SET-COVER (#SC).

Definition 10. #SET-COVER (#SC): We are given a collection C = {S1, . . . , Sn}
of subsets. We denote ∪Si∈CSi = S. A set cover is a subset C ′ ⊆ C such that
∪Si∈C′ = S. We are asked to compute the number of covers of S.

The problem #VERTEX-COVER, where we are asked to count to the number
of different vertex covers in a graph, is a restricted form of #SC. Vadhan [74]
showed that #VERTEX-COVER is #P-hard,11 so #SC is of course also #P-hard.

11He also showed that the problem remains #P-hard even in very restricted classes of graphs.
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To prove that CG-BANZHAF is #P-complete, we show a reduction from #SC to
CG-BANZHAF.12

Theorem 4. Computing the Banzhaf index in UTGs, DTGs, and TTGs (with sim-
ple or complex transformations) is #P-hard.

Proof. We reduce a #SC instance to checking the Banzhaf index in a UTG. Con-
sider the #SC instance with C = {S1, . . . , Sn}, so that ∪Si∈CSi = S. De-
note the items in S as S = {t1, t2, . . . , tq}. Denote the items in Si as Si =
{t(Si,1), t(Si,2), . . . , t(Si,ki)}.

For each subset Si of the #SC instance, the reduced UTG has a player aSi
. For

each item ti ∈ S the UTG instance has a resource rti . The reduced instance also
has a player apow, the resources r0, rpow and the goal resource rg. For each item
ti ∈ S there is a transformation di =

〈
{rti−1

}, rti
〉
. Another transformation is

dpow =
〈
{rtq}, rg

〉
, of which only apow is capable. All players have resource r0.

Each player is capable of the transformation in her subset—for the subset Si =
{ti1 , ti2 , . . . , tik}, the player ai is capable of di1 , di2 , . . . , dik . The query regarding
the power index is for player apow.

Note that a coalition C wins iff it contains both apow and players who are
capable of all d1, d2, . . . , dq. However, to be capable of di the coalition must
contain some aj such that ti ∈ Sj .

Consider a winning coalition C = {apow} ∪ {aj1 , aj2 , . . . , ajk}, and denote
SC = {Sj1 , Sj2 , . . . , Sjk}. A coalition C wins iff apow ∈ C and SC is a set cover
of S. The Banzhaf index in the reduced game is q

2n−1 , where n is the number of
players and h is the number of winning coalitions that contain apow that lose when
apow is removed from the coalition. No coalition can win without apow, so h is the
number of all winning coalitions, which is the number of set covers of the #SC
instance.

Thus we reduced #SC to BANZHAF in a UTG with simple transformations (a
restricted case of complex transformations). We can do the same with DTGs and
TTGs with a high-enough threshold. Thus, BANZHAF is #P-hard in all consid-
ered TG domains.

A recent paper [3] shows that for any reasonable representation of a coopera-
tive game, if computing the Banzhaf index is #P-hard, then computing the Shapley
value is also #P-hard. A representation language is said to be reasonable if it is

12The papers [20, 18] consider a related domain (Coalitional Skill Games and Connectivity
Games), and also use #SC to show that computing the Banzhaf index in that domain is #P-
complete.
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possible to represent the game with an additional dummy agent using the same
language.13 Our TG representation is reasonable—to add an additional dummy
agent we simply add an agent who is capable of no transformations and who is
endowed with no resources. Using the result of [3], we obtain the following corol-
lary.

Corollary 4. Computing the Shapley value in UTGs, DTGs, and TTGs (with sim-
ple or complex transformations) is #P-hard.

4.1 Discussion of the Complexity Results
The complexity results summarised in Table 1 reveal an interesting picture re-
garding the computational complexity of solving TGs. First, in UTGs, TTGs and
DTGs (with simple transformations), computing the value of a coalition, testing
for veto agents and computing the core can be done in polynomial time. There-
fore, in such games it is possible to find stable divisions of the rewards, such that
no subset of agents is incentivised to defect and form an alternative coalition. Our
positive results are significant for the supply chain domain, as such distributions of
the profits would preserve the structure of the supply chain intact, with no subset
of the participants deviating to form an alternative chain.

