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Abstract

We consider the problem of designing mechanisms that interact with strategic agents through
strategic intermediaries (or mediators), and investigate the cost to society due to the mediators’
strategic behavior. Selfish agents with private information are each associated with exactly
one strategic mediator, and can interact with the mechanism exclusively through that media-
tor. Each mediator aims to optimize the combined utility of his agents, while the mechanism
aims to optimize the combined utility of all agents. We focus on the problem of facility loca-
tion on a metric induced by a publicly known tree. With non-strategic mediators, there is a
dominant strategy mechanism that is optimal. We show that when both agents and mediators
act strategically, there is no dominant strategy mechanism that achieves any approximation.
We, thus, slightly relax the incentive constraints, and define the notion of a two-sided incentive
compatible mechanism. We show that the 3-competitive deterministic mechanism suggested by
Procaccia and Tennenholtz [12] and Dekel et al. [3] for lines extends naturally to trees, and is
still 3-competitive as well as two-sided incentive compatible. This is essentially the best pos-
sible [3, 12]. We then show that by allowing randomization one can construct a 2-competitive
randomized mechanism that is two-sided incentive compatible, and this is also essentially tight.
This result also closes a gap left in the work of Procaccia and Tennenholtz [12] and Lu et al. [8]
for the simpler problem of designing strategy-proof mechanisms for weighted agents with no
mediators on a line, while extending to the more general model of trees. We also investigate a
further generalization of the above setting where there are multiple levels of mediators.
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1 Introduction

The Algorithmic Mechanism Design literature is generally interested in the implications of strategic
behavior on the quality of social decision making. The usual assumption is that agents interact
directly with a mechanism that picks an outcome. Yet, in many complex real world settings the
interaction goes through intermediaries. If these intermediaries are acting strategically, this can
influence the outcome picked by the mechanism, and result with an increase in social cost.

Consider, for example, a political decision taken by indirect voting. There are districts, and
each district is represented by a representative. Each citizen has a position, and let us assume
the positions of the citizens are points on an interval. A decision is also a point on the interval,
and the cost for a citizen of such a point equals to the distance of her position from the decision
made. Each representative aims to minimize the total cost for his own constituency, while the
global goal is to minimize the total cost of all citizens. Decisions are taken using the reports of the
representatives exclusively (there is no direct interaction with the agents), and these representatives
have the freedom to manipulate their reports if such a manipulation helps their constituency. We
are interested in questions such as: What is the cost for society of such strategic behavior? How
should the society set up the decision process to minimize that cost?

More generally, we are interested in designing mechanisms that interact with strategic agents
through strategic intermediaries (which we also call mediators). Agents have private information,
and when put in a game, each agent acts to optimize her own utility.1 The mechanism designer
aims to optimize a social goal. The intermediaries do not have any private information of their
own, rather, each intermediary acts in the mechanism on behalf of the agents associated with him,
aiming to optimize the same social goal with respect to his agents only (note that he does not have
a personal agenda and is completely benevolent). As the intermediaries control the information
flow from the agents to the mechanism, the mechanism faces strategic behavior not only of the
agents, but also of intermediaries: within the freedom given by the mechanism, an intermediary
acts strategically to optimize on behalf of the agents he represents.2 In this paper we aim to
understand the implications of the strategic behavior of intermediaries on the welfare of the agents.

The general framework outlined above can be studied in the context of many specific settings,
and might yield very different results in different cases. Here, we focus on one such example and
leave the consideration of other settings for future works. The setting we consider is facility location
on a metric induced by a publicly known tree, which generalizes the decision making problem on a
line introduced above. There are n agents, each located at some private location. The agents are
partitioned to k disjoint sets, and each set is represented by a unique mediator. The mechanism
(or center) should locate one facility. The cost of an agent is her distance from the location of the
facility, and she aims to minimize her cost.3 The social goal considered is the goal of minimizing
the total distance of the agents from the facility.

If the center had access to the locations of all agents he could minimize the total cost by locating
the facility at a median of all locations. While all our results hold for general tree metrics, for the
sake of the exposition, in the introduction we mainly discuss the euclidian metric on an interval of
the real line. For that metric, if ti is the i-th left most agent (breaking ties arbitrarily) and n is

1Throughout the paper we refer to an agent as “she”, and to a mediator as “he”.
2We assume that an intermediary is able to manipulate the reports of his agents, and do not consider settings in

which there exists an infrastructure for sending messages between the agents and the center through the mediators
in a non-manipulable way (e.g., using cryptographic means.)

3While the general framework does not preclude transfer of utilities, in this specific model there is no money
and utilities cannot be transferred. Thus, our results for facility location can be viewed as part of the literature on
approximate mechanism design without money [12].
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odd, then there is a unique optimal location at the median location t(n+1)/2 (for even n there is an
interval of optimal locations, between the two medians). With strategic agents but no mediators
(or equivalently, with non-strategic mediators), there is a dominant strategy mechanism that is
optimal: locate the facility at a median point, breaking ties to the left. While this result gives
a complete picture for the standard model without strategic mediators, we show that with both
strategic agents and strategic mediators the picture is much more complicated. We first show that
there does not exist a dominant strategy mechanism achieving any approximation. This happens
even in a simple setting with two possible locations, a single mediator and a single agent, as if the
agent switches between the locations in her report, the mediator should switch them back, and vice
versa.

Given the impossibility to achieve a dominant strategy mechanism with good performance, we
suggest a slightly weaker solution concept for direct revelation mechanisms (in which each agent
reports her location, and each mediator reports the locations of all his agents). Our aim would
be to build mechanisms which achieve good approximation (minimize the ratio between the cost
of the outcome and the optimal cost). A mechanism is agent-side incentive compatible (agent-
side IC) if each agent has a dominant strategy to be truthful given that her mediator is truthful
(regardless of any parameter of the model, like the number of mediators, and regardless of other
players’ strategies). A mechanism is mediator-side incentive compatible (mediator-side IC) if each
mediator has a dominant strategy to be truthful given that all his agents are truthful (again,
regardless of any parameter and regardless of other players’ strategies). We aim to construct
mechanisms that are two-sided incentive compatible (two-sided IC), i.e., they are both agent-side
incentive compatible and mediator-side incentive compatible. We construct both deterministic and
randomized mechanisms, and prove that they achieve essentially the best possible performance.4

One of the settings considered by Procaccia and Tennenholtz [12] is equivalent to designing
deterministic mediator-side IC mechanisms on an interval of the real line. Their work implies that
the results of Dekel et al. [3] for regression learning induce a 3-competitive deterministic mediator-
side IC mechanism on an interval, and that this is essentially the best possible competitive ratio
for such a mechanism. The mechanism induced works as follows: for every mediator, it replaces
all points reported by the mediator by the optimal5 location for that mediator, and then finds
an optimal location with this new input (the mechanism essentially computes median of medians,
weighted by the number of agents each mediator represents).

We prove the above mechanism is also agent-side IC, and describe a simple extension of it to
general trees. This yields the following theorem.

Theorem 1.1. There exists a deterministic two-sided IC mechanism on tree metrics with a com-
petitive ratio of 3. Moreover, for any fixed ε > 0, there is no deterministic two-sided IC mechanism
with a competitive ratio of 3− ε.

Procaccia and Tennenholtz [12] raised the question whether it is possible to get a better compet-
itive ratio using randomization. They were able to answer affirmatively in the case of two mediators
representing a “similar” number of agents. Lu et al. [8] extend the analysis of the mechanism of
[12] to the case of multiple mediators representing a “similar” number of agents. However, even if
all mediators have equal number of agents, the competitive ratio of this mechanism approaches 3

4All the mechanisms we construct run in polynomial time, while our lower bounds hold independent of compu-
tational consideration. Like in prior literature in approximate mechanism design without money [12], the barrier to
optimality is incentives, not computation.

5There might be multiple optimal locations, in such cases ties need to be handled carefully to preserve incentives.
To simplify the exposition, in the introduction we assume there are no ties.
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as the number of mediators increase. On the negative side, [8] gives a hardness result of 1.33 using
a complex LP-based proof.

We suggest a new and sophisticated randomized mechanism that is 2-competitive and works
for any tree. We also prove using a simple argument that this is essentially the best possible.6

Theorem 1.2. There exists a randomized two-sided IC mechanism on tree metrics with a competi-
tive ratio of 2. Moreover, for any fixed ε > 0, there is no randomized two-sided IC mechanism with
a competitive ratio of 2− ε.

This result closes the gap left in the work of Procaccia and Tennenholtz [12] and Lu et al. [8] for
the simpler problem of designing strategy-proof mechanisms for weighted agents with no mediators
on a line, while extending to the more general model of trees.

For the case of locations on an interval of the real line the mechanism works as follows. For
every mediator it replaces all points reported to the mediator by the optimal location for that
mediator. For simplicity assume that the number of agents can be divided by 4. Then, it sorts
the locations and uses a uniformly selected point among the n/2 central points (that is, the points
from the n/4 + 1 leftmost location to the 3n/4 leftmost location).

The randomized mechanism for trees generalizes this idea but is much more involved, and is our
main technical contribution. This mechanism chooses from the set of medians (optimal locations of
mediators) a “core” subset. This core is the equivalent of the central points from the line case. Each
point in the core is assigned some positive probability to become the facility location. However,
unlike in the line case, the probabilities assigned to the points of the core are non-uniform, and
are carefully chosen to achieve both the competitive ratio and the right incentives. The exact
probability distribution depends on the medians of all mediators, including medians outside of the
core. If all the reports happen to fall on a single line, then the probability distribution becomes
uniform, and the algorithm reduces to the one described above for lines.

We remark that all our mechanisms run algorithms that use only the optimal location for each
mediator, and do not need, in addition, access to the exact locations of the agents associated with
each mediator. We call an algorithm that satisfies this property a mediator based algorithm. We
prove that such algorithms, which use only the locations of the optimal points of the mediators (and
not the locations of their agents), cannot be better than 2-competitive. Interestingly, we show that
there exists a deterministic mediator based algorithm that has a competitive ratio of 2, yet that
algorithm is not two-sided IC. Thus, for deterministic two-sided IC mechanisms, the implications
of strategic behavior by the mediators goes beyond the constraint of being mediator based; such
mechanisms cannot be better than 3-competitive (which is tight). Thus, there is a gap that is a
result of incentives, and is not due to insufficient information.

Tree metrics are a strict generalization of line metrics and capture domains that cannot be rea-
sonably modeled by line metrics. Consider the following toy example. People of three nationalities
live in a single country (e.g., Switzerland), and want to elect a president. The candidates for the
position differ in two attributes: their nationality and their degree of nationalism (for example,
how much are they willing to settle for a compromise when dealing with an issue on which the
different national groups disagree). Each citizen, naturally, wants to elect a president sharing his
nationality, but different citizens of the same national group might want to elect candidates with
different degrees of nationalism. Notice that a candidate of low nationalism is more acceptable by
citizens of other nationalities (regardless of the level of nationalism, every citizen would probably
like to have a president of her own nationality), thus, the metric induced by this example is a star

6Like the hardness of [8], our hardness holds, in fact, even for mediator-side IC mechanisms.
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with 3 edges (of course, one can think of a country with more nationalities to get a star with more
edges).

We also consider a generalization of the above setting allowing multiple levels of mediation.
In other words, the center, agents and mediators form a tree, in which the root is the center and
the leaves are the agents. Every internal node of the tree is a mediator representing its children
in the tree. Unfortunately, the competitive ratio of every mechanism for this setting degrades
exponentially with the height of the tree, even when the mechanism is only required to respect a
very weak definition of incentive compatibility. This result is consistent with the existence of a
symmetric voting system composed of k levels where a minority of size exponentially small in k can
control the decisions of the system.7 Finally, we show that the mechanism that iteratively applies
weighted median has a competitive ratio which is essentially optimal and satisfies the weak notion
of incentive compatibility.

1.1 Related Work

In this paper we deal with mediators who act as intermediaries between a set of agents and a
mechanism. The most related setting studied in the literature is the recent work on auctions
with intermediaries [4]. There, as in our setting, both agents and intermediaries are strategic.
However, the setting there is Bayesian while ours is Pre-Bayesian. Also, our aim is to address the
social welfare issue requiring dominant strategies by the agents when their associated mediator is
truthful, rather than revenue maximization.

More generally, our work refers to the study of mediators (see, e.g., [9] for a study in the context
of complete information games, and [2] for a study in the context of incomplete information games).
However, the typical signature of work on mediators is a single mediator that serves as an arbitration
device: the agents are not a captive audience, and each of them can decide to participate in the
game directly or work through the mediator. In our setting there are multiple intermediaries, each
having his own captive audience, which must play the game through the intermediary. Moreover,
the intermediaries are players and try to optimize their own utilities. Our setting nicely fit with
situations such as voting by the (already selected) representatives of a geographic area or interest
group. Additionally, we would like to mention the work of Leyton-Brown et al. [6] which deals
with game theoretic aspects of bidding clubs in which “collusion devices” (cartels) are strategically
created in a fixed mechanism (first price auction). In contrast, in our setting the partition of agents
to mediators is pre-determined and our focus is on mechanism design given that fact.

The specific example of the framework that we consider is related to the recent literature on
approximated mechanism design without money [12]. This literature deals with approximation
algorithms which are used to resolve incentive issues for tractable problems rather than overcome
computational complexity of intractable problems, when no money transfers are available. An ad-
ditional conceptual contribution of our work is extending the literature on approximate mechanism
design without money to incorporate mediation devices. Indeed, the problem studied in this paper,
the facility location problem, is the canonical problem of that literature, which is easily solved
(optimally) if no intermediaries are in place.

As pointed out in the previous section, the design of mediator-side incentive compatible mecha-
nisms is equivalent to the design of strategy-proof mechanisms for weighted agents that was studied
by Procaccia and Tennenholtz [12], and later also by Lu et al. [8] (these papers only considered the
special case of a line metric). The implications of this equivalence to our settings were discussed
above.

7See http://gowers.wordpress.com/2013/10/15/holding-a-country-to-ransom/ for an example of such a vot-
ing system.
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The literature on facility location on a line based on information provided by strategic agents
is classic in the context of mechanism design with single-peaked preferences [10]. The extension
of this problem to facility location on a network has been introduced by [13]. It has been shown
that there exist non-dictatorial strategy proof algorithms for facility location on trees, and that
any graph possessing circles does not allow for that. The study of approximate mechanism design
without money for networks [1] discusses the minimization of the maximal distance to a facility on
a network using deterministic and probabilistic strategy proof algorithms, yielding some positive
approximation results and tight bounds. The problem of approximating the optimal location of
two facilities on a line using strategy proof mechanisms has been discussed in [7], while the general
case of locating k facilities in an approximately optimal manner using strategy proof mechanisms
can be handled for large populations by the general technique given in [11].

2 Model and Solution Concept

Within the general framework of strategic mediators we focus on one specific mechanism design
problem: facility location on a metric induced by a publicly known tree T = (V,E) with the
following metric on each edge. Each edge e ∈ E in the tree is mapped to the interval [0, ℓe] for
some ℓe > 0, with the usual Euclidian metric. In our problem there are n agents, each of which
has a private position which can be represented by a point on the tree. The position of an agent
can be either a node v ∈ V or a point somewhere along an edge e ∈ E. Each one of the n agents
is associated with one of k mediators. For i ∈ [k], mediator di represents a set Ai of ni agents; we
denote these agents by ai,1, ai,2, . . . , ai,ni . As we assume each agent is associated with exactly one

mediator, the sets of agents of any two mediators do not intersect and
∑k

i=1 ni = n. The position
of each agent is only known to the agent herself, and we denote the private position of agent ai,j
by ti,j . Everything else is common knowledge. In particular, the number of agents represented by
each mediator is known to the mechanism.8 We call a point from the metric induced by T simply
a “point”. For example, by saying that “p is a point” we mean that p is a point from the metric
induced by T . Particularly, the location of each agent is a point.

