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ABSTRACT

Structured data, in the form of entities and associated at-
tributes, has been a rich web resource for search engines and
knowledge databases. To efficiently extract structured data
from enormous websites in various verticals (e.g., books,
restaurants), much research effort has been attracted, but
most existing approaches either require considerable human
effort or rely on strong features that lack of flexibility. We
consider an ambitious scenario – can we build a system
that (1) is general enough to handle any vertical without

re-implementation and (2) requires only one labeled exam-

ple site from each vertical for training to automatically deal

with other sites in the same vertical? In this paper, we
propose a unified solution to demonstrate the feasibility of
this scenario. Specifically, we design a set of weak but gen-
eral features to characterize vertical knowledge (including
attribute-specific semantics and inter-attribute layout rela-
tionships). Such features can be adopted in various verticals
without redesign; meanwhile, they are weak enough to avoid
overfitting of the learnt knowledge to seed sites. Given a new
unseen site, the learnt knowledge is first applied to identify
page-level candidate attribute values, while inevitably in-
volve false positives. To remove noise, site-level information
of the new site is then exploited to boost up the true val-
ues. The site-level information is derived in an unsupervised
manner, without harm to the applicability of the solution.
Promising experimental performance on 80 websites in 8 dis-
tinct verticals demonstrated the feasibility and flexibility of
the proposed solution.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information filtering; I.5.1 [Pattern
Recognition]: Models - Statistical
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1. INTRODUCTION
With the development of search engines and knowledge

databases [2], the target for indexing and retrieval goes be-
yond keywords to more concrete and comprehensive infor-
mation, which is usually represented by structured data.
Structured data is in the form of entities and associated
attributes, e.g., a book and its attributes {title, author,
publisher}. Various categories of entities, called verticals,
have been involved in a variety of applications. For example,
for product search, it needs to collect product information
for verticals like Book, Auto, and Camera. In addition, in
each vertical, there are usually tens of thousands websites
containing related structured data. To collect structured
data from the Web, an industrial solution is desired to be
flexible to handle various vertical, scalable to deal with nu-
merous websites in each vertical, and automatic enough to
lower down human effort.

Towards such a practical solution, we consider an am-
bitious scenario in this paper. That is, to build a system
which (1) is general enough to handle any vertical without

re-implementation and (2) requires only one labeled example

site from each vertical for training to automatically deal with

other sites in the same vertical.
However, it is a non-trivial task to extract structured data

from unseen sites based on limited knowledge from only one
labeled seed site. Consider the example shown in Fig. 1,
where three verticals with associated attributes are listed to
the left, as the target of structured data extraction. For each
vertical, a seed site is labeled to indicate the occurrences
of each attribute in its pages, based on which we aim to
identify attribute values from web pages on other sites. The
challenges in the task fall into three aspects:

– Variation of attribute values. Different sites usually
deliver different values of the same attribute, leading to
the difficulty in identifying unseen values. Essentially two
reasons account for such inter-site variation. Firstly, some
attributes (e.g., book-title) correspond to numerous and
diverse values which appear in different sites unevenly and
can hardly be fully covered by a seed site. Secondly, at-
tribute values may be presented using site-specific formats
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Figure 1: An illustration of the proposed scenario: automatically extracting structured data from websites
based on one labeled seed site per vertical.

(e.g., book-author can be presented as either abbreviated
or full names).

– Variation of layout. In each vertical, the attributes
are usually presented by different sites in various manners
(e.g., not necessarily in consistent positions or in well-
formatted structures like tables), due to the various page
layout structures across sites.

– Noisy page content. Web pages usually contain much
noisy content intertwined with the target attribute values
to be extracted. For instance, a book page may contain
multiple date-type content besides the value of attribute
publish-date we target on.

Related to the scenario we are concerned with, much re-
search effort has been dedicated to extracting structured
data from web pages. One popular category of methods
relies on the DOM-tree representation of web pages [1], as
well as the fact that many web pages are generated based
on templates, which wrap data records in HTML tags. One
early stream of such template-based work is wrapper in-
duction [9, 11, 12, 18], which relies on manual annotation on
example pages of a template and learns wrappers used for
data extraction from other pages of that template. These
methods can hardly scale up to large number of sites due to
the considerable human effort required for both labeling un-
seen sites and maintaining wrappers of observed sites with
periodically updated templates. To alleviate human labor,
some unsupervised methods are proposed to extract struc-
tured data automatically, by deducing a template from a set
of pages [4,7] or by identifying repetitive patterns from a sin-
gle page [6, 10, 17]. One major drawback of such methods
lies in the disregard of semantics and consequent require-
ment for human effort to identify attribute values from all
the extracted content.

Another category of methods further consider semantics
during automatic data extraction by exploiting the content
and page layout features (e.g., positions, font sizes), other
than HTML tags, of web pages in a unified manner. For in-
stance, extensions of CRFs (conditional random fields) are
proposed to predict semantics of web page elements based
on individual elements and their interrelationships in two-
dimensional [19] or hierarchical [20] layout structures. How-
ever, such CRF-based methods are not general enough to
handle various verticals, but rather rely on carefully de-
signed features specific to a target vertical. The semantic
features adopted in [5] are more general to handle various
verticals, but it still needs to train the model based on a
number of example pages from various websites to avoid
overfitting, leading to labor-intensive burden of preparing
training data. Detailed comparisons of our method and [5]
will be introduced in the experiments.