The picture is a bit less encouraging when it comes to DTGs with complex
transformations. In such games calculating any solution concept we examined or
testing any of the agent properties we examine is computationally hard. In fact,
for such games it is even NP-hard to compute the value of a coalition. Our nega-
tive result highlight the fact that although it is appealing to apply game theoretic
analysis to predict agent agreements in this domain, the combinatorial complexity
of the domain makes it difficult to apply such solutions in practice. Of course, NP-
hardness is a “worst-case” notion, so it is quite possible that some games could be
efficiently solved in practice: NP-hardness means that there can be no guarantee
of obtaining a solution efficiently for all problem instances.

The results in Table 1 also indicate that computing power indices and testing
for dummy agents are also hard in all the TG forms we have examined. At a first
glance, one might be tempted to suggest that this makes power indices unsuitable
for solving TGs. In other words, one might claim that despite the good axiomatic

13To be more precise, a language is reasonable if for any game v that it can represent, it can
also represent the game v′ defined as follows. The game v′ has an additional agent x that is not
present in the original game v. For any coalition C such that x /∈ C we have v′(C) = v(C). For
any coalition C such that x ∈ C we have v′(C) = v(C \ {x}).
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properties of such indices as fair allocations of the rewards, agents would not be
able to use them in practice to reach such fair agreements due to the computational
barrier. We wish to emphasize that this is not the case. Although our results
show that computing power indices exactly is hard for TGs, they can certainly be
approximated to a high degree of accuracy [61, 31, 27, 40, 13].

One method for approximating power indices is [13]. It allows approximately
computing both the Shapley value and the Banzhaf power index, and has a run-
ning time quadratic in the required accuracy. This is a randomized approach, and
admits a small error probability δ, which can be made as small as desired, at the
expense of increasing the runtime byO(log 1

δ
). This approach works for any game

where the value of a coalition can be computed in polynomial time, so it is suitable
to our TGs.

Using the power index approximation approaches discussed above, we can
tractably compute a fair allocation of the utility in TGs. This allows agents to find
fair agreements on dividing utility in supply chains, or to determine the impor-
tance of experts in a proof system domain. The method of [13] for approximating
power indices is quite simple. Rather than examining all the possible coalitions,
it randomly selects many coalitions, and averages the contribution of an agent
across these sampled coalitions. For example, in the proof system domain, a naive
method for computing power indices requires examining every expert subset and
determining whether they can generate a proof, effectively enumerating over the
many possible alternative proofs of a certain theorem. Alternatively, the approx-
imation method randomly samples expert subsets, and examines the number of
such subsets where an expert is critical in generating the proof (or in other words,
the proportion of sampled expert coalitions that can generate the proof but cannot
do so without the expert in question).

As Table 1 indicates there are some computational barriers to applying game
theoretic solutions on TGs. However, we believe that such barriers do not hin-
der the significance of the TG model. As the table indicates, some game theory
constructs, such as coalition values, veto agents and the core, can be computed
exactly and tractably using the approaches we present. Other constructs, such as
the Shapley value and Banzhaf index, may be hard to compute exactly, but can at
least be accurately estimated using existing approaches.
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5 Bounded Transformation Games
The results in Table 1 indicate that some problems in TGs are hard, even if we only
allow simple transformations—testing for dummy agents is co-NP-complete, and
computing the Shapley value or Banzhaf power index is #P-hard. This makes
it very unlikely that we could find an algorithm that solves these problems and is
polynomial in the number of agents, resources and transformations. We now show
that these problems become tractable if the number of resources and transforma-
tions is bounded by a constant, even if the number of agents is unbounded.

In the rest of this section, we assume that the number of resources is bounded
from above by a certain constant cres and that the number of transformations is
bounded from above by a certain constant ctrans. We call such a domain a bounded
TG domain. We show that in bounded TG domains it is possible to solve the
DUMMY, SHAPLEY and BANZHAF problems in polynomial time.

Two agents i, j ∈ I in a coalitional game Γ with the characteristic function
v : 2I → R are called equivalent if for any coalition C such that i /∈ C and j /∈ C
we have v(C ∪ {i}) = v(C ∪ {j}). In other words, two agents are equivalent if
we can add either one to a coalition that contains neither of them and obtain the
same value. We can partition the set of agents in any game to disjoint equivalence
classes A1, . . . , Ak ⊆ I such that all the agents in each of the Ai’s are equivalent.