The center has to pick a position for a single facility. If the center locates the facility at point p,
then the cost of an agent ai,j is dist(p, ti,j), where dist(p, ti,j) is the distance between p and ti,j along
the metric induced by T . The social cost of locating the facility at point p is

∑
i∈[k],j∈[ni]

dist(p, ti,j),
i.e., the sum of all the agents’ costs. The objective of the center is to pick a location for the facility
that minimizes the social cost. The cost of a mediator di (i ∈ [k]) is the total cost for the agents
he represents, which is

∑
j∈[ni]

dist(p, ti,j). Each mediator aims to minimize his cost. We use the
term player to denote either an agent or a mediator. We assume that the center and players are
risk neutral, and for a distribution over locations, they evaluate their cost by the expected cost.
Note that in our model there is no money, and utilities cannot be transferred.

An algorithm for the center is a mapping from its input, the locations of all agents, to a location
for the facility. We say that an algorithm is α-competitive, or has a competitive ratio of α, if for
any set of locations for the agents, the location picked by the center for the facility induces a cost
that is at most α times larger than the minimal possible cost (with respect to its input).

When the agents’ locations are private information the center has to come up with a mechanism
by which players report their information and this information is used to pick a facility location.

8If the number of agents represented by each mediator is considered private information, then the mechanism has
no way to distinguish “important” mediators representing many agents from “unimportant” mediators representing
only few agents. This intuitive impossibility can be easily formalized to show that no constant competitive ratio is
possible. The assumption that size of the population represented by each mediator is public is reasonable in many
settings, for example, the size of the population of a congressman’s district is publicly known.
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We consider direct revelation mechanisms in which each agent is asked to report her location
(to her mediator), and each mediator is asked to report the location of each of his agents. The
mechanism uses the public information and the mediators’ reports to locate the facility, with the
aim of minimizing the social cost. We say that a mechanism is α-competitive, or has a competitive
ratio of α, if under the solution concept that we consider, the location of the facility picked by the
center has cost that is at most α times larger than the minimal possible cost. Crucial to our model
is the assumption that the center (or the mechanism) can not interact directly with the agents,
and has access to their locations only through their mediators, which can manipulate the agents’
reports.

Solution Concept. Any direct revelation mechanism picked by the center puts the agents and
the mediators (the players), which are both strategic, into a game. We would like to use mechanisms
which induce games with some desired properties.

A direct revelation mechanism is dominant strategy truthful if it is a dominant strategy for each
agent to report her location truthfully (regardless of the strategies chosen by the mediators and the
other agents), and it is a dominant strategy for each mediator to report the locations of all of his
agents to the center exactly as reported to him by the agents (again, regardless of the strategies
chosen by the agents and the other mediators). We observe that asking a competitive mechanism
to be dominant strategy truthful is unrealistic.

Observation 2.1. No direct revelation dominant strategy truthful mechanism has a finite compet-
itiveness, and this is true even if the center is allowed to charge the mediators and agents.

Proof. Consider an instance with a single mediator representing a single agent which can take two
possible locations x and y. To have finite competitiveness the center must locate the facility at the
location of the agent (when both the agent and the mediator are truthful). However, the center
gets no information other than the report of the mediator, and therefore, it must always locate the
facility at the location reported by the mediator. Moreover, the charges collected by the center can
depend only on this location.

Let px and py be the charges that the mediator pays when reporting x and y, respectively.
Assume without loss of generality that py ≥ px. Now, assume that the agent’s strategy is to report
y despite the fact that she is located at x. If the mediator switches the location back, then his
cost is px, while a truthful repetition of the agent’s report will result in a cost of py + |y − x| ≥
px + |y − x| > px. Thus, it is clearly non-optimal for the mediator in this case to truthfully repeat
the report of the agent.

Remark 1. The above impossibility applies to a setting in which all entities have exactly the
same utility function, so there are no conflicts. It is a result of the sequential nature of information
propagation from the agents to the center through the mediators, and the incompatibility of that
with dominant strategies.

Given this impossibility result we need to settle for a slightly weaker solution concept, achieving
Incentive Compatibility (IC) in the following sense. We still want each agent to have an incentive to
be truthful, as long as her mediator is truthful (as opposed to playing an “unreasonable” strategy),
and we want each mediator to be truthful as long as his agents are truthful. This is captured by
the following definition.

Definition 2.1. A direct revelation mechanism is agent-side incentive compatible if for every
mediator di, in the induced game created by fixing di to be truthful, truthful reporting is a dominant
strategy for each agent ai,j represented by di.

6



A direct revelation mechanism is mediator-side incentive compatible if for every mediator di,
in the induced game created by fixing all di’s agents to be truthful, truthful reporting is a dominant
strategy for di.

A direct revelation mechanism is two-sided incentive compatible if it is agent-side incentive
compatible and mediator-side incentive compatible.

Note that in any two-sided incentive compatible mechanism, it is in particular an Ex-post Nash
for all players to be truthful.

To understand the implication of strategic behavior by the mediators we compare the compet-
itiveness achieved by the best two-sided incentive compatible mechanisms to the competitiveness
achieved by the best agent-side incentive compatible mechanisms (we do so both for deterministic
and for randomized mechanisms).

2.1 Agent-Side Incentive Compatible Mechanisms

Median points play a significant role both in the optimal algorithm and our mechanisms. We
next present some basic definitions and observe that median points exactly characterize optimal
locations.

Definition 2.2. Following are the definitions of median points and weighted median points.
• A weighted point is a pair (p, x) where p is a point and x is a positive real number. Given

a weighted point p̃ = (p, x), we say that x is the weight of p̃, and write w(p̃) = x. We also
think of p̃ as located at location p in the metric. Hence, we can talk, e.g., about the distance
between two weighted points.9

• Given a multi-set S of elements, let f(p, S) be the multiplicity of p in S (i.e., f(p, S) is
the number of copies of p in S). Given an additional multi-set S′, we denote by S ∪ S′ and
S \S′ two multi-set containing f(p, S)+f(p, S′) and max{f(p, S)−f(p, S′), 0} copies of every
element p ∈ S ∪ S′, respectively.

• Given a multi-set S of weighted points and a point p.
– Let Sp denote the multi-set of weighted points in S that have p as their location. More

formally, for every weighted point q̃ = (q, x) ∈ S, the multi-set Sp contains f(q̃, S) copies
of q̃ if q = p, and no copy of q̃ otherwise.

– The weight of S, denoted by w(S), is the total weight of the weighted points in S. More
formally, w(S) =

∑
q̃∈S w(q̃) · f(q̃, S),

– Let mp be the maximum weight of a multi-set S′ ⊆ S \ Sp such that the path connecting
every two weighted points of S′ does not go through p.

– We say that p is a weighted median of S if mp ≤ w(S)/2.
• Given a multi-set S of points, we say that a point p is a median of S if it is a weighted median

of the multi-set S′ containing f(p, S) copies of (p, 1) for every point p ∈ S.

Informally, a point p is a median of S if removing it splits the tree T into parts, each containing at
most |S|/2 points of S. The importance of median points stems from the following easy observation,
whose proof (with simpler versions going back to [5]) is deferred to Appendix A.

Observation 2.2. For every non empty finite multi-set S of weighted points, there is at least one
weighted median. Moreover, a point p is a weighted median of S if and only if locating the facility
at p minimizes the weighted total cost of a set of agents located at the points of S (i.e., the sum∑

q̃∈S w(q̃) · f(q̃, S) · dist(p, q̃)).
9In the interest of readability, throughout the paper we put the tilde sign above letters representing weighted

points.
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The mechanism that always picks a median of all the locations of the agents (with a careful tie
breaking) is optimal and agent-side incentive compatible. Thus, we have the following observation
that naturally extends a well known result for line metrics [12]. We present its proof for completeness
in Appendix A.

Observation 2.3. There exists a deterministic agent-side incentive compatible mechanism that is
optimal (i.e., 1-competitive).

We note that the optimal agent-side IC mechanism is deterministic. Hence, randomization
clearly does not help in improving performance when mediators are not strategic. Our results show
that this is not the case when mediators are strategic and one aims for two-sided IC mechanisms.

2.2 Mediator Based Algorithms

We say that an algorithm for the center is mediator based if it uses only an optimal facility loca-
tion for each mediator (but never uses any other information regarding the positions of the agents
themselves). We show that for mediator based algorithms, randomization does not improve perfor-
mance, as any such randomized α-competitive algorithm can be transformed to a mediator based
deterministic algorithm with the same competitive ratio (moreover, the resulting algorithm per-
forms at least as good on every single input). To state this result we first need the following lemma
whose proof appears in Appendix A.

Lemma 2.4. For any tree and any distribution over points F , there exists a point p(F ) such that
for any finite multi-set S of points:

E
p′∼F

∑
q∈S

dist(p′, q) · f(q, S)

 ≥∑
q∈S

dist(p(F ), q) · f(q, S) .

Moreover, for the euclidian metric on [a, b] (for arbitrary a and b) the expected location according
to F can serve as such a point p(F ).

Note that p(F ) does not depend on S, and the same p(F ) works for every S. A randomized
algorithm maps the locations of all agents to a distribution over locations F . By the above lemma
the deterministic algorithm that instead locates the facility deterministically at p(F ) can only
improve the social cost for every input. Thus, we have the following corollary.

Corollary 2.5. Given any α-competitive mediator based randomized algorithm, it is possible to
construct a mediator based deterministic algorithm with the same competitive ratio α.

Note that the above transformation does not maintain incentives, indeed we show below that
there exists a mediator based randomized two-sided IC mechanism which is 2-competitive, but no
mediator based deterministic two-sided IC mechanism achieves this competitive ratio. Thus, al-
though randomization does not improve performance for mediator-based algorithms, it does improve
performance for mediator-based two-sided IC mechanisms.

3 Deterministic Two-Sided IC Mechanisms

In this section we extend the deterministic “median of medians” mechanism of [3, 12] from lines
to trees and show that the resulting mechanism, which we call the Weighted Median Mechanism
(WMM), is a deterministic two-sided IC mechanism. This mechanism is also 3-competitive, which is
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essentially tight by a lower bound of [3, 12] (given for completeness as Theorem 3.3). The mechanism
essentially elicits from each mediator an optimal location from the mediator’s perspective (median
of the mediator’s agents), and then picks a weighted median of these locations. To create the right
incentives for the agents and mediators, tie breaking must be handled carefully in both steps of
the mechanism. By breaking ties in a way that is independent of the players’ reports, we make
sure the players have no incentive to manipulate. The basic idea is that in each step we break ties
in favor of the point closest to an arbitrary predetermined point. To formally describe WMM we
need the following observation which proves that the above tie breaking rule is well defined, i.e.,
whenever the mechanism has to decide between a set of points, there is always a unique point in
the set which is closest to the arbitrary predetermined point.

Observation 3.1. Given a non-empty finite multi-set S of weighted points and an arbitrary point
z, the set M of weighted medians of S contains a unique point p closest to z.

Proof. The proof of this observation consists of several steps. First, showing that it is enough to
consider a finite set R of weighted medians because for every weighted median p either p ∈ R or
there is a weighted median r(p) ∈ R which is closer to z than p. Second, restricting ourselves to the
set R′ of weighted medians from R that are closest to z (i.e., as close to z as any other weighted
median of R). Finally, proving that R′ is of size 1, which completes the proof of the theorem.

Given a point p ∈M , let us denote by r(p) the first point of V ∪{z}∪{p′ | ∃x(p′, x) ∈ S} along
the path from p to z (there is such a point because z is always on this path and the set is finite).
Let us prove that r(p) is also a weighted median of S (i.e., r(p) ∈ M). Consider an arbitrary
sub multi-set S′ of weighted points from S which are connected via paths that do not go through
r(p). If p ∈ V ∪ {z} ∪ {p′ | ∃x(p′, x) ∈ S}, then r(p) = p, and therefore, the weighted points of
S′ are connected via paths that do not go through p as well. Otherwise, every path connecting
two weighted points of S which goes through p must go through r(p) as well. Hence, once again,
the weighted points of S′ are connected via paths that do not go through p. In both cases, we get
w(S′) ≤ w(S)/2 because p is a weighted median of S, which completes the proof that r(p) ∈M .

Let R = {r(p) | p ∈ M} and R′ = {p ∈ R | dist(p, z) = minq∈R dist(q, z)} (the minimum in the
definition of R′ always exists because R is a finite set). Observe that R′ ⊆ R ⊆ M , and for every
point p ∈M either p = r(p) or dist(p, z) > dist(r(p), z). Hence, every point in R′ is closer to z than
any point of M \R. Moreover, all the points in R′ have the same distance from z. To complete the
proof we have to show that |R′| = 1. Clearly, R′ ̸= ∅, so it is enough to show |R′| ≤ 1. Assume
towards a contradiction that there are two points p ̸= q in R′. Let y be the first point where the
paths from p and q to z meet. Since dist(p, z) = dist(q, z), y cannot be either p or q, and therefore,
dist(y, z) < dist(p, z) = dist(q, z). Observe that y is located along the path connecting p and q, and
therefore, we can partition S into three sub multi-sets whose union is S:
• S1 - Contains weighted points of S for which the path connecting them to y goes through p.
• S2 - Contains weighted points of S for which the path connecting them to y goes through q.
• S3 - The rest of the weighted points of S (the path connecting them to y does goes through

neither p nor q).
All the weighted points of S1 ∪ S3 are connected by paths that do not go through q, and therefore,
w(S1 ∪ S3) ≤ w(S)/2 because q is a weighted median of S. Thus, w(S2) = w(S) − w(S1 ∪ S3) ≥
w(S)/2. Using a similar argument we can also get w(S1) ≥ w(S)/2. As S1 ∪ S2 ⊆ S, the two
results can hold at the same time only if w(S1) = w(S2) = w(S)/2 and w(S3) = 0.

Consider now an arbitrary sub multi-set S′ of weighted points of S that are connected by
paths that do not go through y. Clearly, either S′ ⊆ S1 ∪ S3 or S′ ⊆ S2 ∪ S3. In the first case
w(S′) ≤ w(S1 ∪ S3) = w(S)/2, and in the second case w(S′) ≤ w(S2 ∪ S3) = w(S)/2. Hence,
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in both cases w(S′) ≤ w(S)/2, which implies that y ∈ M . However, this is a contradiction since
dist(y, z) < dist(p, z) = dist(q, z).

The Weighted Median Mechanism (WMM) is a direct revelation mechanism in which the center
does the following:
• For each mediator di it computes ℓi which is the median of the multi-set {t′i,j |1 ≤ j ≤ ni}

closest to zi, where t
′
i,j is the location reported by di for agent ai,j and zi is an arbitrary point

chosen independently of the reports received from the mediators (such a median exists, and
is unique, by Observation 3.1).

• Let M be the set of weighted medians of the multi-set {(ℓi, ni)|1 ≤ i ≤ k}. Locate the facility
at the point of M closest to z, where z is an arbitrary point chosen independently of the
reports received from the mediators.

Note that this direct revelation mechanism can also be executed with much less communication
since the only information the center needs from each mediator is a single point (the location of
the median closest to some arbitrary point), and not the location of every agent represented by the
mediator. Thus, the center can ask each mediator di to report a single location ℓi, and locate the
facility at the weighted median of the multi-set {(ℓi, ni)|1 ≤ i ≤ k} closest to some point z picked
in advance. Observe that this algorithm for the center is mediator based. The resulting mechanism
clearly achieves the same competitiveness as the direct revelation mechanism when each mediator
di indeed reports a median location ℓi of his agents closets to an arbitrary point zi since the location
is picked using exactly the same method. Moreover, this mechanisms is also two-sided IC since
the space of possible deviations for the mediators in this mechanism is more restricted than the
corresponding space in the direct revelation mechanism.