In this work, we aim to figure out a unified solution for
structured web data extraction, with flexibility to various
verticals and minimal human effort for labeling examples.
To achieve this goal, we combine the information consid-
ered by above two categories of existing approaches, that
is, to (a) exploit content and layout structures of pages and
simultaneously (b) take advantage of interrelationships be-
tween template-generated pages. On one hand, we propose
to derive relatively weak but general features from page con-
tent and layout structures. Such features keep capability
of characterizing vertical knowledge learnt from a seed site
to identify attribute values from new sites. In contrast to
vertical-specific strong features, these features can be ap-
plied in various verticals without redesign; meanwhile, they
are weak enough to avoid overfitting of the learnt knowledge
to seed sites. On the other hand, to compensate the possible

776



performance loss compared with solutions relying on strong
features, we boost the preliminary page-level results by ex-
ploiting site-level information, based on the assumption that
there are strong interrelationships between pages from the
same website.
In general, site-level information leads to two main bene-

fits as follows.

– Providing useful features. Based on site-level statis-
tics, we can derive features useful to identify true attribute
values and filter out noise. For instance, duplicate ele-
ments among pages can be identified by analyzing inter-
page redundancy, and serve as contexts of their adjacent
elements to provide semantic hints.

– Boosting page-level attribute identification. Site-
level information can serve as inter-page constraints to
boost page-level identification of attribute values. Be-
cause an incorrect decision on a page element could get
revised by referring to the decisions made on many cor-
responding elements on other pages (e.g., via a majority
voting). In this way, occasionally identified false posi-
tives on some pages can get removed, while the true pos-
itives which receive sufficient supports from many pages
are boosted up.

Moreover, such site-level information is derived in an un-
supervised manner from each website, without involving bur-
den of additional human labor.
Based on the above ideas, a unified solution is proposed

in this paper for automatically extracting structured data
for an arbitrary vertical and associated attributes. Specifi-
cally, we design a set of general features to characterize ver-
tical knowledge, including attribute-specific semantics and
inter-attribute layout relationships, derived from a seed site
with labeled attribute values. For a given new site in the
same vertical, the learnt vertical knowledge is first applied
to identify candidate attribute values at the page level. As
the knowledge is relatively weak, such page-level results in-
evitably contain false positives. To further remove noise,
site-level information of the new site is then exploited to
boost up the true values in an unsupervised way. We evalu-
ated the proposed solution on 80 websites in 8 distinct verti-
cals and obtained promising results, verifying the feasibility
and flexibility of the proposed solution.
The rest of this paper is organized as follows. We first

refer to related work in Section 2, and outline the proposed
solution in Section 3. The algorithm details are introduced
from Section 4 to Section 6. Experimental results are re-
ported in Section 7. In Section 8, we conclude the paper
and discuss some future directions.

2. RELATED WORK
Extracting structured data from web pages has been stud-

ied extensively. An early stream of research focuses on
wrapper induction [9, 11, 12], which relies on manually an-
notated examples to learn data extraction rules. A more
recent work [18] further combines template detection with
wrapper generation to improve extraction accuracy. Such
approaches are semi-automatic and difficult to be scaled up,
due to the human labor required for labeling pages of new
sites. Another category of automatic approaches deduce
templates from web pages sharing identical format. For in-
stance, Roadrunner [7] generates a template by comparing

the current template with more pages, while EXALG [4] de-
duces templates by analyzing co-occurrence of tokens across
pages. One common limitation of these approaches is that
they do not concern the semantics of extracted data; whereas
we aim to extract structured data corresponding to specified
semantics (i.e., vertical attributes).

To better leverage sematic information, a series of research
efforts have been dedicated to content analysis of web pages.
In [8], keyword distributions are learnt from an existing
knowledge base and used to annotate web pages. Besides
prior knowledge, machine learning techniques are also uti-
lized. For instance, Zhu et al. [19, 20] propose CRF-based
probability models to exploit the contents and page layout
features of web pages for data record detection and semantic
labeling. These methods rely on either existing vertical spe-
cific knowledge or abundant training data, and thus are not
suitable for our scenario where flexibility for various verticals
and minimal human effort are desired.

In recently years, some approaches are proposed to ex-
tract information within specific verticals. In [16], struc-
tured data in web forums is extracted by exploiting site-
level knowledge, including interrelationships between homo-
geneous pages and linkages between heterogeneous pages.
In [15], the authors present an unsupervised approach to ex-
tract information from online job advertisement documents
in different domains. In contrast to these works, our work
targets on a general solution for various verticals.

We also noticed that there is a very recent work [14] which
addresses a similar scenario of learning wrappers from one
website and adapting them to other sites. In [14], the au-
thors focus on generative probabilistic model-based machine
learning. By contrast, we are concerned more with the ex-
ploitation of site-level information and DOM structures than
sophisticated learning models. Although our lightweight so-
lution only adopts off-the-shelf learning techniques, the per-
formance is still competitive with that reported in [14]1.

3. FRAMEWORK OVERVIEW
In our scenario, a specific task takes as input a vertical

(e.g., book) associated with a set of attributes and a labeled
seed site, and aims to extract attribute values from an un-
seen site in the same vertical. By representing each web
page as a DOM tree, the task is essentially to identify the
text nodes, i.e., leaf nodes with text-type values in DOM
trees, that contain values of each target attribute.