We show that in bounded TG domains, the number of different agent equiva-
lence classes is bounded by a certain constant.

Lemma 1. Consider a bounded TG domain, where the number of resources is
bounded by cres and the number of transformations is bounded by ctrans (cres and
ctrans are constants). Then the agents in the game can be partitioned into a con-
stant number q of agent equivalence classes. The number q of agent equivalence
classes is bounded from above by the constant bec = 2cres · 2ctrans .14

Proof. We note that the value of a coalition in any of the TG forms we’ve de-
fined only depends on the resources and transformations endowed by the coalition
members. In other words, if two coalitions are endowed with the same set of ini-
tial resources and the same set of transformations, then they obtain the same value
in the game. Therefore, if two agents i, j ∈ I are endowed with the same set
of resources and the same set of transformations they can perform, they must be
equivalent agents. Since the number of resources is at most cres, there are at most
2cres different sets of initial resources an agent can have. Similarly, there are at

14bec stands for the bound on agent equivalence classes.
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most 2ctrans sets of transformations an agent may have. Since two agents who have
both the same set of resources they are endowed with and the same set of transfor-
mations they can perform must be equivalent, there are at most bec = 2cres · 2ctrans

equivalence classes of agents.

A recent paper [72] provides complexity results regarding coalitional games
where the number of different equivalence classes is bounded. 15 They describe al-
gorithms for determining whether an agent is a dummy and for computing power
indices, which work in time polynomial in the number of agents and the bound on
the number of equivalence classes. These algorithms use an oracle for comput-
ing the value of a coalition. The approach of [72] falls in the general framework
of fixed-parameter tractable approaches [34], where the running time of the algo-
rithm is polynomial in the input size, but may be exponential in a certain parameter
of the input (the inputs are restricted and the only inputs allowed are ones where
this parameter is smaller than a certain constant). In our case, the parameter of
the input is the number of agent equivalence classes, which Lemma 1 shows to
be smaller than a certain constant bec. Applying the complexity results of [72] we
obtain the following theorem:

Theorem 5. In bounded TG domains, DUMMY, SHAPLEY and BANZHAF are
in P for UTGs, DTGs and TTGs with simple transformations, and for UTGs and
TTGs with complex transformations.

Proof. In bounded TG domains the number of different equivalence classes is
at most the constant bec. In all these TG forms we can compute the value of
a coalition in polynomial time (see Theorem 1), which provides the polynomial
oracle for computing the value of a coalition. Therefore the results of [72] provide
the required algorithm.

The above positive result shows that the complexity of the hard problems in
TGs stems from the number of different resource and transformation combina-
tions, and not from the number of the agents. This indicates that these problems
can be tractably solved in TG domains where there are only few resources and
transformations.

15They use the term “agent types” instead of agent equivalence classes.
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6 Transformation Games with Costs
An important assumption in the work presented above is that transformations can
be carried out at no cost. In many scenarios, this is not the case. For example,
suppose we wish to derive a resource rg from base resources R, and can do this
either using a powerful but expensive computer or using a slower but cheaper one.
Such trade-offs are ubiquitous in real-world problem solving. We model TGs with
costs as follows. Every transformation t has cost c(t) ∈ R+. Given a coalition
C and a resource r, we denote by h(C, r) the minimum cost needed to obtain
r from RC , which is the sum of transformation costs in the minimal sequence
of transformations from RC to r. If r cannot be obtained from RC , we define
h(C, r) =∞. The goal resource rg has the value v(rg) ∈ R+.

Definition 11. CTG: A TG with costs (CTG) with the goal resource rg and the cost
function c : D → R+ is the game where the value of a coalition C is the value
of the goal resource rg minus the minimum cost needed to obtain rg from RC—if
this latter difference is positive, and 0 otherwise. Thus, v(C) = max(0, v(rg) −
h(C, rg)).