On line metrics WMM is essentially identical to a mechanism already known to be 3-competitive
and mediator-side IC by an observation of [12] based on a result of [3]. We present a proof that
WMM is 3-competitive and mediator-side IC not only for lines, but also for trees. We also show
that it is agent-side IC. The next theorem summarizes the proved properties of WMM.

Theorem 3.2. For any tree metric, the Weighted Median Mechanism is a deterministic two-sided
IC mechanism with a competitive ratio of 3.

The proof of Theorem 3.2 can be found in Section 3.1. The following theorem proved by [3, 12]
shows that WMM has an optimal competitive ratio. For completeness, we give a proof of this result
in Section 5.

Theorem 3.3. Fix any constant ε > 0. Then, no direct revelation deterministic mechanism that
is mediator-side incentive compatible has a competitive ratio of 3− ε, even for line metrics.

3.1 Analysis of WMM

In this section we analyze WMM and prove Theorem 3.2. We begin with the following auxiliary
observation. This observation shows that, given a fixed arbitrary point z, if the weighted median
of a multi-set S closest to z changes when some weight moves from the point p to the point p′, then
this weighted median must be located along the path connecting p and p′, and moves along this
path in the direction from p to p′.

Observation 3.4. Consider:
• Two multi-sets of weighted points S and S′ differing in a single weighted point, i.e., S′ =

S \ {p̃} ∪ {p̃′} for a pair of weighted points p̃ ∈ S and p̃′ having the same weight (i.e.,
w(p̃) = w(p̃′)).
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• An arbitrary point z.
• The weighted medians q (q′) of S (S′) closest to z.

If q ̸= q′ then the path connecting p̃ and p̃′ goes through both q and q′, and q is closer to p̃ than q′.

Proof. Assume q ̸= q′. If q′ is also a weighted median of S than q must be closer to z than q′.
Similarly, if q is also a weighted median of S′ than q′ must be closer to z than q. As it is not
possible that both q is closer to z than q′, and q′ is closer to z than q, it must be the case that
either q is not a weighted median of S′, or q′ is not a weighted median of S. We assume without
loss of generality that first option is true. Assume towards a contradiction that q is not on the
path from p̃ to p̃′. Let P ′ be a sub multi-set of weighted points from S′ that can be connected via
paths that do not contain q. If f(p̃′, P ′) < f(p̃′, S′) then w(P ′) ≤ w(S)/2 = w(S′)/2 because q is a
weighted median of S. Otherwise, consider the multi-set P = P ′ \ {p̃′} ∪ {p̃}. By our assumption
that the path between p̃ and p̃′ does not contain q, we get that P is a sub multi-set of weighted
points from S connect by paths that do not include q. Hence, w(P ′) = w(P ) ≤ w(S)/2 = w(S′)/2.
In conclusion, we got that the weight of P ′ is always at most w(S′)/2, and therefore, q is a weighted
median of S′, which contradicts our assumption. Hence, we can assume from now on that q is on
the path between p̃ and p̃′.

Since q is not a weighted median of S′, there exists a sub multi-set S′′ of weighted points from
S′ that are connected via paths that do not go through q and obeys w(S′′) > w(S′)/2. Since q is a
weighted median of S, we must have: f(p̃′, S′′) = f(p̃′, S′). Assume now, towards a contradiction,
that q′ is on the path between p̃ and q. This assumption implies that q is between q′ and p̃′, and
therefore, the points of S′′ are connected by paths that do not go through q′. However, since q′

is a weighted median of S′′, this implies w(S′′) ≤ w(S′)/2, which is a contraction. Hence, we can
assume from now on that q′ is not on the path between p̃ and q.

Next, assume towards a contradiction, that q′ is not on the path between q and p̃′. Let t be
the point on the path between q and p̃′ closest to q′. Consider an arbitrary sub multi-set P of
weighted points from S′ connected via paths that do not go through t. If the points of P can
be connected via paths that do not go through q′, then w(P ) ≤ w(S′)/2 because q′ is a weighted
median of S′. Otherwise, at least one weighted point of P is separated from t by q′, and therefore,
p̃′ ̸∈ P . Moreover, all the paths between weighted points of P do not go through q, and since q is
a weighted median of S, we get: w(P ) ≤ w(S)/2 = w(S′)/2. In conclusion, every sub multi-set P
of weighted points from S′ connected via paths that do not go through t has a weight of at most
w(S′)/2, and therefore, t is also a weighted median of S′. By definition q′ is the weighted median
of S′ closest to z, and therefore, q′ is closer to z than t.

From the last conclusion we learn that the path from q to z goes through t and q′. Hence, q′

is not a weighted median of S. Thus, there exists a sub multi-set P of weighted points from S
that are connected via paths that do not go through q′, and obeys w(P ) > w(S)/2. Since q′ is a
weighted median of S′, we must have f(p̃, P ) = f(p̃, S). Consider the set P ′ = P \{p̃}∪{p̃′}. Since
p̃ and p̃′ are connect by a path that does not go through q′, the points of P ′ are also connected by
paths that do not go through q′. On the other hand, q′ is a weighted median of S′, and P ′ ⊆ S′,
and therefore, w(P ) = w(P ′) ≤ w(S′)/2 = w(S)/2, which is a contradiction. Hence, q′ must be on
the path connecting q and p̃′, which completes the proof of the observation.

Using the above observation we can now show that WMM is two-sided IC. The agent-side IC
of WMM is an easy new result, while the mediator-side IC is known from [3, 12] for lines, and we
extend it to trees.

Lemma 3.5. The Weighted Median Mechanism is agent-side IC.

11



Proof. Consider an arbitrary agent ai,j . We would like to show that given that di is truthful, it
is non-beneficial for ai,j to report a fake location t′i,j instead of its true location ti,j . Let ℓi and ℓ′i
denote the median of the reports of agents {ai,1, ai,2, . . . , ai,ni} when ai,j reports its true location
ti and the fake location t′i, respectively. If ℓi = ℓ′i, then reporting the fake location t′i,j does not
affect the location picked by the center, and therefore, is non-beneficial for ai,j . Otherwise, by
Observation 3.4, ℓi is on the path between ti,j and ℓ′i.

Let F and F ′ be the locations that the center picks for the facility assuming ai,j reports a location
of ti,j or t

′
i,j to her mediator, respectively. If F = F ′, then reporting the fake location t′i,j is, again,

non-beneficial for ai,j . Otherwise, by Observation 3.4, F and F ′ are both on the path between ℓi
and ℓ′i, and F is closer to ℓi than F ′. Combining both results, we get that the path from ti,j to ℓ′i
goes first through ℓi, then through F and finally through F ′. Thus, dist(ti,j , F ) < dist(ti,j , F

′), and
it is strictly non-beneficial for ai,j to report the fake location t′i,j .

Lemma 3.6. The Weighted Median Mechanism is mediator-side IC.

Proof. Consider an arbitrary mediator di. We should prove that it is always a best response for
di to be truthful given that the agents of Ai are truthful. Let ℓi be the median of the locations
reported by the agents to di, that is closest to zi. Since the agents of Ai are truthful, ℓi is also
the median of the true locations of the agents of Ai that is closest to zi. Every strategy of di can
be characterized by the median closest to zi of the locations reported by di on behalf of his agents
because this is the only information used by the center. Hence, we can characterize any deviation of
di from truthfulness by the median ℓ′i of the locations it reports that is closest to zi. Our objective
is to prove that a deviation represented by ℓ′i is no better than being truthful.

First, if ℓi = ℓ′i then the location picked by the center is unaffected by the deviation, and
therefore, the deviation is non-beneficial. Thus, we can assume from now on ℓi ̸= ℓ′i. Next, let
F and F ′ be the locations picked by the center given that di reports locations whose medians
(picked by the center according to the tie breaking rule) are ℓi and ℓ′i, respectively. If F = F ′ then
the deviation is clearly non-beneficial. Otherwise, by Observation 3.4, the path from ℓi to ℓ′i goes
through F and F ′ in that order.

For every x ∈ [0, 1], let px be the point along the path between ℓi and ℓ′i obeying dist(ℓi, px) =
x · dist(ℓi, ℓ′i), and let cx be the social cost of the agents of Ai if the facility is located at px. Let p
be an arbitrary point, and let us observe the change in dist(px, p) as x increases. Clearly, dist(px, p)
initially decreases at a constant rate and then starts to increase again in a constant rate (possibly
the decrease part or increase part is of zero length). Hence, the derivative of cx is a non-decreasing
function in x (except for a finite number of x values for which it might not be defined). For x = 0,
px is the median of the locations of the agents of di, and therefore, cx is minimized for x = 0.
Thus, the derivative of cx is non-negative for every x > 0, whenever it is defined. Let y and y′ be
the values of x for which F = py and F ′ = py′ . Then, we have y < y′, and therefore, cy ≤ cy′ ,
i.e., locating the facility at F ′ induces no better social cost for the agents of Ai in comparison to
locating it at F . Hence, reporting a set of locations whose median is ℓ′i instead of a truthful report
(which makes ℓi the median closest to zi) is non-beneficial from di’s perspective.

To complete the proof of Theorem 3.2, we still need to show that WMM is 3-competitive.
This was already observed by [3, 12] for lines, but not for trees. In order to prove this result for
trees, we observe that WMM is a restriction of a more general mechanism called IWMM which we
analyze in Section 6. The competitive ratio of WMM follows immediately from the result proved
by Proposition 6.2 for IWMM.
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4 Randomized Two-Sided IC Mechanisms

It is known by [3, 12] that there is no deterministic Two-Sided IC Mechanism that is better than 3-
competitive (this result also appears as Theorem 3.3). In this section we show that we can improve
and achieve a competitive ratio of 2 by switching to randomized mechanisms, and that this is the
best ratio that can be achieved.

To simplify the exposition of our mechanism, we first describe it for the simple case of line
metrics (i.e., for the case where the tree T is simply an interval). A line metric is the Euclidean
metric of an arbitrary interval [a, b] (where a < b are real numbers). Notice that a point in the
metric is simply a real number from the interval [a, b]. The Two Percentiles Range Mechanism
(TPRM) is a direct revelation mechanism in which the center runs the following algorithm:
• For each mediator di compute the median ℓi of the multi-set {t′i,j |1 ≤ j ≤ ni} that is closest

to zi, where t
′
i,j is the location reported by di for agent ai,j and zi is an arbitrary point chosen

independently of the reports received from the agents.
• Consider the multi-set S of points, created by adding ℓi to the multi-set ni times, for each i.

Let ui denote the i-th element of this multi-set when sorted in any non-decreasing order.
• Randomly choose a location for the facility from the list: u⌊n/4⌋+1, u⌊n/4⌋+2, . . . , u⌈3n/4⌉, where

the probability of each value ui in this list is (n/2)−1, except for the first and last values
(u⌊n/4⌋+1 and u⌈3n/4⌉), which have a probability of (1 − r/4)/(n/2) where r is the reminder
of dividing n by 4.

Like in the deterministic case, Observation 3.1 ensures that ℓi is well defined for every i. Also
similarly to the deterministic case, this direct revelation mechanism can also be executed with
much less communication by only asking each mediator to report a single point (the location of the
median closest to some arbitrary point) and running a mediator based algorithm that corresponds
to the two final steps of TPRM on the reports. The resulting mechanism will have the same
properties (competitiveness, incentives) as the direct revelation mechanism.

Theorem 4.1. For any line metric, the Two Percentiles Range Mechanism (TPRM) is a random-
ized two-sided IC mechanism with a competitive ratio of 2.

The proof of Theorem 4.1 is deferred to Section 4.1. The intuition behind the improved com-
petitive ratio of TPRM, as compared to WMM, is as follows. Consider a section s connecting the
real locations of two agents separated by no other agent.
• If s is located near the median of all the agents, then it is not very important on which side

of it is the facility located, because either way s will contribute to the distance between the
facility and about half the agents.

• If s is located very far from the median, then both TPRM and WMM will locate the facility
at the “right” side of s.

• If s is not located near the median, nor very far from it, then it is important that the
mechanism will locate the facility at the right side of s. WMM makes the wrong call for some
inputs, and, being deterministic, when it makes the wrong call it makes it with probability
1. On the other hand, it can be shown that the randomized TPRM always has a significant
probability of making the right choice.

Next, we present a mechanism that extends TPRM to general trees, called the Tree Randomized
Mechanism (TRM). Like TPRM, TRM defines a distribution over the medians of the sets reported
by the mediators, and then chooses the facility location randomly according to this distribution.
The distribution is carefully picked to achieve the best possible competitive ratio of 2. More
specifically, the mass of the distribution is placed on the “central parts” of the tree, which is
analogous to behavior of TPRM. Formally, TRM is a direct revelation two-sided IC mechanism
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that is also 2-competitive. The description of TRM consists of two parts. The first part of TRM
determines the medians of the sets reported by the mediators, and then splits the edges of T at
these points, which allows us to assume that all medians are vertexes of T . Additionally, this part
finds a point r which is considered to be the “center” of T . If necessary, an edge is split to make r
a vertex of T , and then T is rooted at r.

TRM - Part 1
1. Fix an arbitrary point z independently of the reports of the mediators.
2. Define size(p) =

∑
i|ℓi=p ni for every point p, where ℓi is the median closest to z of the points

reported by di.
3. Let L = {(p, size(p)) | p is a point and size(p) > 0}.
4. Let r be the weighted median of L closest to z.
5. For every point p ∈ {r} ∪ {ℓi | 1 ≤ i ≤ k} do:
6. If p is an internal point of an edge e, then:
7. Split e at point p to two edges.
8. Root T at r.

Clearly we can assume after the first part of TRM that {r} ∪ {ℓi | 1 ≤ i ≤ k} ⊆ V . Since T is
now rooted, we can define additional notation that is used to describe the second part of TRM.

Definition 4.1.
• children(u) - The set of children nodes of u in the tree.
• subtree(u) - The set of nodes in the subtree of node u, including u itself. More formally,

subtree(u) = {u} ∪ [∪u′∈children(u) subtree(u
′)].

• treesize(u) - The number of agents represented by a mediator di for which ℓi ∈ subtree(u).
More formally, treesize(u) = size(u) +

∑
u′∈children(u) treesize(u

′).

The second part of TRM defines the probability distribution used to select the facility location.
Informally, this distribution has the following property: the probability that the facility location is
in the subtree of a (non-root) vertex u is proportional to max{treesize(u)−n/4, 0}. An alternative
view of this distribution is that the algorithm preprocess the agents by discarding some agents of
peripheral vertexes, and “promoting” other agents of these vertexes to be associated with vertexes
which are closer to the root. After this preprocessing, the algorithm selects a uniformly random
remaining agent, and locates the facility at the location desired by the mediator associated with
the selected agent. The preprocessing is done in a way that guarantees the following:
• If only a few agents originally belong to the subtree of a vertex u (i.e., treesize(u) ≤ n/4),

then all these agents are either discarded or promoted to some ancestor vertex of u, and thus,
u never becomes the facility location.

• If many agents originally belong to the subtree of a vertex u, then the preprocessing reduces
the number of agents associated with this subtree by n/4 (or n/2 if u is the root).

TRM - Part 2
1. Let X = {u ∈ V | treesize(u) ≥ n/4}.
2. Let c(u) denote the value n/4 for every node u ∈ X − {r} and n/2 for u = r.
3. Pick every node u ∈ X as the facility location with7 probability:

p(u) =
treesize(u)− c(u)

n/2
−
∑

u′∈X∩children(u)(treesize(u
′)− c(u′))

n/2
.