The basic flowchart of the proposed solution is shown in
Fig. 2. Given a labeled website as seed, we first extract fea-
tures from its pages and learn vertical knowledge. Then,
given a site previously unseen, we randomly sample a set of
pages for the sake of efficiency in subsequent processing. Af-
ter extracting features from these sample pages, the learnt
knowledge is applied to the new site to identify attribute
values. Such extraction results further serve as substitutes
of manually labeled examples required in wrapper induc-
tion [18], to generate wrappers for structured data extraction
from the entire page collection of the new site. Optionally,
together with the extracted attribute values, the new site
could serve as another “labeled” seed to provide additional
vertical knowledge, in a bootstrapping manner.

1The extensive comparisons to the above state-of-the-art
methods (e.g., [14]) are in our future plan. It still needs
considerable efforts to implement these algorithms.
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Figure 2: The flowchart of the proposed solution,
which consists of three components: (a) feature ex-
traction, (b) learning vertical knowledge, and (c)
adapting to a new website.

As shown in Fig. 2, the algorithms of the solution are
mainly distributed in three components, namely feature ex-

traction, learning vertical knowledge, and adapting to a new

website. These components are summarized as follows.

– Feature extraction takes multiple pages from a site as
input and output a set of text nodes associated with con-

tent , context , and layout features. Details of this com-
ponent are introduced in Section 4.

– Learning vertical knowledge learns two kinds of verti-
cal knowledge from a seed site based on its attribute labels
and extracted features. Knowledge of attribute-specific
semantics is derived from content and context features
for each attribute, while knowledge of inter-attribute

layout is derived from layout features. Details of this
part are presented in Section 5.

– Adapting to a new website exploits the learnt ver-
tical knowledge to identify attribute values from a new
site in three steps. In page-level semantic prediction,
the learnt semantic knowledge is applied to predict the
semantics of text nodes in each page. In inter-page ag-

gregation, the page-level results are aggregated at the
site level to get revised. In inter-attribute re-ranking,
the learnt layout knowledge is utilized to figure out the
optimal results from both the semantic and layout per-
spectives. This component is described in Section 6.

4. FEATURE EXTRACTION
As described in Section 3, in this paper, we focus on iden-

tifying attribute values contained in text nodes. Other types
of leaf nodes in DOM trees (e.g., the image node represent-
ing rating score in Fig. 3 (a)) are out of our scope. For a set
of pages from a given site, we parse them into DOM trees
to obtain text nodes, from which three categories of features
are extracted, including layout features, content features and
context features. These features are described in the follow-
ing three subsections, respectively.

4.1 Layout Features
Layout features describe the properties of a text node as

a visual element on screen, when it is rendered via a web
browser (e.g., Internet Explorer). Layout information can
help characterize both the intra-page and inter-page rela-
tionships between text nodes.

h1

text

em

text

a

div

span

image

a

...

Khaled 

Hosseini

The Kite Runner

by

...

...

t1

t3

t2

text

(a)

(b)

DOM-treeWeb Page

Node Dom Path Visual Size Visual Position

t1 /html/body/div/div/div/div/h1/text (256, 32) (0, 766)

t2 /html/body/div/div/div/div/h1/em/text (24, 16) (0, 798)

t3 /html/body/div/div/div/div/h1/em/a/text (120, 16) (24, 798)

Figure 3: Illustrations of (a) text nodes in a DOM
tree and (b) layout features associated with a text
node: DOM path, visual size and visual position.

In this paper, we leverage three types of layout features
listed as follows.

– DOM path of a text node t, denoted by dom(t), is its
corresponding root-to-leaf tag path, which roughly char-
acterizes its location in the DOM tree.

– Visual size of a text node t is a pair 〈width(t), height(t)〉
namely the width and height (in pixels) of its correspond-
ing bounding box2 on screen in web page rendering.

– Visual position of a text node t is the 2-D coordinates of
the top-left vertex of its bounding box, denoted as another
pair in pixels 〈left(t), top(t)〉.

For illustration, Fig. 3 (b) lists some example layout features
of the text nodes in Fig. 3 (a).

4.2 Content Features
Content features correspond to the textual values con-

tained in text nodes, and are very useful for characterizing
the semantics of text nodes. In this paper, the value con-
tained in a text node t is denoted by vt, based on which five
types of content features are extracted.

Unigram set. There are a number of attributes corre-
sponding to values that come from a limited lexicon (e.g.,
NBA team) or contain some representative terms with high
frequencies (e.g., the term “press” is very common in val-
ues of book publisher). Intuitively, pre-defined attribute-
specific lexicons can help identify such kind of attributes, but
it is labor-intensive to build lexicons manually for numerous
attributes within various verticals. Instead, we leverage un-
igram as a general feature to characterize such information.
Specifically, the unigram set of a text node t is defined as
the set of tokens in vt,

unigram(t) = {w|w ∈ vt},

where vt is split on whitespace into tokens {w}.

Token count. The values of many attributes consist of
a relatively fixed number of tokens. For instance, person

2The bounding box of a DOM node can be retrieved using
programming interfaces provided by web browsers, such as
the APIs for Internet Explorer [3].
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name usually contains 2 ∼ 4 terms. To enable learning of
such knowledge from a labeled website, we define the token

count of a text node t as a numerical feature,

token count(t) = |unigram(t)|.

Character count. It is observed that sometimes token-
level granularity is still too coarse to distinguish between val-
ues of different attributes. For instance, both ISBN-13 and
ISBN-10 of book contain only one token, while ISBN-13 has
13 digits and ISBN-10 has only 10. Hence, complementary
to token count, a feature in a finer granularity is required
to characterize the length of textual values. Here, we adopt
the character count of a text node t,

char count(t) =
∑

w∈unigram(t)

number of characters(w).