The most basic question regarding a TG with costs is computing the value of a
coalition C. This question is equivalent to finding the minimal cost for the coali-
tion C to achieve the target resource rg. TGs where each transformation takes
a single resource and transforms it into another resource can be expressed as a
graph where resources and products are the vertices, and directed edges represent
the transformations, connecting the base resource of a transformation to the re-
source generated by the transformation. In such a representation we can weight
the edges according to the cost of the transformation. In such domains, given a
coalition C we can eliminate all edges representing transformations not owned
by the coalition members. In this induced graph, the minimal cost path from any
resource owned by the coalition members to the target resource is h(C, rg), the
minimum cost for C to obtain rg. We can compute the minimal cost path from the
coalition’s resources in polynomial time using Dijkstra’s algorithm or using the
Floyd-Warshall algorithm (see [29] for details regarding these algorithms). The
above approach is not suitable for TGs where a transformation may convert sev-
eral base resources into a product. We now propose a polynomial algorithm for
such TGs.

Our Algorithm 1 for computing coalitions values in a CTG is somewhat sim-
ilar to Dijkstra’s algorithm. However, in general TGs with costs a transformation
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takes several base resources and generates a product. Thus, the TG can be rep-
resented as a hypergraph (rather than a graph), as follows. We define for every
resource r ∈ R a vertex in a hypergraph, vr. We identify with every transforma-
tion t = 〈{r1, . . . , rl}, r〉 an hyperedge et = 〈{vr1 , . . . , vrl}, vr〉. We denote: R –
resources, C – coalition, rg – target resource, DC – C’s transformations. We first
review Dijkstra’s algorithm, as our approach is very similar, but adapted to handle
hypergraphs rather than graphs.

Dijkstra’s algorithm operates by maintaining and updating a bound λ(v) for
each vertex v. The value λ(v) bounds the minimal cost for reaching v from above,
and this bound is relaxed (lowered) during the algorithm’s run. In Dijkstra’s algo-
rithm, given a vertex uwith current bound λ(u) and edge eu,v with cost ce, relaxing
the bound for edge eu,v simply entails checking whether λ(u) + ce < λ(v). If this
is the case then λ(v) is set (lowered) to be λ(u) + ce < λ(v). Dijkstra’s algorithm
initializes λ(s) = 0 for the source s and λ(v) =∞ for any other vertex v. It then
simple iterates by choosing the vertex of minimal bound (v such that λ(v) is min-
imal), and performs relaxations for all the outgoing edges from that vertex, and
terminates once this vertex of minimal bound is the target vertex t. As discussed
in [29], in fact it suffices to simply apply a relaxation for all the edges (in any
order), and repeat this |E| times (where |E| is the number of edges).

Our algorithm also maintains a bound from above on the minimal cost for gen-
erating a resource vr, called λ(vr). Consider a transformation t = 〈{r1, . . . , rl}, r〉
of cost c(t), and assume the bounds for r1, . . . , rl are set to finite numbers λ(v1), . . . , λ(vl).
If λ(v1), . . . , λ(vl) are indeed correct bounds from above (i.e., it is possible to gen-
erate vi from the base resources of the coalition with price at most λ(vi)), then r
can be generated with cost at most c(t)+

∑l
i=1 λ(vi) (by generating v1, . . . , vl and

then applying t). We can thus consider a relaxation procedure for a transformation
(hyperedge) t = 〈{r1, . . . , rl}, r〉 which checks if λ(vr) < c(t) +

∑l
i=1 λ(vi) and

if so, sets λ(vr) to be c(t) +
∑l

i=1 λ(vi). We can then initialize λ(vR) = 0 for any
resource r that the coalition members own, and initialize λ(v) = ∞ for all the
other resources. Following similar arguments to those given in [29], it suffices to
perform a relaxation for each of the transformations owned by the coalition mem-
bers and repeat this |TC | times (where TC is the set of transformations owned by
the coalition).16 This algorithm has polynomial time, as it performs at most |T |2

16To show this formally one can show that after i iterations of relaxing for all transformations,
for any resource r such that a minimal cost transformation sequence for obtaining r makes use of i
transformations, we have λ(vr) set to the correct value. This can be done using a simple induction
on the number of iterations of relaxing for all transformations.
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relaxations (where T is the set of all transformations). Thus computing the value
of a coalition can be done in polynomial time.