For consistency, define p(u) = 0 for every point u /∈ X.
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Figure 1: Example of a probability distribution induced by TRM.

Note that this direct revelation mechanism can also be viewed (and executed) as a mediator
based algorithm as the center only needs from each mediator di a location ℓi which is optimal from
di’s perspective. The proof of the next theorem is deferred to Appendix B.

Theorem 4.2. For any tree metric, the Tree Randomized Mechanism (TRM) is a randomized
two-sided IC mechanism with a competitive ratio of 2.

Let us get a better understanding of TRM by considering an example input (given as Figure 1)
and explaining the probability distribution induced by TRM. The figure depicts the top 7 nodes of
an example tree T that can be outputted by the first part of TRM. The number inside each node
represents the portion of the agents population represented by mediators whose (sole) median is
this node. For example, the number 0.24 appears inside the root node R, hence, in our example,
0.24 · n agents are represented by mediators whose median is R. Some of the nodes in the figure
have a triangle shape dangling from them. Each triangle represents the subtree of the node it is
dangling from, and the number written inside it represents the portion of the agents represented by
mediators whose (sole) median is inside the subtree (but is not the root of the subtree). For example,
inside the rightmost triangle we have the label 0.25. Hence there are 0.25 · n agents represented
by mediators whose median is inside the subtree of D, but is not D itself. Finally, outside of each
node there is an additional number (in a box). This number represents the probability that TRM
selects this node as the facility location.

Following is a short explanation of how (some of) the probabilities in Figure 1 were calculated.
We say that a node (subtree) in Figure 1 has a weight of x if x agents are represented by mediators
whose median is the node (a node in the subtree). Observe that TRM selects R to be the root
node r since its left subtree has a weight of only 0.36 · n < n/2, and its right subtree has a weight
of only 0.4 · n < n/2. Next, observe that no triangle in the figure represents a subtree with weight
of more than 0.25, and therefore, no node in the subtrees represented by these rectangles has a
positive probability to be the location of the facility. Consider now a few of the nodes of Figure 1.
• The subtree rooted at A (which contains A alone) has a weight of only 0.1 · n ≤ 0.25 · n, and

therefore, A /∈ X and thus has 0 probability to be the facility location.
• The subtree rooted at B has a weight of 0.26 · n > 0.25 · n, and no other node in this

subtree has a positive probability to be the facility location. Therefore, B has a probability
of 2(0.26− c(B)) = 2(0.26− 0.25) = 0.02 to be the facility location.

• The subtree rooted at E has a weight of 0.36 · n > 0.25 · n. However, E has a single child
B associated with a positive probability, and the subtree rooted at B has a weight of 0.26.
Therefore, E has a probability of 2(0.36 − c(E) − (0.26 − c(B))) = 0.2 to be the facility
location.

• The subtree rooted at R has a weight of 1 · n. However, R has two children E and F , each
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associated with a positive probability by the algorithm, whose subtrees have weights of 0.36
and 0.4, respectively. Therefore, R has a probability of 2(1 − c(R) − (0.36 − c(E)) − (0.4 −
c(F ))) = 0.48 to be the facility location.

The following theorem shows that TRM and TPRM have optimal competitive ratios, its proof
is deferred to Section 5.

Theorem 4.3. Fix any constant ε > 0. Then, no direct revelation randomized mechanism that
is mediator-side incentive compatible and no mediator based algorithm has a competitive ratio of
2− ε, even for line metrics.

4.1 Analysis of TPRM

In this subsection we analyze TPRM and prove Theorem 4.1. We begin the proof by establishing
some notation. Let us sort the agents according to their location (breaking ties arbitrarily), let
bi be the ith agent in this order and let ti be the location of bi. We say that agent bi is to the
left (right) of agent bj if i < j (i > j). Let si denote the segment connecting bi and bi+1, and let
xi = ti+1− ti be the length of si. We say that segment si is to the left (right) of agent b if bi (bi+1)
is to the left (right) of b. Given a location for the facility, we say that an agent bi uses segment si
if si is on the path between the agent and the given location.

Before analyzing TPRM, let us make sure it is well defined.

Observation 4.4. Let pi be the probability that TPRM picks ui as the location of the facility.
Then,

∑n
i=1 pi = 1.

Proof. The number of elements in the list u⌊n/4⌋+1, u⌊n/4⌋+3, . . . , u⌈3n/4⌉ is:

⌈3n/4⌉ − ⌊n/4⌋ = (3n/4 + r/4)− (n/4− r/4) = n/2 + r/2 .

Hence, n/2+r/2−2 elements of the list have a probability of (n/2)−1, and two have a probability
of (1− r/4)/(n/2). Summing up all these probabilities, we get:

n∑
i=1

pi =
n/2 + r/2− 2

n/2
+ 2 · 1− r/4

n/2
= 1 .

4.1.1 Proof: TPRM is 2-Competitive

First we analyze the competitive ratio of TPRM as an algorithm (when players are truthful). The
following lemma characterizes the social cost of the optimal facility location. This characterization
is used later to prove the competitive ratio of TPRM.

Lemma 4.5. The social cost of the optimal facility location is:

⌊(n−1)/2⌋∑
i=1

i · xi +
n−1∑

i=⌊(n+1)/2⌋

(n− i) · xi . (1)

Proof. By Observation 2.2, t⌈n/2⌉ is an optimal facility location. Let us evaluate the social cost of
placing the facility at this location. Consider segment si. If 1 ≤ i < n/2, then si is to the left of
b⌈n/2⌉, and therefore, i agents use si: b1, b2, . . . , bi. Thus, the contribution of si to the cost of the
optimal solution is i · xi. On the other hand, if n − 1 ≥ i ≥ n/2 (i.e., si is to the right of b⌈n/2⌉),
then n− i agents use si: bi+1, bi+2, . . . , bn. Thus, the contribution of si to the cost of the optimal
solution is (n− i) · xi. Adding up all the above contributions, we get Expression (1).
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Pick an arbitrary segment si = [ti, ti+1] (recall that ti is the location of agent bi), and let Li

and Ri denote the number of uj values that are smaller than ti+1 and larger then ti, respectively.
Intuitively, Li and Ri denote the number of agents represented by a mediator dh for which ℓh is to
the left and right of si, respectively.

Lemma 4.6. For every i, Li ≤ 2i and Ri ≤ 2(n− i).

Proof. We prove Li ≤ 2i; the proof that Ri ≤ 2(n− i) is symmetrical. Let Di = {dh | ℓh < ti+1}.
Notice that a mediator dh contributes to Li if and only if ℓh < ti+1 (i.e., ℓh is to the left of si), in
which case his contribution to Li is nh. Hence, Li =

∑
dh∈Di

nh.
Consider now an arbitrary mediator dh ∈ Di. At least half the agents of dh must have locations

smaller or equal to ℓh < ti+1, and therefore must be of the form bj for j ≤ i. Hence, the size of the
set Bi = {bj | j ≤ i ∧ ∃h∈Di

bj ∈ Ah} is at least
∑

dh∈D nh/2 = Li/2. The lemma now follows by
observing that B cannot contain more than i agents.

We are now ready to prove the approximation ratio of TPRM.

Lemma 4.7. The Two Percentiles Range Mechanism is 2-competitive.

Proof. Let ci be the coefficient of xi in Expression (1), i.e., ci = i for i ≤ n/2, and ci = n − i for
i ≥ n/2. To prove that TPRM is a 2-competitive mechanism, it is enough to show that, given the
facility location selected by TPRM, the expected number of agents using segment si is at most 2ci.

Consider an arbitrary section si, and assume i ≤ n/2 (the case i ≥ n/2 is symmetric). Let
Pi be the probability that the facility location chosen by TPRM is to the left of si. If the chosen
facility location is indeed to the left of si, then all the agents to the right of si will use it, i.e., n− i
agents. On the other hand, if si is to the right of the chosen facility location, than only i agents
will use it. Hence, the expected number of agents using si is:

Pi · (n− i) + (1− Pi) · i = Pi · (n− 2i) + i .

The ratio between this expectation and ci = i is:

Pi ·
(n
i
− 2
)
+ 1 . (2)

Proving the lemma now boils down to proving that (2) is always upper bounded by 2. Notice that
the coefficient of Pi is always non-negative (recall that we assumed i ≤ n/2), and therefore, any
upper bound on Pi will translate into an upper bound on (2).

By Lemma 4.6, Li ≤ 2i, which implies, by definition, that u2i+1 ≥ ti+1 (i.e., u2i+1 is to the
right of si). Hence, the facility location picked can be to the left of si only if the center picks one
of the values: u⌊n/4⌋+1, u⌊n/4⌋+2, . . . , u2i. Thus, we can upper bound Pi by:

Pi ≤ max

{
0,

[2i− (⌊n/4⌋+ 1)] + (1− r/4)

n/2

}
= max

{
0,

2i− n/4

n/2

}
= max

{
0,

4i

n
− 1

2

}
.

If 4i
n −

1
2 ≤ 0, than Pi = 0, and the ratio (2) becomes 1. Hence, we only need to consider the

case that 4i
n −

1
2 > 0. Using this assumption, the ratio (2) can be upper bounded by:

Pi ·
(n
i
− 2
)
+ 1 ≤

(
4i

n
− 1

2

)
·
(n
i
− 2
)
+ 1 = 4− 8i

n
− n

2i
+ 1 + 1 = 6− 8i

n
− n

2i
.

It can be easily checked that the last expression is maximized for i = n/4, and its maximum
value is exactly 2.
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4.1.2 Proof: TPRM is Two-Sided IC

Next, we prove that TPRM is two-sided incentive compatible. For that purpose we need the
following observation.

Observation 4.8. Fix the reports of all mediators except for di. Let us denote by u1, u2, . . . , un
and u′1, u

′
2, . . . , u

′
n the set {uh}nh=1 assuming mediator di reports a set of locations whose median

is ℓi and ℓ′i, respectively, where ℓ′i > ℓi (ℓ
′
i < ℓi). Then u′h ≥ uh (u′h ≤ uh) for every 1 ≤ h ≤ n.

Moreover, if uh < ℓi (uh > ℓi) then uh = u′h.

Proof. We prove the case of ℓ′i > ℓi. The other case is symmetric. Assume the median of the reports
of di is ℓi, and let us analyze the effect on the list u1, u2, . . . , un when this median changes to ℓ′i.
Following the change some uh values that are equal to ℓi increase to ℓ′i, and possibly move to later
places in the list. From this description, it is clear that uh ≤ u′h for every 1 ≤ h ≤ n. Moreover,
the part of the list containing values smaller than ℓi is unaffect, and therefore, uh = u′h whenever
uh < ℓi.

Lemma 4.9. The Two Percentiles Range Mechanism is agent-side IC.

Proof. Consider an arbitrary agent ai,j . We would like to show that, given that di is truthful, it
is non-beneficial for ai,j to report a fake location t′i,j instead of its true location ti,j . Let ℓi and ℓ′i
denote the median of the reports (breaking ties towards zi) of mediator di assuming ai,j reports its
true location ti and the fake location t′i, respectively. If ℓi = ℓ′i, then reporting the fake location t′i,j
is certainly non-beneficial for ai,j . Otherwise, assume without loss of generality that ℓi < ℓ′i. By
Observation 3.4, ℓi is on the path between ti,j and ℓ′i, i.e., ti,j ≤ ℓi.

Let u1, u2, . . . , un and u′1, u
′
2, . . . , u

′
n denote the uh’s before and after the deviation of ai,j . By

Observation 4.8, u′h ≥ uh for every 1 ≤ h ≤ n and uh = u′h when uh < ℓi. Hence, dist(uh, ti,j) ≥
dist(u′h, ti,j) for every 1 ≤ h ≤ n because ti,j ≤ ℓi. As TPRM selects uh and u′h as the facility
location with the same probability, we get that the expected distance of ti,j from the facility cannot
decrease following the deviation of ai,j .

Lemma 4.10. The Two Percentiles Range Mechanism is mediator-side IC.

Proof. Consider an arbitrary mediator di. We should prove that it is always a best response for
di to be truthful given that the agents of Ai are truthful. Let ℓi be the median of the locations
reported by the agents to di, that is closest to zi. Since the agents of Ai are truthful, ℓi is also
the median of the true locations of the agents of Ai that is closest to zi. Every strategy of di can
be characterized by the median closest to zi of the locations reported by di on behalf of his agents
because this is the only information used by the center. Hence, we can characterize any deviation of
di from truthfulness by the median ℓ′i of the locations it reports that is closest to zi. Our objective
is to prove that a deviation represented by ℓ′i is no better than being truthful.

Assume, without loss of generality, ℓi < ℓ′i. Let uh and u′h be the value of the hth element in the
list u1, u2, . . . , un, assuming di is truthful or chooses a deviation represented by ℓ′i. If uh = u′h, then
di clearly does not care whether the facility is located at uh or u′h. Otherwise, by Observation 4.8,
u′h > uh ≥ ℓi.

Let px = ℓi + x, and let cx be the social cost of the agents represented by di if the facility
is located at px. Let p be an arbitrary point, and let us observe the change in dist(px, p) as x
increases. Clearly, dist(px, p) initially decreases at a constant rate and then starts to increase again
in a constant rate (possibly the decrease or increase part is of zero length). Hence, the derivative
of cx is a non-decreasing function in x (expect for a finite number of x values for which it might
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not be defined). For x = 0, px is a median of the locations of the agents of di, and therefore, cx
is minimized for x = 0. Thus, the derivative of cx is non-negative for every x > 0, whenever it is
defined. Let y and y′ be the values of x for which uh = py and u′h = py′ . Then, we have y < y′,
and therefore, cy ≤ cy′ , i.e., locating the facility at u′h induces no better social cost for the agents
of Ai in comparison to locating it at uh. Hence, mediator di does not prefer that the facility will
be located at u′h over locating it at uh.

Consider the following process. We start with u1, u2, . . . , un, and at each step pick some uh and
replace it with u′h (i.e., the probability mass that was given to uh moves to u′h). Notice two things.
First, uh and u′h have the same probability to be selected by the center (since they have the same
index), and therefore, no step improves the social cost of the agents represented by di. Second,
the process described starts with the configuration resulting from a truthful di, and ends with the
configuration resulting of a deviation represented by ℓ′i. Hence, this deviation is non-beneficial for
di.

5 Lower Bounds on Two-Sided IC Mechanisms

In this section we prove the lower bounds given in Sections 3 and 4 on the competitive ratios that
two-sided incentive compatible mechanisms can achieve on any tree metric. All our lower bounds
are based on a construction for the line metric on [0, 1] (i.e., on the simple tree T that is just
an interval) which is given as Example 1. The lower bounds exploit the inability of mediator-
side IC mechanisms to use information other than the location of the optimal point (median) for
each mediator, due to the mediator incentive constraints. Example 1 is essentially identical to
the construction used in [3, 12]. However, while these papers only provide a lower bound for the
deterministic case, we show that the same construction can also be used to prove a lower bound for
the randomized case. Note that interval lower bounds automatically extend to any tree T , since
the interval [0, 1] can be mapped to any path connecting two leaves of the tree.

Example 1. Fix r to be an arbitrary positive integer. For every pair of points h and l such that
0 ≤ l < h ≤ 1 we define three instances I l,h1 , I l,h2 and I l,h3 . Each instance has two mediators d1
and d2, with each mediator representing 2r+1 agents. In I l,h1 , mediator d1 represents r+1 agents

located at l and r agents located at h, while d2 represents 2r+1 agents located at h. In I l,h2 , mediator
d1 represents 2r + 1 agents located at l, while d2 represents r agents located at l, and r + 1 at h.
Finally, in I l,h3 mediator d1 represents 2r + 1 agents located at l, while d2 represents 2r + 1 agents
located at h.

