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1 Proof of Theorem 1

Theorem 1. Given a structured instance x and arbitrary candidate labeling set
Y , no algorithm exists that can always find the most violated label (in Y or not
in Y ) in poly(|x|) time unless P = NP , where |x| is the length of x.

Sketch of the Proof. We prove this theorem by first proving the following lemmas:

Lemma 1. We prove that no algorithm exists that can always find the most
violated label setting that is in Y where Y could be an arbitrary candidate label
set.

Lemma 2. We prove that no algorithm exists that can always find the most
violated label setting that is in Y/Y where Y could be arbitrary candidate label
set.

By combining these two lemmas we finish the proof of the theorem.

Proof. Lemma 1: Assume that for arbitrary candidate label set Y , an algorithm
exists that can find the most violated label setting that is in Y in poly(|x|) time.

The value of |Y | can be exponential in |x|, without proper encoding of the
candidate label set Y , it would take exp(|x|) time to read Y . So if the algorithm
runs in poly(|x|) time, there must exist some kind of encoding of the candidate
label set and the given Y is already encoded. Thus we show that even with
encoding, the algorithm still cannot run in poly(|x|).

Assume that given Y is encoded in the following rules:
Rule 1: For all label settings in Y , at least one of the following cases happens:
the label of xi is yi; or the label of xj is yj, or . . .
Rule 2: For all label settings in Y , at least one of the following cases happens:
the label of xk is yk; or . . .
. . .

Now we prove that finding the most violated label setting in Y is NP-hard.
More precisely, we prove that the decision version of this problem: determining
whether a label setting exists that is in Y is NP-complete.
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It is obvious that this decision problem is in NP, since given a label setting
we could determine whether it is in Y by checking all the rules in poly(|x|).

Now we use the solver of this problem as a black box, and prove that 3-
SAT problem could be reduced to this problem in polynomial time. Given any
instance of 3-CNF with variables x1, . . . , xN , say,

ϕ = (xi1 ∨ xj1 ∨ xk1) ∧ (xi2 ∨ xj2 ∨ xk2) ∧ . . . (1)

To determine whether it is satisfiable, we construct 2 kinds of labels true and
false, and a set of variables z1, . . . , zN , and want to see whether there exists a
label setting of (z1, . . . , zN ) that is in the candidate label set Y . To construct
Y , we encode ϕ into the rules in it. For example, a clause (xin ∨ xjn ∨ xkn) is
encoded into the following rule:
Rule n: For all label settings in Y , at least one of the following cases happen:
the label of xin is true; the label of xjn is false; the label of xkn is true

This encoding only needs polynomial time in N if the encoding of ϕ itself is
poly(|N |). And it is obvious that the black box will return “yes” (which means,
there exists a label setting exists that meets all the rules in Y ) if and only if ϕ
is satisfiable.

Hence, this problem is NP-Complete.

Lemma 2: This time we assume that Y is encoded in the following rule:
Rule: For all label settings in Y , at least one of the following cases happens:

Case 1: The label of xi is yi, and the label of xj is yj, and . . .
Case 2: The label of xk is yk; and . . .
. . .

and the decision version of this problem becomes: determining whether a label
setting exists in Y/Y .

We know that determining whether a 3-DNF problem is unsatisfiable is also
NP-Complete, and with a similar proof we could also show that it could be
reduced to this problem in polynomial time, indicating that this problem is NP-
Complete, which finishes the proof.

2 Proof of Theorem 2

Theorem 2. If the candidate labels are given marginally by local parts, namely,
each Yi in {xi, Yi}Ni=1 has the form Yi = {Yi1⊗Yi2⊗. . .⊗YiMi} ⊆ Y, where Yij is
the set of candidate labels that xij could possibly take, among which only one is
fully correct; xij is the j-th local part in xi whose size is upper bounded by some
constant; Mi is the number of local parts in xi, then in the sequence structured
learning an efficient algorithm exists (modified Viterbi algorithm) that could find
the most violated candidate/non-candidate labels.