We now propose Algorithm 1, which is another polynomial algorithm for com-
puting the value of a coalition, more similar to Dijkstra’s algorithm. It also main-
tains a bound λ(vr) for resource r, which bounds the minimal cost of obtaining
r from above. To obtain the optimal sequence of transformations as well, for
each resource r we also maintain S(vr), which is the set of transformations in
the minimal cost transformation path for generating vr found so far. Our Algo-
rithm 1 also operates by applying relaxations on the transformations, and makes
use of the subsidiary procedure Total-Cost, which computes the transformations
in the path from RC to r, summing their costs to get the total path cost. Total-
Cost(t = 〈{r1, . . . , rl}, r〉) returns a tuple (cost, S) where cost is the cost bound
when using transformation t, and S is the required set of transformations (accord-
ing to the current λ bounds). This pair (cost, S) is a candidate for relaxation, and
is used in the main procedure Compute-Coalitional-Value if indeed it allows for
a better bound than the current λ(vr) (the relaxation itself). We first provide the
formal description of the algorithm, then prove its correctness.

Algorithm 1. Procedure Compute-Coalitional-Value (R,C, rg, DC):

1. For all r ∈ RC do λ(vr)← 0

2. For all r ∈ R \RC do λ(vr)←∞

3. For all r ∈ R do S(vr)← ∅

4. T ← DC (* T initially contains all the transformations coalition C has*)

5. while T 6= ∅:

(a) t = 〈{r1, . . . , rl}, r〉 ← arg mint∈T (Total − Cost(t).f irst)
(b) tc← Total − Cost(t).f irst, S ← Total − Cost(t).second
(c) if tc ==∞ then (* remaining transformations unreachable fromRC*)

i. return max(0, v(rg)− λ(vrg))

(d) if tc < λ(vr) then λ(vr)← tc, S(vr)← S

(e) T ← T \ {t}

6. return max(0, v(rg)− λ(vrg))
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Procedure Total-Cost (t = 〈{r1, . . . , rl}, r〉

1. if
∑l

i=1 λ(vri) ==∞ then return pair(∞, ∅)

2. S ← ∪li=1S(vri) ∪ {t}

3. tc←
∑

ti∈S c(ti)

4. return pair(tc, S)

We show that the above Algorithm 1 is correct using the following lemma.

Lemma 2. During the execution of Algorithm 1, for every vertex vr, if λ(vr) <∞
then S(vr) contains some path from V ′ = {vr′ | r′ ∈ RC} to vr, and λ(vr) is
equal to its length.

Proof. The proof is by induction on the order of removal of transformations from
T .

Theorem 6. Algorithm 1 calculates the coalitional value of a coalition C in a
CTG.

Proof. We must prove that at the end of the execution of the algorithm, λ(vrg) is
equal to the minimum cost of obtaining rg from RC .

We prove by induction on the order of removal of the transformations from T ,
that when t = 〈{r1, . . . , rl}, r〉 is removed from T , λ(vr) is equal to the minimum
distance from V ′ = {vr′ | r′ ∈ RC} to vr, and S(vr) contains the corresponding
shortest path (or S(vr) = ∅ if λ(vr) =∞).

The base case of the induction: before removing any transformation from T ,
λ(vr) = 0, and S(vr) = ∅ for all the vertices vr ∈ V ′.

Now let us assume that the claim is correct for all the transformations removed
before the transformation t = 〈{r1, . . . , rl}, r〉, and t was removed in the n-th
stage. If λ(vr) was not updated by t then in that stage λ(vr) < ∞, and so it was
updated in earlier stage by another transformation, and by the inductive assump-
tion, λ(vr) is equal to the minimum distance from V ′ to vr, and S(vr) contains the
corresponding shortest path. Now suppose that λ(vr) was updated by t. It means
that for all i, 1 ≤ i ≤ l: λ(vri) < ∞ (in the stage of removal of t), and so by the
inductive assumption for all i, 1 ≤ i ≤ l: λ(vri) is equal to the minimum distance
from V ′ to vri , and S(vri) contains the appropriate shortest path.