To make use of Example 1, we need to make the following observation.

Observation 5.1. In all instances I l,h1 , I l,h2 and I l,h3 of Example 1, each mediator represents agents
with a unique median. Moreover, the unique median of the agents represented by d1 is l, while the
unique median of the agents represented by d2 is h. The globally optimal location for I l,h1 is to locate

the facility at h, and has a cost of (h− l)(r+ 1). Similarly, the globally optimal location for I l,h2 is
to locate the facility at l, and its cost is also (h− l)(r + 1).

Using the above observation, we can prove the following lemma.

Lemma 5.2. Consider the two instances I1 = I0,11 and I2 = I0,12 defined as in Example 1. For any
mediator-side IC mechanism, the expected location10 picked given either I1 or I2 must be the same.

10Notice that a location in a line metric is just a number, hence, one can calculate expectation over locations.
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Proof. Denote I3 = I0,13 . We show that the expected location picked given either I1 or I2 must be
the same since in both cases the expected location picked is the expected location picked given I3.
We assume throughout the proof that the agents are truthful.

Let xj be the expected location of the picked location given input Ij (for j ∈ {1, 2, 3}). For
any facility location distribution F whose support is within [0, 1], the expected cost for mediator
d1 in instance I1 is r + E[x], while the expected cost for mediator d1 in instance I3 is (2r + 1)E[x],
where E[x] is the expected location picked according to F . We observe that for both instances
and any distribution, the cost of d1 is linearly increasing in the expected location of the facility.
This means that for both inputs, mediator d1 prefers a distribution with lower expected location.
That is, if 0 ≤ x1 < x3 then given I3 mediator d1 prefers to pretend that the input is I1, and if
0 ≤ x3 < x1 then given I1 mediator d1 prefers to pretend that the input is I3. We conclude that
x1 = x3. Similar arguments show that x2 = x3, and thus, x1 = x2.

We are now ready to prove our lower bounds.
Theorem 3.3. Fix any constant ε > 0. Then, no direct revelation deterministic mechanism that
is mediator-side incentive compatible has a competitive ratio of 3− ε, even for line metrics.

Proof. Consider an arbitrary direct revelation deterministic mediator-side incentive compatible
mechanism, and assume all players are truthful. To prove the theorem we fix r ≥ 2ε−1, and
consider two instances I1 = I0,11 and I2 = I0,12 as defined in Example 1. By Lemma 5.2 (with a
single point distributions determined by the deterministic algorithm), the location picked given I1
must be the same as the location picked given I2. Let us denote this location by p.

If p = 0 then for I1 the cost is 3r+1 while the optimal cost is r+1. The resulting competitive
ratio is 3r+1

r+1 = 3 − 2
r+1 > 3 − 2

r ≥ 3 − ε (as r ≥ 2ε−1). Similar arguments show that if p = 1
then the competitive ratio is again worse than 3 − ε for I2. This completes the proof for the case
p ∈ {0, 1}.

Assume now p ∈ (0, 1), and consider the location x′2 ∈ [0, 1] picked by the mechanism given the
input I ′2 = I0,p2 . If x′2 < p then given I2 mediator d2 prefers to pretend that the input is I ′2, and if
x′2 > p then given input I ′2 mediator d2 prefers to pretend that the input is I2. We conclude that
x′2 = p.

The social cost of locating the facility at p given input I ′2 is (3r + 1)p, while the optimal social
cost for this instance is (r + 1)p. The competitive ratio achieved is, therefore, no more than:
3r+1
r+1 = 3− 2

r+1 > 3− 2
r ≥ 3− ε (as r ≥ 2ε−1).

The lower bound for the randomized case is very similar to the deterministic case, but it uses
Lemma 2.4 which allows us to extend the result to randomized mechanisms.
Theorem 4.3. Fix any constant ε > 0. Then, no direct revelation randomized mechanism that
is mediator-side incentive compatible and no mediator based algorithm has a competitive ratio of
2− ε, even for line metrics.

Proof. Consider an arbitrary direct revelation randomized mechanism which is mediator-side in-
centive compatible, and assume all players are truthful. To prove the theorem we fix r ≥ ε−1,
and consider two instances I1 = I0,11 and I2 = I0,12 as defined in Example 1. By Lemma 5.2, the
expected location for I1 must be the same as the expected location for I2. Let p be this expected
location.

By Lemma 2.4, for any set of agents, replacing a distribution whose expected location is xj by
deterministically locating the facility at xj only decreases the cost. This means that the performance
of the mechanism is no better than the worse performance (over I1 and I2) achieved by locating
the facility deterministically at some p ∈ [0, 1]. The cost of I1 when the facility is located at p is:
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p(r + 1) + (1− p)(3r + 1), and the cost of I2 is p(3r + 1) + (1− p)(r + 1). The maximum of these
costs is:

max {p(r + 1) + (1− p)(3r + 1), p(3r + 1) + (1− p)(r + 1)}

≥ [p(r + 1) + (1− p)(3r + 1)] + [p(3r + 1) + (1− p)(r + 1)]

2
= 2r + 1 ,

which induces a competitive ratio of at least: 2r+1
r+1 = 2− 1

r+1 > 2− 1
r ≥ 2− ε (as r ≥ ε−1).

This completes the proof for direct revelation randomized mechanisms that are mediator-side in-
centive compatible. The theorem holds also for mediator based algorithms because such algorithms
cannot distinguish between the inputs I0,11 and I0,12 .

6 Multiple Levels of Mediation

In this section we present results for the case of multiple levels of mediation. We can represent a
hierarchy of mediators by a tree (note that this tree is not the same tree as the one defining the
metric). The root of the tree represents the center, each internal node represents a mediator, and
each leaf represents an agent. The tree is common knowledge. Let s be the depth of the tree, or
the maximal number of edges between the root and a leaf. The case we have studied so far is thus
represented by a tree with three levels (s = 2), the root represents the center, the internal level
represents the mediators, and the leaves represents the agents.

As before, a player is either an agent or a mediator. For each player, another player is a direct kin
if that other player is either a descendent in the tree, or an ancestor in the tree. Recall that a direct
revelation mechanism is a mechanism in which each agent reports her location, and each mediator
reports all of the locations of the agents below him. In such a mechanism, we say that a player is
truthful if she is an agent and she reports her location truthfully, or he is a mediator and he reports
all of the locations of the agents below him truthfully (as received from his direct descendants).
While our results from the previous sections show the existence of competitive mechanisms that
are two-sided incentive compatible for trees with a single layer of mediators, the next theorem
proves that even for a much weaker solution concept, ex-post incentive compatibility, competitive
mechanisms with multiple layers of mediators are impossible.

Definition 6.1. A direct revelation mechanism is ex-post incentive compatible if for every player,
being truthful always maximizes the player’s utility, assuming that all other players are truthful.

We note that this solution concept is weaker than being two-sided IC (or the natural gener-
alization of this notion to more levels) as it does not require any player to ever have a dominant
strategy in an induced game with only part of the other players (his direct kins) being truthful.
Unfortunately, it is impossible to construct competitive ex-post IC mechanisms for s > 2.

Theorem 6.1. No mechanism with a finite competitive ratio is ex-post IC for instances with s > 2.

Proof. Consider the following instance on the metric interval [0, 2] with s = 3.
• Level 3 contains the center.
• Level 2 contains a single mediator C, reporting to the center.
• Level 1 contains two mediators, which we will call A and B, both reporting to C.
• Level 0 contains five agents:

– Agents a, b and c are represented by mediator A, and located in 0, 0 and 1, respectively.
– Agents d and e are represented by mediator B, and are both located at 2.
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Assume for the sake of contradiction that there exists a finite competitive ratio mechanism
which is ex-post IC for the above instance. Observe that if the center gets a report stating that
all five agents are located at a point p, then the mechanism must locate the facility at p to have
a bounded competitive ratio. Assuming all players are truthful, except maybe for C. Then the
following observations hold:
• Let S be the multi-set of the positions of the agents as reported to C. Then, S represents

the true locations of all the agents.
• The center observes the report of C.

Let m be S’s median. By Observation 2.2, m is the optimal facility location for C. If C deviates
and reports that all agents are located at m, the center will have to locate the facility at m, due to
the above discussion. Thus, for C to have no incentive to deviate, the center must always locate
the facility at the median of the locations it gets.

Consider now the situation that all players are truthful, except maybe for A. Let us considers
A’s situation. A is reported, correctly, that his agents are located at 0, 0 and 1. Thus, the optimal
facility location for A is 0. If A reports truthfully, the center will get the reports 0, 0, 1, 2 and 2,
and, by the above discussion, will locate the facility at 1. On the other hand, if A deviates, and
reports that all his agents are located at 0, the center will get the reports 0, 0, 0, 2 and 2, and will
locate the facility at 0 (which is better from A’s point of view). Thus, the mechanism considered
is not ex-post IC.

It seems that in any mechanism that satisfies “minimal” incentive properties, the only “useful”
part of the information reported by a player to its ancestor is the optimal location (from the per-
spective of that player) with respect to that player’s input. That is, the mechanism’s output cannot
change if the locations reported by a player are all replaced by the optimal location of that player
(with respect to that player’s input). This observation naturally suggests the following mechanism
which generalizes the Weighted Median Mechanism. The mechanism iteratively computes weighted
medians (breaking ties in a report-independent way) for each mediator, bottom up, and outputs
the final location. Consider the example presented in the proof of Theorem 6.1. The suggested
mechanism would behave as if A reports that all his agents are located at 0, and C reports that
all his agents are located at 0 (as this is the median of his input which is 0, 0, 0, 2, 2). The final
outcome would be to locate the facility at 0. Notice that this outcome, while not optimal, is not
too far from optimality.

This raises few questions which we address next. First, assuming that all players are truthful,
what is the approximation that this mechanism achieves? Second, what kind of incentive property
does this mechanism satisfy? And finally, for this incentive property, is there any other mechanism
that is substantially better?

We begin by establishing some notation. Let di,j be the jth node of the ith level in the tree,
where the level of the leaves that are furthest away from the root is i = 0 (notice that ds,1 is the
root). For every 0 ≤ i ≤ s, let mi denote the number of nodes appearing in level i of the tree.
For every mediator di,j we denote by Ci,j the set of children of di,j in the tree and by Ai,j the set
of leaves (agents) that descent from di,j . For consistency, if di,j is an agent, then Ci,j = ∅ and
Ai,j = {di,j}. Finally, for every agent a, let ta denote the location of a.

We can now formally define the mechanism. We note that this is not a direct revelation
mechanism, but rather, each player is asked to report a single location.

In the Iterative Weighted Median Mechanism (IWMM):
• An agent reports her location.
• A mediator reports the weighted median of the reports he gets. More formally, let ℓi,j be the

report of player di,j and let zi,j be an arbitrary point selected independently of any reports.

22



Then, ℓi,j is the weighted median of the multi-set {(ℓi−1,j′ , |Ai−1,j′ |) | di−1,j′ ∈ Ci,j} closest
to zi,j .

• The center locates the facility at the point it would have reported according to the above
rule, if it were a mediator.

Notice that IWMM is well defined by Observation 3.1. The next proposition summarizes the
competitiveness of IWMM when viewed as an algorithm (with respect to its input).

Proposition 6.2. Assume that in Iterative Weighted Median Mechanism every agent is truthful
and every mediator follows the protocol, then the mechanism has a competitive ratio of 2s − 1 for
any tree metric.

Proof. Let FOPT and OPT denote an optimal location for the facility and the corresponding social
cost, respectively. We prove by induction that for every level 0 ≤ i ≤ s,

∑mi
j=1

∑
a∈Ai,j

dist(ℓi,j , ta) ≤
(2i − 1) ·OPT , assuming all the players follow the mechanism. Notice that plugging i = s implies
the lemma since the center locates the facility at ℓs,1.

Let us start with the base of the induction. Every agent d0,j of level 0 reports its location.
Thus, ℓ0,j = td0,j and A0,j = {di,j}. Using these observations we get:

m0∑
j=1

∑
a∈A0,j

dist(ℓ0,j , ta) =

m0∑
j=1

dist(ℓ0,j , td0,j ) = 0 = (20 − 1) ·OPT .

This completes the proof of the induction base. Assume the claim holds for i′ ≥ 0, and let us
prove it for i = i′ + 1. Given an agent a of level i′ or lower, let j(i′, a) be the (single) index of a
player of level i′ for which a ∈ Ai′,j(i′,a). If di,j is a mediator, then, by Observation 2.2:∑

a∈Ai,j

dist(ℓi,j , ℓi−1,j(i−1,a)) ≤
∑

a∈Ai,j

dist(FOPT , ℓi−1,j(i−1,a)) .

Let Mi be the set of mediators on level i, then summing the above inequality over all j ∈Mi gives:∑
j∈Mi

∑
a∈Ai,j

dist(ℓi,j , ℓi−1,j(i−1,a)) ≤
∑
j∈Mi

∑
a∈Ai,j

dist(FOPT , ℓi−1,j(i−1,a)) .

Using the triangle inequality, we get:∑
j∈Mi

∑
a∈Ai,j

[
dist(ℓi,j , ta)− dist(ta, ℓi−1,j(i−1,a))

]
≤
∑
j∈Mi

∑
a∈Ai,j

dist(ℓi,j , ℓi−1,j(i−1,a)) ≤
∑
j∈Mi

∑
a∈Ai,j

dist(FOPT , ℓi−1,j(i−1,a))

≤
∑
j∈Mi

∑
a∈Ai,j

[
dist(FOPT , ta) + dist(ta, ℓi−1,j(i−1,a))

]
.

Rearranging, gives:∑
j∈Mi

∑
a∈Ai,j

dist(ℓi,j , ta) ≤
∑
j∈Mi

∑
a∈Ai,j

[
dist(FOPT , ta) + 2 · dist(ta, ℓi−1,j(i−1,a))

]
≤ OPT + 2 ·

∑
j∈Mi

∑
a∈Ai,j

dist(ta, ℓi−1,j(i−1,a))

= OPT + 2 ·
mi−1∑
j=1

∑
a∈Ai−1,j

dist(ta, ℓi−1,j)

≤ OPT + 2 · (2i−1 − 1) ·OPT = (2i − 1) ·OPT ,
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where the first equality holds since both double sums sum over all the agents appearing below level
i, and the third inequality is due to the induction hypothesis. The induction step follows since for
every j ̸∈Mi, di,j is an agent, and thus, dist(ℓi,j , tdi,j ) = 0, which implies:

mi∑
j=1

∑
a∈Ai,j

dist(ℓi,j , ta) =
∑
j∈Mi

∑
a∈Ai,j

dist(ℓi,j , ta) ≤ (2i − 1) ·OPT .

By Theorem 6.1, the direct revelation implementation of IWMM is not ex-post IC. Yet, this
mechanism satisfies the following, much weaker, incentive property. Informally, every mediator,
assuming that all his ascendants follow the protocol, and that the input he received from each
of his direct descendants represents the true location of all agents of that direct descendant, will
optimize his perceived utility by following the protocol.

Definition 6.2. A single-location mechanism is a non-direct revelation mechanism in which each
player is reporting a single location to its direct ascendant.

A player of a single-location mechanism is straightforward if she is an agent and is truthful,
or if he is a mediator and the location he reports is optimal with respect to his utility function
assuming every agent represented by a direct descendant is located at the location reported by that
direct descendent.