Proof. We show the algorithms obtained by slightly modifying the Viterbi al-
gorithm, that could find the most violated candidate label setting and non-
candidate label setting in Algorithm 1 and Algorithm 2 respectively. Note that



Structured Output Learning with Candidate Labels for Local Parts 3

Algorithm 1 Viterbi for finding the most violated candidate label setting

Input: Transition Weight Matrix WT , Emission Weight Vector WE , Structured In-
stance x, corresponding candidate label set Y
Output: The most violated candidate label setting Z
t← |x|
for each i ∈ Y1 do

T1[i, 1]←WE [i]
T2[i, 1]← i

end for
for i← 2, 3, . . . , t do

for each j ∈ Yi do
T1[j, i]← maxk∈Yi−1{T1[k, i− 1] +WT [k, j] +WE [j]}
T2[j, i]← argmaxk∈Yi−1{T1[k, i− 1] +WT [k, j] +WE [j]}

end for
end for
Z[t]← argmaxk∈Yt T1[k, t]
for i = t to 2 do

Z[i− 1]← T2[Z[i], i]
end for

we assume the candidate labels are given token-wisely, but it’s easy to be gen-
eralized to the case where candidate labels are given marginally.

It is obvious that the time complexity of these two modified Viterbi algo-
rithms are of the same scale, i.e., O(n∗T 2) where n is the length of the sequence,
T is the size of the label space.

This time complexity is the same as the original Viterbi algorithm, and is
polynomial in the length of sequence n and the number of labels T . Thus these
two algorithms can efficiently find the most violated candidate/non-candidate
label setting in a sequence.

3 Proof of Theorem 3

Theorem 3. ∀w,J0(w) ≥ min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) ≥ Jm(w) and

J ∗
0 ≥ J ∗

c ≥ J ∗
m.

Proof. The true problem of supervised learning if we know the true labels y∗
i ’s:

min
w

J0(w) =

N∑
i=1

C1

∣∣∣∣ max
y′
i∈Yi

[∆(y∗
i ,y

′
i) + ⟨w, δΨi(y

′
i,y

∗
i )⟩]

∣∣∣∣
+

+

N∑
i=1

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[∆(y∗
i ,y

′′
i ) + ⟨w, δΨi(y

′′
i ,y

∗
i )⟩]

∣∣∣∣
+

+
1

2
∥w∥2. (2)
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Algorithm 2 Viterbi for finding the most violated non-candidate label setting

Input: Transition Weight Matrix WT , Emission Weight Vector WE , Structured In-
stance x, corresponding candidate label set Y , number of classes N
Output: The most violated candidate label setting Z
t← |x|
for each i ∈ Y1 do

T1[i, 1]←WE [i]
T2[i, 1]← i

end for
for each i ∈ [N ]/Y1 do

T ′
1[i, 1]←WE [i]

T ′
2[i, 1]← i

end for
for i← 2, 3, . . . , t do

for each j ∈ Yi do
T1[j, i]← maxk∈Yi−1{T1[k, i− 1] +WT [k, j] +WE [j]}
T2[j, i]← argmaxk∈Yi−1{T1[k, i− 1] +WT [k, j] +WE [j]}

end for
for each j ∈ [N ]/Yi do

T ′
1[j, i]← maxk{T1[k, i− 1] +WT [k, j] +WE [j]}

T2[j, i]← argmaxk{T1[k, i− 1] +WT [k, j] +WE [j]}
end for

end for
Z[t]← argmaxk∈[N ]/Yt T

′
1[k, t]

for i = t to 2 do
Z[i− 1]← T2[Z[i], i]

end for

The problem of CLLP:

min
w,{yi∈Yi}N

i=1

Jc(w, {yi}Ni=1) =
N∑
i=1

C1

∣∣∣∣ max
y′
i∈Yi

[∆(yi,y
′
i) + ⟨w, δΨi(y

′
i,yi)⟩]

∣∣∣∣
+

+
N∑
i=1

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[∆(yi,y
′′
i ) + ⟨w, δΨi(y

′′
i ,yi)⟩]

∣∣∣∣
+

+
1

2
∥w∥2, (3)

The problem of MMS:

min
w

Jm = C2

N∑
i=1

∣∣∣∣ max
y′′
i /∈Yi

[∆min(y
′′
i ,Y/Yi) + ⟨w, Ψ(xi,y

′′
i )⟩]−max

yi∈Yi

⟨w, Ψ(xi,yi)⟩
∣∣∣∣
+

+
1

2
∥w∥2 (4)

where ∆min(y
′, Y ) = miny∈Y ∆(y′,y)

Lemma 3. ∀w, J0(w) ≥ min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1). Namely, the objective
Equation 2 upper bounds the objective Equation 3.
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Proof. y∗
i ∈ Yi ⇒ min{yi∈Yi}N

i=1
Jc(w, {yi}Ni=1) ≤ Jc(w, {y∗

i }Ni=1) = J0(w).