Suppose for the contradiction that the shortest path T ′ = {t′1, . . . , t′m} ⊆ DC

from V ′ to vr does not pass through S(vri) and t. Denote by X the vertices v
which have λ(v) <∞ at stage of removal of t (stage n).
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Assume first that all the transformations in T ′ contain only vertices from X .
For each i, 1 ≤ i ≤ l, if T ′ passes through vertex vri , then the sub-path of T ′

to vri is minimal, and then by the inductive assumption it is of length λ(vri).
Since

∑l
i=1 c(t

′
i) < λ(vr), t′m = 〈{r′1, . . . , r′w}, r〉 should have been chosen in

line (a) of Algorithm 1 (the first line of the ”while” loop) before t, and this is a
contradiction to the fact that λ(vr) was updated by t. Now suppose that there are
transformations in T ′ that contain vertices outside X . Let t′i = 〈{r′1, . . . r′p}, r′′〉
be the first transformation in T ′ with vr′′ /∈ X . Since in the first n stages t′i was
not chosen (because in the stage n λ(vr′′) = ∞), it follows that

∑i
j=1 c(t

′
j) ≥∑

tj∈S(vr) c(tj) = λ(vr).
On the other hand,

∑m
j=1 c(t

′
j) ≥

∑i
j=1 c(t

′
j). And so, combining these two

inequalities, we get that
∑m

j=1 c(t
′
j) ≥ λ(vr), and this is a contradiction to the fact

that T ′ is a shorter path than S(vr).

Proposition 7. The DUMMY problem is co-NP-Complete for CTG. SH is co-NP-
Hard, and BZ is #P-Hard for CTG.

Proof. DUMMY ∈ co-NP for CTG, since given a coalition C and a player ai, due
to Theorem 6, it is easy to test whether v(C) < v(C ∪ {ai}) (i.e., that ai is not a
dummy player). UTG is a private case of CTG (set for all the transformations t,
c(t) = 0, and set v(rg) = 1). Therefore, all the hardness results for UTG hold for
CTG as well.

7 Related Work and Conclusions
This work has examined game theoretic problems in transformation games, and
their relation to proof systems and supply chains. We have discussed how the
Transformation Game model can capture strategic aspects of firms forming supply
chains or of expert agents in a cooperative proof system, and how concepts from
cooperative game theory can answer many interesting problems regarding these
domains when applied to a transformation game describing the domain.

We have made use of many concepts that originated in cooperative game the-
ory. The concept of the core originated in the work of Gillies [46], and the Shapley
value was introduced by Shapley [68]. The Shapley value and similar values were
used to measure power in voting games, for example through the Shapley-Shubik
index [69] and the related Banzhaf power index [22]. We have examined these
concepts in the context of transformation games, and have also considered com-
putational aspects.
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The computational aspects of game theoretic concepts have received much
attention recently. Deng and Papadimitriou [31] showed that computing the Shap-
ley value in Weighted Voting Games is #P-complete, and calculating both Banzhaf
and Shapley-Shubik indices in weighted voting games is NP-complete [55]. Our
analysis of Transformation Game domains shows similar hardness results for
power indices for our model. Despite the negative results regarding computing
power indices exactly, there are several positive results regarding computing them
approximately in both restricted and general domains [61, 31, 27, 40, 13]. These
positive results indicate that it is possible to estimate the relative importance of
agents (or equivalently, facts and rules) in our Transformation Game domain.
Thus, power indices can be tractably approximated and used to determine the
criticality of facts and rules in collaborative inference.

This work is somewhat reminiscent of previous work on multi-agent supply
chains. Although some attention was given to auctions or procurement in such
domains, (for example for forming supply chains [5] or procurement tasks [26]),
previous work gave little attention to coalitional aspects. One exception is [60],
which studies stability in supply chains, but focuses on pair coalitions and situa-
tions without side payments. Models relying on transformations can also be used
to analyse various kinds of combinatorial auctions, such as mixed multi-unit auc-
tions [23, 47, 48, 49]. However, our focus in this paper is very different. Rather
than examining the non-cooperative game induced by a combinatorial auction, we
focus on a cooperative game and cooperative solution concepts.