For a player in a single-location mechanism, we say that being straightforward is naively op-
timal, if being straightforward maximizes the above utility function under the assumption that his
ascendants are straightforward

A single-location mechanism is naively incentive compatible if for every player being straight-
forward is naively optimal.

We note that the term naive comes to emphasize that the players do not form Bayesian beliefs
regarding the true locations of their agents and they do not try to optimize with respect to that
belief, but rather (naively) assume that the reports they receive represent the true locations of the
agents. Such a naive behavior is consistent with a mediator that never allows himself to harm his
agents in the case when the reported locations are actually the true locations of his agents.

In Section 6.1, we prove that IWMM is naively incentive compatible. Combining this with
Proposition 6.2 we derive the following theorem which summarizes the properties of IWMM.

Theorem 6.3. The Iterative Weighted Median Mechanism (IWMM) is a deterministic naively
incentive compatible mechanism with a competitive ratio of 2s − 1 for any tree metric.

Note that although our incentive property is extremely weak, the competitive ratio of IMWW
degrades exponentially in s. Can such bad performance be avoided? We conclude this section with
a lower bound showing that up to constant factors, it cannot.

Theorem 6.4. Fix any constant ε > 0 and tree depth s ≥ 3. Then, no mechanism (possibly
randomized) that is naively incentive compatible has a competitive ratio of 2s−2 − 1 − ε even for
line metrics.

The proof of Theorem 6.4 is based on the following construction.

Example 2. Consider the metric on the interval [0, 1]. Fix r to be an arbitrary positive integer,
and fix a depth s ≥ 3. We next describe a pair of instances. In both instances, the center has a
single child mediator. Every mediator of level i > 1 represents 2 mediators of level i− 1, and every
mediator of level 1 represents r agents, except for d1,1 which represents r + 1 agents. Notice that
there are in total r · 2s−2 + 1 agents in each instance of the pair.
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The first instance, denoted by I1, has all the agents located at point 0. The second instance,
denoted by I2, has all the agents located at 1, except for the agents of d1,1 which are located at 0.

Lemma 6.5. Any (possibly randomized) mechanism that is naively incentive compatible and has a
finite competitive ratio must locate the facility at 0 with probability 1 given either I1 or I2.

Proof. The claim is trivial for I1 since all the agents of I1 are located at 0. Notice that the center
of I1 has a single child mediator, and therefore, gets only a single report (which is equal to 0). Let
us prove that the center gets the same report also under I2, and therefore, the center must behave
in the same way for both instances.

Formally, we need to prove that ds−1,1 reports 0. We do so, by proving inductively that di,1
reports 0 for every 1 ≤ i ≤ s− 1. Notice that all the agents of d1,1 are located at 0, and therefore,
d1,1 must report 0 to be straightforward. This completes the base of the induction. Assume di−1,1

reports 0, and let us prove that so does di,1 for 2 ≤ i ≤ s − 1. Notice that di,1 gets only two
reports. One report from di−1,1 of value 0 which represents r · 2i−2 + 1 agents, and another report
which represents only r · 2i−2 agents. Clearly, the optimal location for di,1’s utility function (with
respect the reports it gets) is 0, because this is the reported location of the majority of the agents.
Therefore, di,1 must report 0 to be straightforward.

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. Fix a given naively IC mechanism with a bounded competitive ratio. The
mechanism must locate the facility at 0 with probability 1 given I2. However, there are only r + 1
agents located at 0 while there are r · (2s−2 − 1) agents located at 1. Thus, the mechanism has a
cost of: r · (2s−2 − 1), while the optimal facility location has a cost of no more than r + 1. The
competitive ratio of the mechanism is, therefore, no better than:

r · (2s−2 − 1)

r + 1
,

which tends to 2s−2 − 1 as r goes to infinity.

6.1 Proof: IWMM is Naively IC

In this section we prove that IWMM is Naively IC. This proof tends to follow the same ideas
used in the analysis of WMM, but there are some subtle differences due to the hierarchical natural
IWMM and the different solution concepts of the two algorithms (more specifically, WMM is a
direct revelation mechanism, while IWMM is a single location mechanism). Let us start with a
generalization of Observation 3.4 for hierarchical settings.

Lemma 6.6. Fix two mediators di,j and di′,j′ for which di′,j′ is a descendent of di,j in the tree.

Assume ℓi′,j′ is changed to be ℓ̂i′,j′ by some change in the strategies of di′,j′ and its descendents. Let

ℓ̂i,j be the new location of ℓi,j after the change. If every direct ascendant of di′,j′ is straightforward

and ℓi,j ̸= ℓ̂i,j, then ℓi,j and ℓ̂i,j are both on the path between ℓi′,j′ and ℓ̂i′,j′ , and ℓi′,j′ is closer to

ℓi,j than to ℓ̂i,j.

Proof. We prove the lemma by induction on i− i′. For i− i′ = 0 the lemma holds trivially, so let
us now assume the claim holds for i − i′ < h, and let us prove it for i − i′ = h. We also assume
every ascendor of di′,j′ is straightforward and ℓi,j ̸= ℓ̂i,j (otherwise, there is nothing to prove).

Let di−1,j′′ be the (single) direct descendent of di,j which is an ascendant of di′,j′ . Let ℓ̂i−1,j′′ be

the new value of ℓi−1,j′′ after the change in ℓi′,j′ . If ℓi−1,j′′ = ℓ̂i−1,j′′ , then we get ℓi,j = ℓ̂i,j which
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contradicts our previous assumptions. Thus, we must have ℓi−1,j′′ ̸= ℓ̂i−1,j′′ . By the induction

hypothesis, this implies that ℓi−1,j′′ and ℓ̂i−1,j′′ are both on the path between ℓi′,j′ and ℓ̂i′,j′ , and
ℓi−1,j′′ is the one closer to ℓi′,j′ among the two.

By Observation 3.4, ℓi,j and ℓ̂i,j are both on the path between ℓi−1,j′′ and ℓ̂i−1,j′′ , and ℓi,j is

closer to ℓi−1,j′′ than ℓ̂i,j . Combining this with the previous observation, we get that the path from

ℓi′,j′ to ℓ̂i′,j′ goes through the points ℓi−1,j′′ , ℓi,j , ℓ̂i,j and ℓ̂i−1,j′′ , in that order, which completes the
proof of the induction step.

Using the above lemma, we can now prove that IWMM is naively IC.

Lemma 6.7. The Iterative Weighted Median Mechanism is naively incentive compatible.

Proof. Consider an arbitrary player di,j . We should prove that being straightforward is naively
incentive compatible for di,j . In the rest of this proof let ℓi,j denote the report of di,j assuming he

follows the mechanism. Let ℓ̂i,j ̸= ℓi,j be an arbitrary possible deviation of di,j . Our objective is to

prove that assuming all of di,j ascendants are straightforward, then reporting ℓ̂i,j is no better for
di,j than being straightforward, with respect to the utility function induced by the reports of di,j ’s

direct descendents. Let ℓs,1 and ℓ̂s,1 be the locations picked by the center given that di,j reports

ℓi,j and ℓ̂i,j , respectively. If ℓs,1 = ℓ̂s,1 then the deviation is clearly non-beneficial. Otherwise, by

Lemma 6.6, the path from ℓi,j to ℓ̂i,j goes through ℓs,1 and ℓ̂s,1 in that order.

For every x ∈ [0, 1], let px be the point along the path between ℓi,j and ℓ̂i,j obeying dist(ℓi,j , px) =

x · dist(ℓi,j , ℓ̂i,j), and let cx be the value of the di,j ’s objective function (with respect to the reports
he gets from his direct descendents) if the facility is located at px. Let p be an arbitrary point,
and let us observe the change in dist(px, p) as x increases. Clearly, dist(px, p) initially decreases at
a constant rate and then starts to increase again in a constant rate (possibly the decrease part or
increase part is of zero length). Hence, the derivative of cx is a non-decreasing function of x (except
for a finite number of x values for which it might not be defined). We know that for x = 0, px is an
optimal point for di,j . Hence, cx is minimized for x = 0. Thus, the derivative of cx is non-negative
for every x > 0, whenever it is defined. Let y and y′ be the values of x for which ℓs,1 = py and

ℓ̂s,1 = py′ . Then, we have y < y′, and therefore, cy ≤ cy′ , i.e., locating the facility at ℓ̂s,1 does not

decrease the objective function of di,j in comparison to locating it at ℓs,1. Hence, deviating to ℓ̂i,j
is non-beneficial from di,j ’s perspective.

7 Conclusion

We studied the impact of strategic mediators on the competitive ratio of IC mechanisms in a facility
location setting. Our results show that a single layer of mediation cause a moderate degradation in
the competitive ratio, which becomes much worse as additional layers of mediation are introduced.
We also showed that randomized mechanisms perform better than deterministic ones.

Strategic mediators appear in many real world scenarios, and we believe it is important to
study the implications of their behavior in various settings. For example, in display advertising,
one common practice is for a mediator to buy advertisement space on a web page and split it between
multiple advertisers he represents. Assume the mediator gets bids from potential advertisers, and
based on these bids decides how to bid for the space (in the ad exchange auction). If he wins
the space he also need to decide how to split the newly bought space among his advertisers. The
mediator needs a strategy that will incentivize his advertisers to be truthful, which is not a trivial
task even if the ad exchange uses a second price auction. Studying the effect on the social welfare
and revenue of such mediators is an interesting open problem.
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APPENDIX

A Missing Proofs of Section 2

A.1 Proof of Observation 2.2

In this subsection we prove the following observation.
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Observation 2.2. For every non empty finite multi-set S of weighted points, there is at least one
weighted median. Moreover, a point p is a weighted median of S if and only if locating the facility
at p minimizes the weighted total cost of a set of agents located at the points of S (i.e., the sum∑

q̃∈S w(q̃) · f(q̃, S) · dist(p, q̃)).
The observation follows immediately from two lemmata. The first lemma shows that any multi-

set S of weighted points always have a weighted median. This lemma is a simple extension of a
well-known result of Jordan [5].

Lemma A.1. For every non empty finite multi-set S of weighted points there is at least one weighted
median.

Proof. Given a point p, let Pp denote the partition of S into maximal sub multi-sets such that
every path between two weighted points of different sub multi-sets of Pp goes through p. Observe
that a point p is a weighted median of S if and only if all the sub multi-sets of Pp are of weight at
most w(S)/2. Let R = {p | ∃w(p, w) ∈ S} ∪ V . Pick any point r in R. If r is a weighted median,
we are done. If not, there is exactly one sub multi-set P ∈ Pr with a weight larger than w(S)/2.
By the definition of R there must be a point r′ ∈ R (r′ ̸= r) such that the path between every
weighted point of P and r goes through r′. We claim that if r′ is not a weighted median, then there
must be a sub multi-set P ′ ∈ Pr′ that is a subset of P \ Sr and has weight larger than w(S)/2. If
this is so, we can replace r by r′ and P by P ′ and continue in the same way till we find a weighted
median (the sum

∑
q̃∈P dist(q̃, r) strictly decreases with each iteration, and can take only a finite

set of values).
Next we show that if r′ is not a weighted median, then there must be a sub multi-set P ′ ∈ Pr′

that is a subset of P and has weight larger than w(S)/2. Since r′ is not a weighted median, there
exists a sub multi-set P ′′ ∈ Pr′ with weight over w(S)/2. If P ′′ \ P ̸= ∅, then by the definition of
r′ it holds that P ′′ ∩ P = ∅. Therefore, w(P ′′) ≤ w(S)−w(P ) < w(S)−w(S)/2 = w(S)/2, which
is a contradiction. Thus, we must have P ′′ ⊆ P .

The next lemma proves the second part of Observation 2.2, i.e., that the weighted median
points are exactly the optimal facility locations for minimizing the weighted total cost of a set of
agents located at the weighted points of S.

Lemma A.2. Given a non empty finite multi-set S of weighted points, a point p is a weighted
median of S if and only if locating the facility at p minimizes the weighted total cost of a set of
agents located at the weighted points of S (i.e., the sum

∑
q̃∈S w(q̃) · f(q̃, S) · dist(p, q̃)).

Proof. Consider two points p and q, where p is a median of S (such a point exists due to the
previous lemma). Assume the facility is located at q, and let us analyze the effect on the cost paid
by the agents of S if the facility is moved to p. Let S′ ⊆ S be the multi-set of weighted points
of S that are connected to q via a path that does not go through p. By the definition a median,
w(S′) ≤ mp ≤ w(S)/2.

The path in T from every weighted point of S \ S′ to q goes through p. Hence, the move of the
facility from q to p decreases the cost of agents located at these weighted points by dist(p, q). On
the other hand, the move can increase the cost of an agent located at any other weighted point by
at most dist(p, q). Hence, the change in the weighted total cost following the move of the facility is
at most:

w(S′) · dist(p, q)− w(S \ S′) · dist(p, q) = (2w(S′)− w(S)) · dist(p, q) (3)

≤ (2 · (w(S)/2)− w(S)) · dist(p, q) = 0 .
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Thus, we proved that locating the facility at a median point p of S induces as low a weighted
total cost for the agents of S as locating it in every other point. In other words, any median point
p of S minimizes the weighted total cost incurred by a set of agents located at the weighted points
of S. To prove the other direction, let us tighten the above analysis. Assume q is not a median of
S. Then, there exists a set S′′ ⊆ S such that the weighted points of S′′ can be connected via paths
that do not go through q, and w(S′′) > w(S)/2.

If S′′ ∩ S′ = ∅, then w(S′) ≤ w(S) − w(S′′) < w(S) − w(S)/2 = w(S)/2. Plugging this
into (3) shows that the change in the total weighted cost paid by the agents of S following the
move of the facility from q to p is strictly negative. Otherwise, we note that S′′ ̸⊆ S′ because
w(S′′) > w(S)/2 ≥ w(S′). Hence, there exist two weighted points q̃′ ∈ S′′ ∩ S′ and q̃′′ ∈ S′′ \ S′.
Since q̃′ ∈ S′ and q̃′′ ̸∈ S′, we learn that the path connecting q̃′ to q̃′′ goes through p. However,
this path cannot go through q because both q̃′ and q̃′′ are in S′′. This implies that the additional
cost of q̃′ from the move of the facility from q to p is lower than dist(p, q). However, in the analysis
of (3) we upper bounded this additional cost by dist(p, q), hence, 0 is a strict upper bound on the
change in the weighted total cost paid by the agents of S.

In conclusion, we proved that the assumption that q is not a median of S implies that the total
weighted cost of a set of agents located at the weighted points of S strictly decreases if the facility
is moved from q to p. Hence, any non-median point like q does not minimize the total weighted
cost of such a set of agents.

A.2 Proof of Observation 2.3

Observation 2.3. There exists a deterministic, agent-side incentive compatible mechanism that is
optimal (1-competitive).

Proof. This proof uses some results from Section 3. We would like to stress that this does not
introduce circular references between our proofs. Consider the following mechanism. Let z be an
arbitrary point chosen independently of the reports of the agents, and let S be the multi-set of
the reports of all agents (as reported by the mediators to the center). We consider the mechanism
which chooses as the facility location the unique median of S closest to z.

The existence of a unique median point closest to z (i.e., closer to z than any other median point)
is guaranteed by Observation 3.1. The optimality of the above mechanism follows immediately
from Observation 2.2. Thus, we are only left to show that the mechanism is agent-side incentive
compatible.