Corollary 1. Let J ∗
0 = minw J0(w), and J ∗

c = minw,{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1),
then J ∗

0 ≥ J ∗
c . Namely, the optimal value of the objective Equation 2 upper

bounds that of the objective Equation 3.

Proof. Let w∗ = argminw J0(w), then

J ∗
0 = J0(w

∗) ≥ min
{yi∈Yi}N

i=1

Jc(w
∗, {yi}Ni=1) ≥ min

w,{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) = J ∗
c .

Lemma 4. ∀w,min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) ≥ Jm(w). Namely, the objective
Equation 3 upper bounds the objective Equation 4.

Corollary 2. Let J ∗
c = minw,{yi∈Yi}N

i=1
Jc(w, {yi}Ni=1), and J ∗

m = minw Jm(w),
then J ∗

c ≥ J ∗
m. Namely, the optimal value of the objective Equation 3 upper

bounds that of the objective Equation 4.

The proofs are similar to those for Lemma 1 and Corolary 1.

By combining the above lemmas and corollaries, we obtain the theorem:
∀w,J0(w) ≥ min{yi∈Yi}N

i=1
Jc(w, {yi}Ni=1) ≥ Jm(w) and

J ∗
0 ≥ J ∗

c ≥ J ∗
m.

4 The 2-slack Cutting Plane Algorithm

4.1 Formulation

The formulation of the 2-slack optimization problem:

min
w,ξ,ζ

1

2
∥w∥2 + C1ξ + C2ζ (5)

s.t. ∀(y1, . . . ,yn) ∈ (Y1, . . . , YN )

ξ ≥ 1

N

N∑
i=1

(∆(yi,yi) + ⟨w, δΨi(yi,yi)⟩)

∀(y′
1, . . . ,y

′
N ) ∈ (Y/Y1 ∪ {y1}, . . . ,Y/YN ∪ {yN})

ζ ≥ 1

N

N∑
i=1

(∆(y′
i,yi) + ⟨w, δΨi(y

′
i,yi)⟩)

4.2 Algorithm

The algorithm is described in Algorithm 3.
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Algorithm 3 The 2-Slack Cutting Plane Algorithm

1: Input: {xi, Yi,yi}Ni=1, C1, C2, ε1, ε2
2: Initialize Ω1 ← ∅, Ω2 ← ∅, f = true
3: repeat
4: f = true
5: (w, ξ, ζ)← argminw,ξ≥0,ζ≥0

1
2
∥w∥2 + C1ξ + C2ζ

6: s.t. ∀(y1, . . . ,yN ) ∈ Ω1:
7: ξ ≥ 1

N

∑N
i=1(∆(yi,yi) + ⟨w, δΨi(yi,yi)⟩)

8: ∀(y′
1, . . . ,y

′
N ) ∈ Ω2:

9: ζ ≥ 1
N

∑N
i=1(∆(y′

i,yi) + ⟨w, δΨi(y
′
i,yi)⟩)

10: for i = 1 to N do
11: yi ← argmaxyi∈Yi

{∆(yi,yi) + ⟨w, Ψ(xi,yi)⟩} (modified Viterbi to find the
most violated candidate labels)

12: y′
i ← argmaxyi∈Y/Yi∪{yi}{∆(yi,y

′
i) + ⟨w, Ψ(xi,y

′
i)⟩} (modified Viterbi to

find the most violated non-candidate labels)
13: end for
14: if ξ + ϵ1 < 1

N

∑N
i=1(∆(yi,yi) + ⟨w, δΨi(yi,yi)⟩) then

15: Ω1 ← Ω1 ∪ {(y1, . . . ,yN )}
16: f = false
17: end if
18: if ζ + ϵ2 < 1

N

∑N
i=1(∆(y′

i,yi) + ⟨w, δΨi(y
′
i,yi)⟩) then

19: Ω2 ← Ω2 ∪ {(y′
1, . . . ,y

′
N}

20: f = false
21: end if
22: until f is true

4.3 Convergence

It is easy to see that during each cutting plane iteration, at most two constraints
will be added to the constraint sets. Following the ideas in [1, 2], we show that
the 2-slack cutting plane algorithm will converge in at most a non-trivial fixed
number of iterations by proving the following theorems.