Character type. A variety of attributes correspond to
values composed of specific types of characters. For example,
values of price often contain digits and symbols (e.g., $, £).
The occurrences of different character type are descriptive
to such attributes, and are utilized by some existing work in
a separate way (e.g., directly using the occurrences of some
specific characters as features). To be flexible to various
attributes, we focus on three general character types (i.e.,
letter, digit, and symbol) and define the character type of a
text node t as a vector that encodes the proportion of each
character type among all non-whitespace characters in vt,

char type(t) = (clettert , cdigitt , csymbol
t ),

where c∗t is the proportion of corresponding character type.

Page redundancy. We also observe that some attributes
have distinct value redundancies. For instance, in the verti-
cal restaurant, the attribute cuisine has very redundant
values while name has almost unique values. Therefore, value
redundancies of text nodes among pages are potentially help-
ful for predicting their semantics. Specifically, we define the
page redundancy of a text node t as

page redundancy(t) = |Pvt | / |Pall|,

where Pvt is the set of pages that contain at least one text
node with the value vt, and Pall is the entire set of input
pages. Note that the numerator is defined analogous to the
document-frequency (DF) of a term in information retrieval,
since what we concern is the inter-page redundancy rather
than intra-page duplicates.

4.3 Context Features
In contrast to layout features and most content features,

context features exploit site-level information to capture the
surrounding text indicating semantics of text nodes. Actu-
ally, we have observed on many websites that the presented
attribute values are preceded by some text that indicates
their semantics (e.g., “Publisher:” preceding to a book pub-

lisher value). This kind of text serves as site-level context
to co-occur with corresponding attribute values extensively
across pages, and thus can help identify values of such at-
tributes if properly exploited.
Some existing approaches identify attribute values by seek-

ing matches between handcrafted context lists and surround-
ing text of text nodes. However, these attribute-specific con-
text lists require much human effort to create. Therefore, it

DistH(t1,t2)

Oxford Press
Publisher:

width(t)

Pub. Date: April, 2010

VisDist(t,t1)

VisDist(t,t2)

t

t3t2
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(a)

height(t)

3 height(t)
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width(t1)
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DistH(t1,t2) = max (0, W-width(t1)-width(t2))

(b)

DistV(t1,t2)
VisDist(t1,t2)

Figure 4: Illustrations of (a) identifying the preced-
ing text of a text node t and (b) calculating the vi-
sual distance V isDist(t1, t2) between two text nodes
t1 and t2 when they are rendered on screen.

is highly desired to design features that automatically cap-
ture such context as semantic clues. Besides, we also notice
that the values of some attributes tend to contain common
prefixes and/or suffixes, which potentially indicate and char-
acterize the semantics of attribute values. Although such
prefixes/suffixes are actually parts of text node values, we
take them as a type of context because they serve as site-
level semantic clues. Based on the above considerations, we
propose two types of context features as described below.

Preceding text of a text node t, denoted by preceding(t),
is defined as the value of its preceding text node t∗ that is
constrained to be:

– located to the top-left of t and within a rectangle propor-
tional to the visual size of t, as shown in Fig. 4 (a).

– associated with high page redundancy (exceeding an em-
pirical threshold such as 0.5). Here the preceding node
is required to be sufficiently redundant among pages, be-
cause the context is expected to be static at the site level.

– more close to t than any other candidates that meet the
previous two criteria (higher page redundancy is preferred
for the case of equal distance). As illustrated in Fig. 4 (b),
the visual distance between two nodes is defined as

V isDist(t1, t2) =
√

DistH(t1, t2)2 +DistV (t1, t2)2.

For the example case in Fig. 4 (a), t1 is determined to be
the preceding node of t, yielding the preceding text “Pub-
lisher :” for the value “Oxford Press”. When no preceding
text node identified, preceding(t) is defined as null.

Prefix and Suffix of a text node t, denoted by prefix(t)
and suffix(t), are defined as the beginning and ending sub-
string (within its value vt) commonly shared by lots of text
nodes across pages. Given a set of text nodes coming from
multiple pages, we extract their prefix and suffix features in
three steps as follows.

1. Group values of text nodes in terms of rough formats,
which are obtained by summarizing successive letters
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Price: 0.99 EUR

Price: {dig}.{dig} EUR

Figure 5: An illustration of identifying prefixes and
suffixes. Text strings are grouped according to their
formats, based on which popular sub-strings are dis-
covered as prefixes or suffixes.

and digits with wildcards {letter} and {digit} (e.g., the
format of “2.36 cm” is “{digit}.{digit} {letter}”).

2. For each group, further cluster text nodes according to
their specific sub-strings.

3. Prefixes and suffixes are identified based on those sub-
groups which contain text nodes from a sufficient pro-
portion (e.g., 50%) of pages.

As an example shown in Fig. 5, a set of values in the for-
mat “{letter}: {digit}.{digit} {letter}” are categorized into
four sub-groups to extract prefixes and suffixes.

5. LEARNING VERTICAL KNOWLEDGE
In this section, we describe the detailed methods used to

learn vertical knowledge from a seed site. Given a spec-
ified vertical and associated set of m attributes, denoted
as A = {a1, . . . , am}, we aim to learn two kinds of, namely
attribute-specific and inter-attribute, vertical knowledge. For
attribute-specific knowledge, we mainly focus on character-
izing the semantics of each single attribute aj ∈ A based
on content and context features extracted from text nodes
labeled with aj . For inter-attribute knowledge, we target
on characterizing the layout relationships between attribute
based on the layout features of corresponding text nodes.
The learning of such two kinds of knowledge is detailed in
the following two subsections, respectively.