Consider an arbitrary agent ai,j . Assuming mediator di is truthful, we would like to show that
ai,j has no incentive to report a fake location t′i,j ̸= ti,j . Let F and F ′ be the facility locations
picked by the mechanism assuming ai,j reports ti,j and t′i,j , respectively. Similarly, let S and S′ be
the multi-sets of the reports of all agents (as reported by the mediators to the center) assuming
ai,j reports ti,j and t′i,j , respectively. If F = F ′, then reporting the fake location t′i,j is clearly
non-beneficial for ai,j . Otherwise, observe that since di is truthful, S

′ = S ∪ {t′i,j} \ {ti,j}. Hence,
by Observation 3.4, F and F ′ are both on the path connecting ti,j and t′i,j , and F is closer to ti,j
than F ′. Thus, dist(ti,j , F ) < dist(ti,j , F

′), i.e., it is strictly non-beneficial for ai,j to report the fake
location t′i,j .

A.3 Proof of Lemma 2.4

In this subsection we prove the following lemma.
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Lemma 2.4. For any distribution over points F there exists a point p(F ) such that for any finite
multi-set S of points:

E
p′∼F

∑
q∈S

dist(p′, q) · f(q, S)

 ≥∑
q∈S

dist(p(F ), q) · f(q, S) .

Moreover, for the euclidian metric on [a, b] (for arbitrary a and b) the expected location according
to F can serve as such a point p(F ).

The proof of the lemma is done by defining a series of probability distributions F1, F2, . . . , Fℓ

that have two properties:
• For every 1 ≤ i < ℓ,

E
p′∼Fi

∑
q∈S

dist(p′, q) · f(q, S)

 ≥ E
p′∼Fi+1

∑
q∈S

dist(p′, q) · f(q, S)

 .

• When sampling according to Fℓ one always gets the same point (a point distribution).
Let us begin by defining F1. Map each node to an arbitrary edge hitting it. For every edge

e ∈ E, let A(e) denote the set of points that are located on e or a node mapped to e. Observe that
{A(e)}e∈E is a disjoint partition of the metric. The probability distribution F1 is identical to F
except that a point p chosen according to F1 never belongs to a set A(e) if Prp′∼F [p

′ ∈ A(e)] = 0.
Formally, let E(F ) = {e ∈ E | Prp′∼F [p

′ ∈ A(e)] > 0}. Given a set S of points:

Pr
p′∼F1

[p′ ∈ S] = Pr
p′∼F

[p′ ∈ S ∩ ∪e∈E(F )A(e)] .

Lemma A.3. F1 is a probability distribution, and E
p′∼F

[dist(p′, q)] = E
p′∼F1

[dist(p′, q)] for every

point q.

Proof. Clearly Prp′∼F1 [p
′ ∈ S] ≥ 0 for every set S of points. For any countable collection of disjoint

sets S1, S2, . . ., we have:

Pr
p′∼F1

[
p′ ∈

∞⊎
i=1

Si

]
= Pr

p′∼F

[
p′ ∈

( ∞⊎
i=1

Si

)
∩ ∪e∈E(F )A(e)

]

= Pr
p′∼F

[
p′ ∈

∞⊎
i=1

(
Si ∩ ∪e∈E(F )A(e)

)]

=

∞∑
i=1

Pr
p′∼F

[
p′ ∈ Si ∩ ∪e∈E(F )A(e)

]
=

∞∑
i=1

Pr
p′∼F1

[
p′ ∈ Si

]
.

Finally,

Pr
p′∼F1

[p′ ∈ ∪e∈EA(e)] =
∑
e∈E

Pr
p′∼F1

[p′ ∈ A(e)] =
∑

e∈E(F )

Pr
p′∼F

[p′ ∈ A(e)]

=
∑
e∈E

Pr
p′∼F

[p′ ∈ A(e)]−
∑

e ̸∈E(F )

Pr
p′∼F

[p′ ∈ A(e)] = 1−
∑

e ̸∈E(F )

0 = 1 .
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Observe that for every set S of points, we have:

Pr
p′∼F1

[p′ ∈ S] = Pr
p′∼F

[p′ ∈ S ∩ ∪e∈E(F )A(e)] = Pr
p′∼F

[p′ ∈ S]−
∑

e ̸∈E(F )

Pr
p′∼F

[p′ ∈ S ∩A(e)]

= Pr
p′∼F

[p′ ∈ S]−
∑

e ̸∈E(F )

0 = Pr
p′∼F

[p′ ∈ S] ,

and therefore, for any point q, E
p′∼F

[dist(p′, q)] = E
p′∼F1

[dist(p′, q)].

Before presenting the other probability distributions (F2, F3, . . . Fℓ), we need the following nota-
tion. Given a probability distribution F ′, and a path P in the tree T such that P ∩E(F ′) ̸= ∅, let
A(P ) = ∪e∈PA(e) and let F ′|P be a probability distribution in which the probability mass of the
path P is concentrated at the average of this path. More formally, let u, v be the end nodes of P ,
then for every x ∈ [0, 1], we denote by u(x) the point along P obeying dist(u, u(x)) = x · dist(u, v).
For a point p′ ∈ A(P ) we denote by x(p′) the value for which p′ = u(x). Also, let EF ′ [P ] =
u
(
Ep′∼F ′ [x(p′) | p′ ∈ A(P )]

)
, then F ′|P is a probability distribution which is identical to F ′ except

that it outputs EF ′ [P ] whenever F ′ outputs a point along the path P .

Lemma A.4. Assume P is a path in the tree and F ′ is a probability distribution in which a point
p′ ∼ F ′ can belong to A(e) if and only if e ∈ E(F ′). Then F ′|P is a probability distribution, and
E

p′∼F ′
[dist(p′, q)] ≥ E

p′∼F ′|P
[dist(p′, q)] for every point q.

Proof. Given a set S of points:

Pr
p′∼F ′|P

[p′ ∈ S] = Pr
p′∼F ′

[p′ ∈ S \A(P )] + 1EF ′ [P ]∈S · Pr
p′∼F ′

[p′ ∈ A(P )] ,

where 1EF ′ [P ]∈S is an indicator taking the value 1 when EF ′ [P ] ∈ S, and the value 0 otherwise. Lets
prove that F ′|P is a probability distribution. It is clear that Prp′∼F ′|P [p

′ ∈ S] ≥ 0 for every set S
of points. Consider an arbitrary countable collection of disjoint sets S1, S2, . . .. If EF ′ [P ] does not
belong to any of the sets Si, then:

Pr
p′∼F ′|P

[
p′ ∈

∞⊎
i=1

Si

]
= Pr

p′∼F ′

[
p′ ∈

( ∞⊎
i=1

Si

)
\A(P )

]
= Pr

p′∼F ′

[
p′ ∈

∞⊎
i=1

(Si \A(P ))

]

=

∞∑
i=1

Pr
p′∼F ′

[
p′ ∈ Si \A(P )

]
=

∞∑
i=1

Pr
p′∼F ′|P

[
p′ ∈ Si

]
.

On the other hand, if the point EF ′ [P ] belongs to one of the sets S1, S2, . . ., then it belongs to
exactly one of them, and therefore:

Pr
p′∼F ′|P

[
p′ ∈

∞⊎
i=1

Si

]
= Pr

p′∼F ′

[
p′ ∈

( ∞⊎
i=1

Si

)
\A(P )

]
+ Pr

p′∼F ′
[p′ ∈ A(P )]

= Pr
p′∼F ′

[
p′ ∈

∞⊎
i=1

(Si \A(P ))

]
+ Pr

p′∼F ′
[p′ ∈ A(P )]

=

∞∑
i=1

Pr
p′∼F ′

[
p′ ∈ Si \A(P )

]
+ Pr

p′∼F ′
[p′ ∈ A(P )] =

∞∑
i=1

Pr
p′∼F ′|P

[
p′ ∈ Si

]
.
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Finally, notice that EF ′ [P ] ∈ ∪e∈EA(e). Therefore,

Pr
p′∼F ′|P

[p′ ∈ ∪e∈EA(e)] = Pr
p′∼F ′|P

[
p′ ∈ (∪e∈EA(e)) \A(P )

]
+ Pr

p′∼F ′
[p′ ∈ A(P )]

= Pr
p′∼F ′|P

[
p′ ∈ ∪e∈EA(e)

]
− Pr

p′∼F ′
[p′ ∈ A(P )] + Pr

p′∼F ′
[p′ ∈ A(P )]

= Pr
p′∼F ′|P

[
p′ ∈ ∪e∈EA(e)

]
= 1 .

Consider an arbitrary point q, and let q′ be the point on P closest to q. Then,

E
p′∼F ′

[
dist(p′, q) | p′ ∈ A(P )

]
= dist(q, q′) + E

p′∼F ′

[
dist(p′, q′) | p′ ∈ A(P )

]
= dist(q, q′) + E

p′∼F ′

[
|x(p′)− x(q′)| | p′ ∈ A(P )

]
= dist(q, q′) + E

p′∼F ′

[
max{x(p′)− x(q′), x(q′)− x(p′)} | p′ ∈ A(P )

]
≥ dist(q, q′) + max

{
E

p′∼F ′

[
x(p′)− x(q′) | p′ ∈ A(P )

]
, E
p′∼F ′

[
x(q′)− x(p′) | p′ ∈ A(P )

]}
= dist(q, q′) + max

{
E

p′∼F ′

[
x(p′) | p′ ∈ A(P )

]
− x(q′), x(q′)− E

p′∼F ′

[
x(p′) | p′ ∈ A(P )

]}
= dist(q, q′) + max

{
x(EF ′ [P ])− x(q′), x(q′)− x(EF ′ [P ])

}
= dist(q, q′) + dist(EF ′ [P ], q′) = dist(EF ′ [P ], q) .

If E(F ′) ⊆ P , then:

E
p′∼F ′

[
dist(p′, q)

]
= E

p′∼F ′

[
dist(p′, q) | p′ ∈ A(P )

]
≥ dist(EF ′ [P ], q)

= E
p′∼F ′|P

[
dist(p′, q) | p′ ∈ A(P )

]
= E

p′∼F ′|P

[
dist(p′, q)

]
.

Otherwise,

E
p′∼F ′

[
dist(p′, q)

]
= E

p′∼F ′

[
dist(p′, q) | p′ ∈ A(P )

]
· Pr
p′∼F ′

[p′ ∈ A(P )]

+ E
p′∼F ′

[
dist(p′, q) | p′ ̸∈ A(P )

]
· Pr
p′∼F ′

[p′ ̸∈ A(P )]

≥ dist(EF ′ [P ], q) · Pr
p′∼F ′

[p′ ∈ A(P )]

+ E
p′∼F ′

[
dist(p′, q) | p′ ̸∈ A(P )

]
· Pr
p′∼F ′

[p′ ̸∈ A(P )]

= E
p′∼F ′|P

[
dist(p′, q) | p′ ∈ A(P )

]
· Pr
p′∼F ′

[p′ ∈ A(P )]

+ E
p′∼F ′|P

[
dist(p′, q) | p′ ̸∈ A(P )

]
· Pr
p′∼F ′

[p′ ̸∈ A(P )]

= E
p′∼F ′|P

[
dist(p′, q)

]
.

Using the machinery developed above, we can now define the following process which constructs
the distributions F2, F2, . . . , Fℓ. For a probability distribution F ′, let Q(F ′) denote the set of points
that can result from F ′.

1. Let i← 1.
2. If E(Fi) > 1, then:

32



3. Let Pi be a path containing at least two edges of E(Fi).
4. Let Fi+1 ← Fi|Pi .
5. Else if |Q(F ′)| > 1:
6. Let Pi be the path containing only the single edge of E(Fi).
7. Let Fi+1 ← Fi|Pi .
8. Else:
9. Terminate the process.
10. i← i+ 1.
11. Return to line 2.

Observation A.5. The above process always terminates.

Proof. Observe that |E(Fi)| > |E(Fi+1)| unless |E(Fi+1)| = 1 (in which case the process terminates
after producing Fi+1).

Let ℓ be the index of the last probability distribution produced by the process, and let p(F ) be
the single point that can be outputted by Fℓ. Let q be an arbitrary point. From Lemmata A.3 and
A.4, we get:

E
p′∼F

[
dist(p′, q)

]
= E

p′∼F1

[
dist(p′, q)

]
≥ E

p′∼F2

[
dist(p′, q)

]
≥ . . . ≥ E

p′∼Fℓ

[
dist(p′, q)

]
= dist(p(F ), q) .

Consider now an arbitrary finite multi-set S of points. Then, by the linearity of the expectation:

E
p′∼F

∑
q∈S

dist(p′, q) · f(q, S)

 =
∑
q∈S

E
p′∼F

[
dist(p′, q)

]
· f(q, S) ≥

∑
q∈S

dist(p(F ), q) · f(q, S) ,

which completes the proof of the first part of the Lemma 2.4. Observe that if the metric is the
euclidian metric on [a, b], then there are two cases.
• Q(F ) = {q} for some point q. In this case ℓ = 1, and p(F ) = q = E

p′∼F
[p′].

• |Q(F )| > 1. In this case, one possible execution of the above process chooses P1 which is equal
to the entire interval [a, b]. For this execution, we get ℓ = 2 and p(F ) = E

p′∼F1

[p′] = E
p′∼F

[p′].

Thus, in both cases E
p′∼F

[p′] can serve as p(F ).

B Analysis of TRM

In this appendix we analyze TRM and prove the following theorem.
Theorem 4.2. For any tree metric, the Tree Randomized Mechanism (TRM) is a randomized
two-sided IC mechanism with a competitive ratio of 2.

The next two lemmata prove that p(u) defines a legal probability distribution. Subsections B.1
and B.2 prove the competitive ratio and the two-sided IC of TRM, respectively.

Lemma B.1. For every node u ∈ X, p(u) ∈ [0, 1].

Proof. First, let us consider a node u ∈ X\{r}. For such a node c(u) = n/4 and n/2 ≥ treesize(u) ≥
n/4 because r is a weighted median of L. Hence, by the definition of X:

treesize(u)−
∑

u′∈X∩children(u)

(treesize(u′)− n/4) ≤ treesize(u) ≤ n/2 ,

33



which implies:

p(u) =
treesize(u)− c(u)

n/2
−
∑

u′∈X∩children(u)(treesize(u
′)− c(u′))

n/2
≤ n/2− n/4

n/2
= 1/2 .

Also, treesize(u)−
∑

p′∈X∩children(u)(treesize(p
′)−n/4) ≥ n/4 because, either |X∩children(u)| =

0 or:

treesize(u)−
∑

u′∈X∩children(u)

(treesize(u′)− n/4) ≥ n/4 + treesize(u)−
∑

u′∈X∩children(u)

treesize(u′)

≥ n/4 + treesize(u)−
∑

u′∈children(p)

treesize(u′) = n/4 + size(u) ≥ n/4 .

Thus,

p(u) =
treesize(u)− c(u)

n/2
−
∑

u′∈X∩children(u)(treesize(u
′)− c(u′))

n/2
≥ n/4− n/4

n/2
= 0 .

We are now left to prove that 0 ≤ p(r) ≤ 1. Clearly, c(r) = n/2 and treesize(r) = n. By the
definition of X we get:

treesize(r)−
∑

u′∈X∩children(r)

(treesize(u′)− n/4) ≤ treesize(r) = n ,

which implies:

p(r) =
treesize(r)− c(r)

n/2
−
∑

u′∈X∩children(r)(treesize(u
′)− c(u′))

n/2
≤ n− n/2

n/2
= 1 .

Also, treesize(r)−
∑

u′∈X∩children(r)(treesize(u
′)− n/4) ≥ n/2 because:

• If |X ∩ children(r)| ≤ 1:

treesize(r)−
∑

u′∈X∩children(r)

(treesize(u′)− n/4) ≥ treesize(r)−
∑

u′∈X∩children(r)

treesize(u′)

≥ treesize(r)− |X ∩ children(r)| · n/2 ≥ n/2 .