7.1 Planning and Planning Games
Our Transformation Game model is also related to work in planning within artifi-
cial intelligence [45, 38, 39]. In planning, the goal is to obtain a plan of action that
will transform some initial world state into a target world state. The components
in a plan are actions from some defined action repertoire. The main differences
with our work are that, in classical planning, there is no multi-agent strategic com-
ponent: typically there is assumed to be a single goal to be achieved, even if there
are multiple actors. Thus the questions to be addressed are different in our do-
main, and more closely related to solutions from cooperative game theory. One
paper that is closer to ours in spirit, and studies questions of self-interested actions
in planning domains, is [37]. However, that paper studies a different setting, and
the analysis focuses on different solution concepts.
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7.2 Related Cooperative Games
Previous research has considered bounded resources through threshold games, in
which a coalition wins if the sum of their combined resources exceeds a stated
threshold [36]. Several papers have even considered manipulations in voting do-
mains aimed at increasing power, as measured by various power indices [78, 8,
79, 76, 4, 80, 9, 2]. Another network resource based cooperative game is defined
in terms of a network flow domain [19, 7]. In this game, the agents are the edges
and a coalition wins if the maximal flow that can be sent through the coalition’s
edges exceeds a specified threshold. In one sense such games are simpler than
TGs, as they consider a single resource; in another sense they are richer, as differ-
ent quantities of resource are considered. Most of these works provide hardness
results regarding computing power indices, indicating that this problem is hard in
many combinatorial domains.

Coalitional Resource Games (CRGs) [77] are also related to our work. In
CRGs, players seek to achieve individual goals, and cooperate in order to pool
scarce resources in order to achieve mutually satisfying sets of goals. The main
differences are that in CRGs, players have individual goals to achieve, which re-
quire different quantities of resources; in addition, CRGs do not consider anything
like transformation chains to achieve goals. It would be interesting to combine the
models presented in this paper with those of [77]. TGs can also be considered as
descended from Coalitional Skill Games [18, 15], but rather then focusing on cov-
ering a set of required skills, TGs allow an elaborate interaction where a chain of
transformations convert resources into products. Another class of games relying
on a theme reminiscent of TGs are Boolean Games [52, 35] where the preferences
of the agents are represented as boolean logical formulas. TGs are very different
from Boolean Games—they do not rely on a logical formula representation, but
rather on a set of transformation rules.

TGs are also somewhat related to other forms of network games such as con-
nectivity and flow games [51, 75, 20, 3, 19, 66, 17]; the main difference is that
this previous research does not consider transformation chains. However, some of
the results in this line of research are akin to our results. For example, in some
of the above games, the core can sometimes be computed in polynomial time if
the game is a simple cooperative game, but may become computationally hard to
compute in a model with costs. Finally, our analysis of reward sharing in TGs is
very distantly related to some studies on coordination in supply chains and collu-
sion in auctions [30, 54, 6, 12]. However, our focus is on the agent collaboration
in the manufacturing process, rather than on information hiding or bidding ma-

34



nipulations.

7.3 Future Work
Our model of transformation games was deliberately intended to be rather sim-
ple, leaving much room for further research. Future work might consider vari-
ations where richer models are permitted (e.g., consumable vs non-consumable
resources). One interesting direction is taken in [24], which presents the notion
of resource interfaces. The idea is to model processes that have different resource
consumption profiles at different stages of execution; one might then ask, for ex-
ample, whether two different processes can be executed in parallel without ex-
ceeding some stated resource bound. Similar ideas might be applied to the model
in the present paper.

Additionally, we have only considered very prominent game theoretic solu-
tions, such as the core and Shapley value. It would be interesting to examine
more refined solutions such as the least-core and nucleolus. Further, our model
of supply chains does not represent uncertainty. In many realistic supply chain
domains, parts of the chain may fail and harming the agents’ ability to generate
the end-products of the chain. Several approaches have been proposed to handling
uncertainty in such domains [63, 42, 64, 14, 58, 11]. Examining the impact of un-
certain agent failures in TGs is a promising direction for future research. We have
also ignored the possible impact of external subsidies allowing agents to cooper-
ate even when the core is empty [33, 65, 10, 16, 66, 56, 57]. Certain supply chains
provide critical products, and governments subsidise many supply chains [73, 70],
so this is also an important direction for future work.
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