5.1 Learning Attribute-Specific Semantics
Given a set of text nodes from a labeled seed site, we learn

the semantic knowledge of each attribute aj ∈ A from a sub-
set Tj of text nodes that are labeled as containing values of
aj . A straightforward idea is to combine all the features
directly using a unified model. However, the content and
context features have quite different behaviors – content fea-
tures provide statistic evidences that can be adopted to eval-
uate any input text; while context features show indicative
hints which are sufficient but not necessary. More specifi-
cally, matching of context features gives a strong confidence
to acknowledging an attribute, but mismatching does not
mean denying since context of an attribute may vary across
websites. Therefore, we propose to exploit content and con-
text features separately, to benefit from both of them.
For each attribute aj , a classifier is trained to incorporate

all the five types of content features described in Section 4.2.
As different content features are heterogeneous and with dif-
ferent scales, each feature is first normalized into [0, 1]. For

the unigram set, frequencies of tokens are first counted from
{unigram(t) | t ∈ Tj}, and then each unigram set is normal-
ized based on the average frequency of its element token(s).
For the character type with vector values, each feature value
is converted to the cosine similarity to the mean of feature
values in {char type(t) | t ∈ Tj}. And for the other three
content features with scalar values, the normalization is sim-
ply based on their maximums and minimums. After the
normalization, an SVM classifier is built to learn a mapping
from the content features of a text node t to an estimated
probability, ContentRel(t |aj), that t is relevant to aj .

For each attribute aj , three lookup tables are respec-
tively constructed for the preceding text, prefix, and suffix

features described in Section 4.3. Each lookup table con-
sists of feature values aggregated from text nodes in Tj . For
an unseen text node t, its context-based relevance to aj ,
ContextRel(t | aj), is defined as the percentage of t’s con-
text features matching the corresponding lookup table of aj .
Here, exact match is adopted for the sake of efficiency, while
more sophisticated measurements (e.g., edit distance) are
also feasible choices.

To combine the clues of both content and context features,
the overall relevance of a text node t to an attribute aj is
estimated by

RelTN (t |aj) = max(ContentRel(t |aj), ContextRel(t |aj)).

The max operation is adopted here to properly leverage
context features. As mentioned above, context features are
sufficient but not necessary. Hence, we trust context features
if the corresponding score is high enough; otherwise, the
relevance estimation should rely only on content features.

5.2 Learning Inter-Attribute Layout
The power of page layout structures in identifying at-

tribute values has been demonstrated by existing approaches
such as [19]. In contrast to existing solutions that couple
layout and semantic information together, we treat inter-
attribute layout and attribute-specific semantics separately.
This is because the attribute layout tends to vary across
sites and should be exploited in a light-weighted manner.

In this paper, the inter-attribute layout is characterized
just using pairwise visual distances. That is, given a set of
m attributes and a seed site with attribute labels, an m×m
layout matrix A is constructed, in which each element Aij

encodes the average visual distance between the attributes
ai and aj , as

Aij =
1

wscreen

·

∑

V isDist(tai
, taj

)

|Pai

⋂
aj
|

,

where tai
and taj

are two text nodes labeled with ai and aj

respectively on a page; Pai

⋂
aj

is the set of all pages contain-
ing values of both ai and aj ; and V isDist(·, ·) is the same
one defined in Section 4.3. To handle the inter-site varia-
tions of page size, the average distance is further normalized
by the whole rendering width of a page, wscreen, which is
almost consistent for every page in the same website.

An illustrative example is given in Fig. 6, where the inter-
attribute layout matrices of five websites in the book vertical
are visualized. From Fig. 6, it is clear that there are much
consistence between layout matrices of these five websites
(e.g., title and author are closed to each other), despite
some minor variations.
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title
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ISBN-13

publisher

publish-date

Figure 6: An illustration of the layout matrix A
for five websites from the book vertical. The darker
the matrix element, the closer the corresponding at-
tributes in rendering.

6. ADAPTING TO A NEW WEBSITE
In this section, we introduce the details of adapting the

learnt knowledge to extract structured data from an unseen
website. As aforementioned, the learnt knowledge is weak
and is just capable of indicating all possible candidate an-
swers, a major part of which consists of noisy false positives.
We will show in this section how the site-level statistics can
help filter the candidates and boost the true answer. For the
sake of efficiency, the adaptation is based on a set of pages
Psample randomly sampled from the new website.

6.1 Page-Level Semantic Prediction
Given a page p ∈ Psample, we extract its text nodes as

well as the content and context features for each node. Fol-
lowing Section 5.1, each text node t is associated with an
m-dimensional vector

(RelTN (t |a1), . . . , RelTN (t |am)),

which indicates its relevance scores to all the attributes. To
determine the value of an attribute aj on the page p, the
simplest way is to assign it with the text node taj

taj
= argmax

t
RelTN (t |aj).