Theorem 4. In each iteration of Algorithm 3, the value of the dual objective of
Equation 5 increases at least

µ =
1

2
min{ε1C1, ε2C2,

ε21
4P 2

,
ε22
4Q2

,
(ε1 + ε2)

2

4P 2 + 4Q2 + 8PQ
},

where

P 2 = max
i,yi∈Yi,y′

i∈Yi

∥δΨi(yi,y
′
i)∥

2
(6)

Q2 = max
j,yj∈Y/Yj ,y′

j∈Yj

∥∥δΨj(yj ,y
′
j)
∥∥2 . (7)

Sketch of the Proof. We prove this theorem by first proving the following lem-
mas:
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Lemma 1: If only one constraint is added to the first constraint set in one itera-
tion, the increment of the dual objective is lower bounded by 1

2 min{ε1C1, ε
2
1/4P

2}.
Lemma 2: If only one constraint is added to the second constraint set in one iter-

ation, the increment of the dual objective is lower bounded by 1
2 min{ε2C2,

ε22
4Q2 }.

Lemma 3: If two constraints are added to the two constraint set respectively,
the increment of the dual objective is lower bounded by

1

2
min{(ε1 + ε2)min{C1, C1},

(ε1 + ε2)
2

4P 2 + 4Q2 + 8PQ
}.

In each iteration, if some constraints are added, the increment of the dual objec-
tive is bounded by these three lemmas; if no constraint is added, the algorithm
simply halts, and hence we can draw the conclusion that for each cutting plane
iteration, the value of the dual objective will be increased by at least

µ =
1

2
min{ε1C1, ε2C2, (ε1 + ε2)min{C1, C2},

ε21
4P 2

,
ε22
4Q2

,
(ε1 + ε2)

2

4P 2 + 4Q2 + 8PQ
} (8)

=
1

2
min{ε1C1, ε2C2,

ε21
4P 2

,
ε22
4Q2

,
(ε1 + ε2)

2

4P 2 + 4Q2 + 8PQ
} (9)

The detail of the proof is as follows.

Proof. We assume that the 2 constraints sets are Ω1 and Ω2, and ω1 = |Ω1|,
ω2 = |Ω2|. The original 2-slack formulation is

min
w,ξ,ζ

1

2
∥w∥2 + C1ξ + C2ζ (10)

∀(y1, . . . ,yN ) ∈ Ω1 (11)

ξ ≥ 1

N

N∑
i=1

(∆(yi,yi) + ⟨w, δΨi(yi,yi)⟩) (12)

∀(y′
1, . . . ,y

′
N ) ∈ Ω2 (13)

ζ ≥ 1

N

N∑
i=1

(∆(y′
i,yi) + ⟨w, δΨi(y

′
i,yi)⟩) (14)

Moreover, we let (y
(i)
1 , . . . ,y

(i)
N ) be the i-th constraint inΩ1, and (y

(j+ω1)
1 , . . . ,y

(j+ω1)
N )

be the j-th constraint in Ω2.
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The Lagrangian of the original 2-slack formulation is given by

L(w, ξ, ζ, α) =
1

2
∥w∥2 + C1ξ + C2ζ

+

ω1∑
i=1

αi[
1

N

N∑
j=1

(∆(y
(i)
j ,yj) + ⟨w, δΨj(y

(i)
j ,yj)⟩)− ξ]

+

ω1+ω2∑
i=ω1+1

αi[
1

N

N∑
j=1

(∆(y
(i)
j ,yj) + ⟨w, δΨj(y

(i)
j ,yj)⟩)− ζ] (15)

Differentiating with respect to w gives

w =

ω1+ω2∑
i=1

αi
1

N

N∑
j=1

δΨj(yj ,y
(i)
j ) (16)

Differentiating with respect to ξ and ζ gives

ω1∑
i=1

αi = C1 (17)

ω1+ω2∑
i=ω1+1

αi = C2 (18)

Plugging w and constraints on α results in the dual problem:

max
α

ω1+ω2∑
i=1

αi∆(i)− 1

2

ω1+ω2∑
i=1

ω1+ω2∑
j=1

αiαjK(i, j) (19)