6.2 Inter-Page Aggregation
The page-level results of semantic prediction are inevitably

not accurate enough, due to the inter-site variations and
weak features used to characterize vertical knowledge. There-
fore, we resort to site-level information to boost these prelim-
inary results, by exploiting inter-page dependencies on the
new site. In other words, the semantics of some text nodes
are highly consistent to some other text nodes in other pages,
and thus we can get more accurate predictions by consider-
ing them simultaneously.
To leverage such inter-page dependencies, aligning text

nodes in different pages is a crucial issue. A popular method
is partial tree alignment [17], which performs partial match-
ing between DOM trees. However, partial tree alignment is
not appropriate for our task due to some reasons. First, the
pairwise alignment of DOM trees is quite time-consuming,
even for hundreds of sample pages. Furthermore, the align-
ment only considers information of HTML tags, and thus
cannot differentiate between text nodes with distinct seman-
tics but identical DOM paths3. Fig. 7 shows some statistics
on 30 websites in three verticals. It is clear that DOM paths
severely lack the ability to distinguish between text nodes.
Therefore, semantic information is required to distinguish

between text nodes in different roles. Here, we propose to
leverage the context features presented in Section 4.3. That
is, two text nodes can be aligned if they have both the same

3This is common in a table-like structure, where table cells
share almost the same HTML tags but very likely have dif-
ferent content.
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Figure 7: The average numbers (per page) of
text nodes that have identical DOM path, DOM
path+preceding text, and DOM path+preceding
text+prefix/suffix, on websites in three example
verticals.

DOM path and context features. From Fig. 7, it can be seen
that context features could help lower down the risk of mis-
alignment significantly. A set of aligned text nodes is called
a data field, denoted as D. The detailed algorithm of aggre-
gating text nodes into data fields is given in Algorithm 1.

To be statistically robust, the page-level relevance scores
of text nodes can be aggregated to data fields. Specially, the
attribute relevance vector of a data field D is computed by
averaging over its member text nodes, as

(RelDF (D |a1), . . . , RelDF (D |am)),

where RelDF (D | aj) =
1

|D|

∑

t∈D
RelTN (t | aj). Based on

such relevance scores, each attribute aj can be directly as-
sociated with the data field Daj

Daj
= argmax

D∈D

RelDF (D |aj).

The assembly

SA = {Da1
, . . . , Dam}

is called a solution to the target attributes A on the new
website. In practical, a threshold is set to remove data fields
with low relevance scores in SA, since some attributes may
be unavailable in the new site.

6.3 Inter-Attribute Re-ranking
Aggregation to site-level data fields is noise-insensitive

and more robust than page-level results. However, there are
still difficult cases such as identifying publish-date from all
date-type data fields in a book-seller site. As mentioned in
Section 5.2, attribute layout is a good complement to se-
mantics in such cases. For instance, the date-type data field
being most close to book-publisher is likely to be the real
publish-date. Therefore, it is natural to exploit character-
istics of attribute layout to re-rank those possible solutions.

To generate more than one possible solutions, we need
keep several candidate data fields for each attribute aj . Specif-
ically, data fields are first sorted in descending order accord-
ing to RelDF (D | aj). Then the sorted list is truncated at
the maximum drop point of the relevance score, yielding
top-ranked data fields as candidates for aj . Then, we enu-
merate every possible combination of attributes’ data fields
as a candidate solution to attributes A.

From the perspective of semantics, the confidence of a
candidate solution S

∗
A is defined as

Confsemantics(S
∗
A) =

m
∑

j=1

RelDF (Daj
|aj), Daj

∈ S
∗
A.
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Algorithm 1Aggregate-TextNodes-to-DataFields. Given
a set of pages Psample, returns D consisting of all possible data
fields in Psample.

1: D = ∅
2: Initialize an empty hash-table H
3: for all page p ∈ Psample do
4: for all text node t in p do
5: h = GenHashValue(dom(t), preceding(t), prefix(t), suffix(t))
6: if H contains the key h then
7: Get the data field D associated with h from H
8: Add t to D

9: else
10: Create a new data field D = {t}
11: Add to H the new key h associated with D

12: end if
13: end for
14: end for
15: for all 〈h,D〉 pair in H do
16: if |D| ≥ 0.5|Psample| then
17: Add D to D

18: end if
19: end for
20: return D

To measure the confidence from the perspective of inter-
attribute layout, we first compute the layout matrix A∗ for
S
∗
A, following the algorithm in Section 5.2. Then, analogous

to cosine similarity, the layout confidence of S∗
A is defined as

Conflayout(S
∗
A) =

〈A∗,A〉

‖A∗‖F , ‖A‖F
,

where the numerator denotes element-wise inner product,
and ‖ · ‖F is Frobenius norm. Finally, the optimal solution
SA is the one with highest overall confidence, as

SA = argmax
S∗
A

(Confsemantics(S
∗
A)× Conflayout(S

∗
A)),

where multiplication is adopted instead of addition because
the layout confidence is essentially designed for punishment.

7. EVALUATION AND DISCUSSION
In this section, we report the evaluation results of the

proposed solution on real-world structured data extraction
tasks. Extensive experiments were performed on a variety
of websites and verticals to verify the performance of both
the component algorithms and the overall system.

7.1 Experimental Settings

7.1.1 Dataset

To evaluate both the effectiveness and flexibility of our so-
lution, we constructed a dataset consisting of around 124K
pages collected from 80 websites. These websites are re-
lated to 8 semantically diverse verticals, including Autos,
Books, Cameras, Jobs, Movies, NBA Players, Restaurants,
and Universities. For each vertical, 10 popular websites
were identified by issuing queries to search engines and min-
ing the search results. For each website, 200 ∼ 2, 000 pages,
each containing structured data of one entity, were down-
loaded following the deep crawl technology in [13], given a
few manually selected pages as examples of crawling targets.
For each vertical, a set of (3 ∼ 5) common attributes were

selected as the targets of structured data extraction. To
label the ground-truth of each website, a few handcrafted

Table 1: Overview of the experimental dataset.
Vertical #Sites #Pages Attributes

Autos 10 17,923 model, price, engine, fuel-economy

Books 10 20,000
title, author, ISBN-13,

publisher, publish-date

Cameras 10 5,258 model, price, manufacturer

Jobs 10 20,000 title, company, location, date

Movies 10 20,000 title, director, genre, rating

NBA Players 10 4,405 name, team, height, weight

Restaurants 10 20,000 name, address, phone, cuisine

Universities 10 16,705 name, phone, website, type

regular expressions were carefully prepared, to tag corre-
sponding attribute values on each page. An overview of the
dataset is given in Table 14.

7.1.2 Performance Metrics

For vertical knowledge learning, all the pages in a seed site
were involved; when adapting to another website, 50% pages
from the new site were randomly selected for the adaptation.
For testing performance, the evaluations were based on all
the pages except for those from the seed site.

Precision and recall, as well as the F-score, were adopted
as performance metrics in the evaluation. For each attribute,
precision of a method is the number of pages whose ground-
truth attribute values are correctly extracted, called page
hits, divided by the number of pages from which the method
extracts values; while recall is the page hits divided by the
number of pages containing ground-truth attribute values.
F-score is the harmonic mean of precision and recall. As
a side note, it is possible that a page contains more than
one ground-truth values of an attribute (e.g., co-authors of a
book); while the current solution in this paper is designed to
detect only one attribute value. For this case, an extracted
value is considered to be correct if it matches any labeled
value in the ground-truth.

7.2 From One Seed Site to a Vertical
First, the proposed solution was evaluated under the am-

bitious scenario “from one tree to a forest”. That is to say,
for each vertical, only one website was leveraged as seed
for knowledge learning. To demonstrate the contributions
of various component algorithms in the solution, we imple-
mented three versions of the proposed system, as:

– PL (page-level semantic prediction) is the version
which just outputs the page-level attribute values pre-
dicted following Section 6.1. In other words, only the weak
vertical knowledge learnt from the seed site is utilized.

– PL+IP (inter-page aggregation) is the version which
aggregates page-level results into data fields, to correct
page-level results through site-level voting. This is actu-
ally the output of Section 6.2.

– PL+IP+IA (inter-attribute re-ranking) is the full
version of the proposed solution which further re-ranks the
possible solutions according to the layout distributions of
attributes, following the details in Section 6.3.

In addition, we also implemented a state-of-the-art work,
the Stacked Skews Model (SSM) [5], whose target sce-
nario is similar to ours. Moreover, the SSM approach also
leverages site-level information, through aggregating features

4The dataset with ground-truth information is publicly
available at http://swde.codeplex.com/.
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Figure 8: Comparisons of vertical-level performance of the stacked skews model (SSM) [5], PL (page-level
semantic prediction), PL + IP (inter-page aggregation), and PL+IP+IA (inter-attribute re-ranking). The
performance of each vertical is averaged over all its attributes and websites. The vertical knowledge was
learnt based on only one seed site per vertical.

across a website. By contrast, our approach aggregates page-
level extraction results rather than raw features.
For each vertical, all its 10 sites served as the seed site in

turns to perform structured data extraction from the other
9 sites, yielding 90 runs of extraction in total. The vertical-
level performance of each method was measured as the pre-
cision and recall averaged across all runs. Fig. 8 shows the
overall results by vertical for each method, averaged across
all the attributes in each vertical.
From Fig. 8, there are several observations. First, site-

level information consistently and significantly boost the
page-level results, for all the 8 verticals. Especially for the
verticals Cameras and Restaurants, our solution can almost
correctly identify values for all the attributes. The perfor-
mance even exceeds our expectation as only one seed site was
adopted for knowledge learning. Second, our performance is
superior to that of the SSM approach, even the simplest
PL version achieved better performance than SSM on 7
verticals. This is because SSM is designed for rich train-
ing data from multiple websites and is prone to overfit when
training set is small (In Section 7.3 we will show the per-
formance of SSM based on larger training set). Another
reason is that the site-level feature aggregation is easy to be
disturbed by misalignment, since precise tree-alignment is
still an unsolved problem, as discussed in Section 6.2.
To show detailed evaluation results, we list the attribute-

level performance of our system (PL+IP+IA) in Table 2.
Although most results are very encouraging, there are still
some attributes with unsatisfied performance. We analyzed
some failure cases to diagnose the limitations of the current
solution. For height of NBA Players, the main reason is
its content format varies a lot (e.g., 1.96m, 6 ft 5 in, 6’5”,
6-5) across websites. The system has to rely on context
features which are not always available. The model of Autos
failed as there is no standard definition for this attribute.
Different websites deliver different information for the model
attribute. For instance, there are manufacturer, year, and
even engine displacement listed under this attribute. The
failure of title of Movies is due to multiple instances on
a page. A page of a movie also contains other movies as
“recommendation”. Such recommendations tend to mislead
the system away from the main entity of a page.

Table 2: Attribute-level performance of the pro-
posed solution based on single seed site (averaged
over different seed sites, in the form of “mean ±
standard deviation”).