ω1∑
i=1

αi = C1 (20)

ω1+ω2∑
i=ω1+1

αi = C2 (21)

where ∆(i) is defined as ( 1
N

∑N
j=1 ∆(y

(i)
j ,yj)), and K(i, j) is the entry on the

i-th row, the j-th column of the kernel matrix K defined by

K(i, j) = [
1

N

N∑
k=1

δΨk(yk,y
(i)
k )]T [

1

N

N∑
k=1

δΨk(yk,y
(j)
k )] (22)

Lemma 1 : Only one constraint is added toΩ1. Let the constraint be (y
(ω1+ω2+1)
1 , . . . ,y

(ω1+ω2+1)
N ).

We let α be the solution of the dual problem before adding this constraint.
To lower bound the progress made by the algorithm, we consider the increase in
the dual that can be achieved with a line search

max
0≤β≤C1

{D(α+ βη)} −D(α) (23)
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where we construct η as:

ηi = − 1

C1
αi for 1 ≤ i ≤ ω1 (24)

ηi = 0 for ω1 + 1 ≤ i ≤ ω1 + ω2 (25)

ηi = 1 for i = ω1 + ω2 + 1 (26)

We now need a lower bound for ∇D(α)T η and an upper bound for ηTKη.

Note that ∂D(α)
∂αi

= ∆(i)−
∑ω1+ω2

j=1 αjK(j, i) = ξ for αi ̸= 0, 1 ≤ i ≤ ω1 and
∂D(α)

∂αω1+ω2+1
= ∆(ω1 + ω2 + 1) −

∑ω1+ω2

j=1 αjK(j, ω1 + ω2 + 1) = ξ + γ1 ≥ ξ + ε1,

indicating that ∇D(α)T η = γ1 ≥ ε1.

On the other hand, we have

ηTKη = K(ω1 + ω2 + 1, ω1 + ω2 + 1)−

2

C1

ω1∑
i=1

αiK(i, ω1 + ω2 + 1)+

1

C2
1

ω1∑
i=1

ω1∑
j=1

αiαjK(i, j) (27)

≤ P 2 +
2

C1
C1P

2 +
1

C2
1

C2
1P

2 (28)

= 4P 2 (29)

Thus by using Lemma 2 in [1], the value of the objective will increase at least

max
0≤β≤C1

{D(α+ βη)} −D(α) ≥ 1

2
min{ε1C1,

ε21
4P 2

} (30)

Lemma 2: Only one constraint is added to Ω2. Again let the constraint be

(y
(ω1+ω2+1)
1 , . . . ,y

(ω1+ω2+1)
N ).

Using the same routine, we consider the increase in the dual that can be
achieved with a line search

max
0≤β≤C2

{D(α+ βη)} −D(α) (31)

where we construct η as:

ηi = 0 for 1 ≤ i ≤ ω1 (32)

ηi = − 1

C2
αi for ω1 + 1 ≤ i ≤ ω1 + ω2 (33)

ηi = 1 for i = ω1 + ω2 + 1 (34)

We now need a lower bound for ∇D(α)T η and an upper bound for ηTKη.
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Note that ∂D(α)
∂αi

= ∆(i)−
∑ω1+ω2

j=1 αjK(j, i) = ζ for αi ̸= 0, ω1+1 ≤ i ≤ ω1+

ω2 and
∂D(α)

∂αω1+ω2+1
= ∆(ω1+ω2+1)−

∑ω1+ω2

j=1 αjK(j, ω1+ω2+1) = ζ+γ2 ≥ ζ+ε2,

indicating that ∇D(α)T η = γ2 ≥ ε2.

On the other hand, we have

ηTKη = K(ω1 + ω2 + 1, ω1 + ω2 + 1)−

2

C2

ω1+ω2∑
i=ω1+1

αiK(i, ω1 + ω2 + 1)+

1

C2
2

ω1+ω2∑
i=ω1+1

ω1+ω2∑
j=ω1+1

αiαjK(i, j) (35)

≤ Q2 +
2

C2
C2Q

2 +
1

C2
2

C2
2Q

2 (36)

= 4Q2 (37)

Thus by using Lemma 2 in [1], the value of the objective will increase at least

max
0≤β≤C2

{D(α+ βη)} −D(α) ≥ 1

2
min{ε2C2,

ε22
4Q2

} (38)

Lemma 3: One constraint is added to Ω1 (let it be (y
(ω1+ω2+1)
1 , . . . ,y

(ω1+ω2+1)
N ))

and one constraint is added to Ω2 (let it be (y
(ω1+ω2+2)
1 , . . . ,y

(ω1+ω2+2)
N )).