Vertical Attribute Precision Recall F-score

model 0.46 ± 0.27 0.41 ± 0.26 0.43 ± 0.26

Autos price 0.80 ± 0.19 0.79 ± 0.19 0.80 ± 0.19

engine 0.82 ± 0.14 0.82 ± 0.14 0.82 ± 0.14

fuel-economy 0.81 ± 0.20 0.73 ± 0.18 0.77 ± 0.19

title 0.89 ± 0.13 0.87 ± 0.14 0.88 ± 0.14

author 0.95 ± 0.04 0.89 ± 0.04 0.92 ± 0.04

Books ISBN-13 0.84 ± 0.19 0.84 ± 0.18 0.84 ± 0.18

publisher 0.81 ± 0.06 0.81 ± 0.06 0.81 ± 0.06

publish-date 0.88 ± 0.08 0.88 ± 0.08 0.88 ± 0.08

model 0.93 ± 0.07 0.88 ± 0.06 0.90 ± 0.07

Cameras price 0.98 ± 0.04 0.90 ± 0.05 0.94 ± 0.05

manufacturer 0.96 ± 0.06 0.93 ± 0.06 0.94 ± 0.06

title 0.99 ± 0.03 0.93 ± 0.04 0.95 ± 0.04

Jobs company 0.84 ± 0.24 0.80 ± 0.22 0.82 ± 0.22

location 0.87 ± 0.07 0.84 ± 0.07 0.85 ± 0.07

date 0.79 ± 0.20 0.77 ± 0.19 0.78 ± 0.20

title 0.71 ± 0.25 0.68 ± 0.25 0.69 ± 0.25

Movies director 0.75 ± 0.11 0.80 ± 0.12 0.77 ± 0.12

genre 0.96 ± 0.04 0.91 ± 0.04 0.93 ± 0.04

rating 0.78 ± 0.23 0.75 ± 0.23 0.76 ± 0.23

name 0.84 ± 0.24 0.82 ± 0.23 0.83 ± 0.23

NBA Players team 0.82 ± 0.09 0.82 ± 0.09 0.82 ± 0.09

height 0.76 ± 0.19 0.67 ± 0.17 0.71 ± 0.18

weight 0.91 ± 0.10 0.91 ± 0.10 0.91 ± 0.10

name 0.95 ± 0.08 0.89 ± 0.07 0.92 ± 0.07

Restaurants address 0.97 ± 0.02 0.96 ± 0.02 0.96 ± 0.02

phone 1.00 ± 0.00 0.98 ± 0.01 0.99 ± 0.00

cuisine 0.98 ± 0.07 0.94 ± 0.06 0.96 ± 0.06

name 0.97 ± 0.05 0.95 ± 0.06 0.96 ± 0.06

Universities phone 0.79 ± 0.12 0.78 ± 0.12 0.79 ± 0.12

website 0.96 ± 0.09 0.83 ± 0.08 0.89 ± 0.08

type 0.70 ± 0.29 0.68 ± 0.27 0.69 ± 0.28

7.3 Multiple Seeds and Bootstrapping
The “one seed” scenario just proves that our solution has

the ability to start with minimal human effort. Of course
the solution can take multiple websites as seeds, as well as
can accumulate vertical knowledge through bootstrapping.
For bootstrapping, we simply keep those high-confidence ex-
traction results of a website, and then consider the website
as a new seed to the system. How to combine information
from multiple seed sites is not a trivial task. Currently, we
utilize a straightforward strategy without changing the sys-
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Table 3: Average F-scores of the proposed solution
based on multiple seed sites.

#Seeds 1 2 3 4 5

Our Solution 0.843 0.860 0.868 0.884 0.886

Our Solution (Bootstrap) 0.843 0.856 0.861 0.859 0.865

SSM 0.630 0.645 0.692 0.719 0.741

tem implementation too much. That is, an unseen website
is evaluated based on each seed site independently, and the
final solution is the one with the highest confidence score.
Table 3 shows the average F-scores of the proposed solu-

tion based on multiple seed sites. These seed sites can be
manually labeled (i.e., those in the ground-truth) or auto-
tagged through bootstrapping. For comparison, we also
trained the SSM model on multiple seeds manually labeled.
From Table 3, we can see that the more websites involved in
learning, the better the performance. When the seed sites
were tagged through bootstrapping, the performance is a lit-
tle worse than using manually labeled seeds. It is reasonable
as the bootstrapping may introduce false examples into the
learning process. Although the SSM method also benefits
from more seed sites, its performance is still lower than the
proposed solution. This again indicates the layout informa-
tion (which was not fully adopted in SSM) is necessarily
complementary to semantics to promote the performance.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a unified solution for extract-

ing structured data from web sites based on one seed site
given for a target vertical. The solution is general enough
to tackle various verticals and relies on limited human effort
to label one site for each vertical. A set of weak but general
features are designed to characterize both semantic and lay-
out knowledge of an arbitrary vertical. From a labeled seed
site, we first extract features and learn vertical knowledge.
Then, given a new site, the learnt knowledge is adapted to
the site by exploiting site-level information, resulting in au-
tomatically identified attribute values for further wrapper
induction. Experimental evaluations on 80 web sites in 8 di-
verse verticals showed promising results and demonstrated
the feasibility and flexibility of the solution.
We consider several future directions to improve the pro-

posed solution. First, a more principled strategy is desired
to explicitly model and bridge the inter-site gaps in content
and layout, with the number of observed sites increasing.
Second, the solution could be combined with data record
detection techniques to handle multiple entities in a page.
From an experimental perspective, more extensive compar-
isons can be drawn to related approaches based on the pub-
lished dataset. Moreover, it would be interesting to analyze
the interactions among features, attributes, and seed sites,
to get insight on feature design and seed site selection.
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