We consider the increase in the dual that can be achieved with a line search

max
0≤β≤min{C1,C2}

{D(α+ βη)} −D(α) (39)

where we construct η as:

ηi = − 1

C1
αi for 1 ≤ i ≤ ω1 (40)

ηi = − 1

C2
αi for ω1 + 1 ≤ i ≤ ω1 + ω2 (41)

ηi = 1 for i = ω1 + ω2 + 1, ω1 + ω2 + 2 (42)

Note that ∂D(α)
∂αi

= ∆(i) −
∑ω1+ω2

j=1 αjK(j, i) = ξ for αi ̸= 0, 1 ≤ i ≤ ω1;
∂D(α)
∂αi

= ∆(i) −
∑ω1+ω2

j=1 αjK(j, i) = ζ for αi ̸= 0, ω1 + 1 ≤ i ≤ ω1 + ω2;
∂D(α)

∂αω1+ω2+1
= ∆(ω1 + ω2 + 1) −

∑ω1+ω2

j=1 αjK(j, ω1 + ω2 + 1) = ξ + γ1 ≥ ξ + ε1
∂D(α)

∂αω1+ω2+2
= ∆(ω1 + ω2 + 2) −

∑ω1+ω2

j=1 αjK(j, ω1 + ω2 + 1) = ζ + γ2 ≥ ζ + ε2,

indicating that ∇D(α)T η = γ1 + γ2 ≥ ε1 + ε2.
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On the other hand, we have

ηTKη = K(ω1 + ω2 + 1, ω1 + ω2 + 1)+

K(ω1 + ω2 + 2, ω1 + ω2 + 2)+

2K(ω1 + ω2 + 1, ω1 + ω2 + 2)+

1

C2
1

ω1∑
i=1

ω1∑
j=1

αiαjK(i, j)− 2

C1

ω1∑
j=1

αjK(j, ω1 + ω2 + 1)

− 2

C2

ω1∑
j=1

αjK(j, ω1 + ω2 + 2)+

1

C2

ω1+ω2∑
i=ω1+1

ω1+ω2∑
j=ω1+1

αiαjK(i, j)−

2

C2

ω1+ω2∑
j=ω1+1

αjK(j, ω1 + ω2 + 1)−

2

C2

ω1+ω2∑
j=ω1+1

αjK(j, ω1 + ω2 + 2)

+
2

C1C2

ω1∑
i=1

ω1+ω2∑
j=ω1+1

αiαjK(i, j) (43)

≤ P 2 +Q2 + 2PQ+ P 2 + 2P 2 + 2PQ+

Q2 + 2PQ+ 2Q2 + 2PQ (44)

= 4P 2 + 4Q2 + 8PQ (45)

Thus by using Lemma 2 in [1], the value of the objective in this case will
increase at least

max
0≤β≤min{C1,C2}

{D(α+ βη)} −D(α) ≥

1

2
min{(ε1 + ε2)min{C1, C2},

(ε1 + ε2)
2

4P 2 + 4Q2 + 8PQ
} (46)

Theorem 5. The value of the dual objective of Equation 5 is upper bounded by
(C1∆1 + C2∆2), where

∆1 = max
i,yi∈Yi,y′

i∈Yi

∆(yi,y
′
i) (47)

∆2 = max
j,yj∈Yi,y′

j∈Y/Yj

∆(yj ,y
′
j) (48)

and a feasible starting point of the dual objective could have value 0.
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Proof.

max
α

−1

2
αTKα+

ω1+ω2∑
i=1

αi∆(i) ≤
ω1+ω2∑
i=1

αi∆(i) (49)

≤ C1∆1 + C2∆2 (50)

Buy setting Ω1 = Ω2 = {(y1, . . . ,yN )}(the initialized labels), and the cor-
responding α1 = C1, α2 = C2 and other αi’s be 0, the dual objective value
becomes 0. Note that this α is a feasible starting point.
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