• If |X ∩ children(r)| ≥ 2:

treesize(r)−
∑

u′∈X∩children(r)

(treesize(u′)− n/4) ≥ n/2 + treesize(r)−
∑

u′∈X∩children(r)

treesize(u′)

≥ n/2 + treesize(r)−
∑

u′∈children(r)

treesize(u′) = n/2 + size(r) ≥ n/2 .

Thus,

p(r) =
treesize(r)− c(r)

n/2
−
∑

u′∈X∩children(r)(treesize(u
′)− c(u′))

n/2
≥ n/2− n/2

n/2
= 0 .

Lemma B.2. For every node u ∈ X,
∑

u′∈X∩subtree(u) p(u
′) = treesize(u)−c(u)

n/2 , hence, for u = r, we

get
∑

u′∈X p(u′) = 1.
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Proof. We prove the lemma by induction on the size of |X ∩ subtree(u)|. If |X ∩ subtree(u)| = 1,
then X ∩ children(u) = ∅, and therefore,

p(u) =
treesize(u)− c(u)

n/2
−
∑

u′∈X∩children(u)(treesize(u
′)− c(u))

n/2
=

treesize(u)− c(u)

n/2
.

Assume now that the claim hold for |X∩subtree(u)| < h, and let us prove it for |X∩subtree(u)| = h.
Every point u′ ∈ X ∩ children(u) obeys: X ∩ subtree(u′) ⊆ X ∩ subtree(u) \ {u}, and therefore,
|X ∩ subtree(u′)| < |X ∩ subtree(u)|, i.e., the induction hypothesis holds for u′. Thus,∑

u′∈X∩subtree(u)

p(u′) = p(u) +
∑

u′∈X∩subtree(u)
u′ ̸=u

p(u′)

=
treesize(u)− c(u)

n/2
−
∑

u′∈X∩children(u)(treesize(u
′)− c(u′))

n/2

+
∑

u′∈X∩children(u)

treesize(u′)− c(u′)

n/2

=
treesize(u)− c(u)

n/2
.

B.1 Proof: TRM is 2-Competitive

In this subsection we prove that TRM is 2-competitive as an algorithm (when players are truthful).
Let V ′ = V ∪ {ti,j |1 ≤ i ≤ k ∧ 1 ≤ j ≤ ni}, where V is the set of nodes of the tree produced by the
first part of TRM. Intuitively, V ′ contains V and the real locations of all agents. The definition of
V ′ calls for the following extensions of treesize, subtree, X and c:
• For a point q outside of V , let uq be the first node of V encountered when moving from q

away from r. Then, treesize(q) = treesize(uq) and subtree(q) = subtree(uq).
• Let X ′ = {q ∈ V ′ | treesize(q) ≥ n/4}.
• For every point q ∈ X ′ \X, let c(q) = n/4.
We also define S as the set of segments connecting pairs of points q and q′ of V ′ that are not

separated by any other point of V ′. Observe that since V ⊆ V ′, the interiors of the sections of S
are disjoint.

Observation B.3. There exists an optimal facility location F in V ′.

Proof. Observe that every median of the multi-set A = {ti,j |1 ≤ i ≤ k ∧ 1 ≤ j ≤ ni} is an optimal
facility location, and let F be an arbitrary median of A. If F ∈ V ′, then we are done. Otherwise,
we also have F ̸∈ A. Let F ′ be a point of V ′ which is closest to F among all points of V ′. Consider
an arbitrary multi-set S′ of points from A \ {F ′} that are connected by paths that do not pass
through F ′. By the definition of F ′, every path between points of A that passes through F also
passes through F ′. Thus, the points of S′ are connected by paths that do not pass through F .
Hence, |S′| ≤ |A|/2 because F is a median of A. Since S′ is an arbitrary multi-set of points from
A\{F ′} that are connected by paths that do not pass through F ′, F ′ is a median of A that belongs
to V ′.

Observation B.3 implies that for every agent ai,j the path between F and ti,j is a union of
segments from S with disjoint interiors. It can be easily seen that the same is true also for each
facility location that TRM might select. Let us focus on an arbitrary segment s ∈ S connecting
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two points q, q′ ∈ V ′, where q′ is the point closer to r in the pair (there must be such a point since
V ⊆ V ′). We say that an agent ai,j uses s under the optimal solution if the path from ti,j to F goes
through s (by Observation B.3 we know that the path must either go through all of s or though
no part of it). Similarly, the probability that ai,j uses s under TRM is the probability that the
path from ai,j to the facility location chosen by TRM goes through s. Observe that in order to
prove the approximation ratio of TRM, it is enough to prove that the number of agents using s
under the optimal solution is at least half of the expected number of agents using s under TRM.
Let treesize(s) denote the number of agents whose location is in the subtree of q. More formally,

treesize(s) = |{ai,j | the path from ti,j to r goes through q}| .

The rest of this subsection is split between two cases: treesize(s) ≤ n/2 and treesize(s) ≥ n/2.

B.1.1 The case of treesize(s) ≤ n/2

Let us first consider the case treesize(s) ≤ n/2.

Lemma B.4. treesize(q) ≤ 2 · treesize(s).

Proof. For an agent to be counted by treesize(q), it must belong to a mediator di obeying ℓi ∈
subtree(uq). Since ℓi is the median of the (reported) locations of the agents, ℓi ∈ subtree(uq)
implies that least half of the agent in Ai are located in the subtree rooted at q (because all the
agents of Ai located outside of this subtree can be connected via paths that does not go through
ℓi). Thus, whenever the agents of Ai are counted by treesize(q), at least half of the agents in Ai

are also counted by treesize(s).

We can now upper bound the expected number of agents using s under TRM.

Observation B.5. Lemma B.2 holds for every point s ∈ X ′.

Proof. If s ∈ X there is nothing to prove. Otherwise, recall that us is the first node of V encountered
when moving from s away from r. Then,∑

u′∈subtree(s)

p(u′) =
∑

u′∈subtree(us)

p(u′) =
treesize(us)− c(us)

n/2
=

treesize(s)− c(s)

n/2
,

where the last equality holds because neither s nor us can be r.

Lemma B.6. The expected number of agents using s under TRM is at most: max{6 · treesize(s)−
8n−1 · (treesize(s))2 − n/2, treesize(s)}.

Proof. Clearly q ̸= r, and therefore, c(q) = n/4. We have to distinguish between two cases. The
first case is q ∈ X ′. In this case, by Observation B.5, the probability that TRM will locate the
facility below s in the tree is (treesize(q) − c(q))/(n/2). If the facility is indeed located below s,
then the number of agents that will use s under TRM is n− treesize(s). However, if the facility is
located above s, then treesize(s) agents will use s. In conclusion, the expected number of agents
that use s under TRM is:

treesize(q)− c(q)

n/2
·
(
n− treesize(s)

)
+

(
1− treesize(q)− c(q)

n/2

)
· treesize(s)

=
treesize(q)− c(q)

n/2
·
(
n− 2 · treesize(s)

)
+ treesize(s)
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≤ 2 · treesize(s)− c(q)

n/2
·
(
n− 2 · treesize(s)

)
+ treesize(s)

=

(
2 · treesize(s)− n/4

)
·
(
n− 2 · treesize(s)

)
+ treesize(s) · (n/2)

n/2

=
3n · treesize(s)− 4 · (treesize(s))2 − n2/4

n/2
= 6 · treesize(s)− 8n−1 · (treesize(s))2 − n/2 .

Let us now consider the second case, i.e., the case that q ̸∈ X ′. Notice that in this case
treesize(q) < n/4, and therefore, no point of X ′ is located in the subtree rooted at q. This implies
that the probability that the facility will be located below q is 0, i.e., exactly treesize(s) agents use
s under TRM.

On the other hand, we can also characterize the number of agents using s under the optimal
solution.

Lemma B.7. The number of agents using s under optimal solution is: treesize(s).

Proof. If F is above s in the tree, then the number of agents using s under the optimal solution is
clearly treesize(s).

Otherwise, treesize(s) ≥ n/2 because F is a median of A. Hence, the number of agents using
s under the optimal solution is n − treesize(s) ≤ n/2. Recall that we assumed treesize(s) ≤ n/2,
thus, we must have: treesize(s) = n/2, which implies: n− treesize(s) = treesize(s) = n/2.

We can now conclude the proof for the case treesize(s) ≤ n/2.

Corollary B.8. The number of agents using s under TRM is at most twice the number of agents
using s under the optimal solution.

Proof. If treesize(s) agents or less use s, in expectation, under TRM, then there is nothing to prove.
Otherwise, by Lemmata B.6 and B.7, the ratio between the number of agents using s under TRM
and under the optimal solution is at most:

6 · treesize(s)− 8n−1 · (treesize(s))2 − n/2

treesize(s)
= 6− 8n−1 · treesize(s)− n

2 · treesize(s)
.

It can be easily checked that the last expression is maximized for treesize(s) = n/4, and the value
of this maximum is:

6− 8n−1 · (n/4)− n

2 · (n/4)
= 6− 2− 2 = 2 .

B.1.2 The case of treesize(s) ≥ n/2

Let us now consider the case treesize(s) ≥ n/2.

Lemma B.9. n− treesize(q) ≤ 2 · (n− treesize(s)).

Proof. The proof of this lemma is analogous to the proof of Lemma B.4.

We can now upper bound the expected number of agents using s under TRM.

Lemma B.10. If treesize(s) ≥ 5n/8, then the expected number of agents using s under TRM is
upper bounded by: 10 · treesize(s)− 8n−1 · (treesize(s))2 − 5n/2. Otherwise, it is upper bounded by
max{10 · treesize(s)− 8n−1 · (treesize(s))2 − 5n/2, treesize(s)}.
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Proof. Clearly q ̸= r, and therefore, c(q) = n/4. We have to distinguish between two cases. The
first case is that q ∈ X ′. In this case, by Observation B.5, the probability that TRM locates the
facility below s in the tree is (treesize(q) − c(q))/(n/2). If the facility is indeed below s, then
n− treesize(s) agents use s under TRM. However, if the facility is above s, then treesize(s) agents
use s under TRM. Hence, the expected number of agents using s under TRM is:

treesize(q)− c(q)

n/2
·
(
n− treesize(s)

)
+

(
1− treesize(q)− c(q)

n/2

)
· treesize(s)

=
treesize(q)− c(q)

n/2
·
(
n− 2 · treesize(s)

)
+ treesize(s)

=
(c(q)− n) + (n− treesize(q))

n/2
·
(
2 · treesize(s)− n

)
+ treesize(s)

≤ (c(q)− n) + 2(n− treesize(s))

n/2
·
(
2 · treesize(s)− n

)
+ treesize(s)

=

(
5n/4− 2 · treesize(s)

)
·
(
2 · treesize(s)− n

)
+ treesize(s) · (n/2)

n/2

=
5n · treesize(s)− 4 · (treesize(s))2 − 5n2/4

n/2

= 10 · treesize(s)− 8n−1 · (treesize(s))2 − 5n/2 .

Let us now consider the second case, i.e., the case that q ̸∈ X ′. Notice that in this case
treesize(q) < n/4, and therefore, no point of of X ′ is located in the subtree rooted at q. Thus, the
probability that the facility will be located below s is 0, and exactly treesize(s) agents use s under
TRM. Moreover, in this case, by Lemma B.9:

treesize(s) ≤ n− n− treesize(q)

2
=

n+ treesize(q)

2
<

5n

8
.

On the other hand, we can also characterize the number of agents using s under the optimal
solution.

Lemma B.11. The number of agents that use s under the optimal solution is: n− treesize(s).

Proof. The proof of this lemma is analogous to the proof of Lemma B.7

We can now conclude the proof for the case treesize(s) ≥ n/2.

Corollary B.12. The number of agents using s under TRM is at most twice the number of agents
using s under the optimal solution.

Proof. If 10·treesize(s)−8n−1·(treesize(s))2−5n/2 ≤ treesize(s) < 5n/8, then n−treesize(s) > 3n/8
agents use s under the optimal solution, while at most treesize(s) < 5n/8 use it, in expectation,
under TRM. The ratio between these values is 5/3 < 2.

Otherwise, by Lemmata B.10 and B.11, the ratio between the number of agents using s under
TRM and under the optimal solution is at most:

10 · treesize(s)− 8n−1 · (treesize(s))2 − 5n/2

n− treesize(s)

=
10 · [n− (n− treesize(s))]− 8n−1 · [n− (n− treesize(s))]2 − 5n/2

n− treesize(s)
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=
6 · (n− treesize(s))− 8n−1 · (n− treesize(s))2 − n/2

n− treesize(s)

= 6− 8n−1 · (n− treesize(s))− n

2(n− treesize(s))
.

It can be easily checked that the last expression is maximized for treesize(s) = 3n/4, and the value
of this maximum is:

6− 8n−1 · (n− 3n/4)− n

2 · (n− 3n/4)
= 6− 2− 2 = 2 .

Combing the results we proved for the two cases, we get the competitive ratio of TRM.

Corollary B.13. The Tree Randomized Mechanism (TRM) is 2-competitive.

Proof. Corollaries B.8 and B.12 prove that the expected number of agents using segment s under
TRM is always at most double the number of such agents under the optimal solution. Hence, the
expected contribution of s to the cost of TRM is always at most double its contribution to the cost
of the optimal solution. The corollary now follows if we recall that s was chosen as an arbitrary
segment of S, and that the entire cost of the optimal solution and TRM is contributed by segments
of S.

B.2 Proof: TRM is Two-Sided IC

In this subsection we prove that TRM is Two-Sided IC. Intuitively, the proof has three steps.
• Showing that when a mediator deviates the “probability mass” of the facility location follows

the median of the locations reported by the mediator. More specifically, if mediator d deviates
and reports a set of agent locations whose median is ℓ̂ instead of the true median ℓ, then the
“probability mass” moves towards ℓ̂ inside the path connecting ℓ and ℓ̂. Outside this path,
the probabilities of nodes to become the facility location is unaffected. This step consists of
Lemma B.14 and Corollary B.15.

• Proving (using the first step) that whenever an agent located at t deviates and reports a
location t̂ ̸= t, then the median of the locations reported by its mediator can only go further
away from t, and therefore, the “probability mass” of the facility location also goes away from
t. This step is achieved by Lemma B.17.

• Proving (using the first step) that whenever a mediator deviates and reports a set of agent
locations whose median is ℓ̂ instead of the true median ℓ, then the “probability mass” is pushed
away from ℓ, and therefore, things become worse for the agents of the deviating mediator.
This step is achieved by Lemma B.18.

Recall that V is the set of nodes of the tree produced by the first part of TRM. Let us begin
with the first step.

Lemma B.14. Assume mediator di reports one of two multi-sets Si and Ŝi of agent locations. Let
u and û be the medians of Si and Ŝi closest to z, respectively. Assume that the path between u and
û goes through no other point of V . Let p(v), X, V and p̂(v), X̂, V̂ denote the value of p(v), the set
X and the set V given that di reports Si and Ŝi, respectively. Also, let P = {u, û}, then:
• For a node v ∈ V \ P , p(v) = p̂(v).
• p(û) ≤ p̂(û).
• p(u) + p(û) = p̂(u) + p̂(û).
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Proof. For every node v ∈ V ∪ {û}, let treesize(v), subtree(v), c(v) and ̂treesize(v), ̂subtree(v), ĉ(v)
denote the values of treesize(v), subtree(v) and c(v) given that di reports Si and Ŝi, respectively.

If u ̸∈ V̂ , then we define ̂treesize(u), ̂subtree(u) and ĉ(u) like in Subsection B.1. Similarly, if û ̸∈ V ,
then we define treesize(û), subtree(û) and c(û) like in Subsection B.1. In the rest of the proof we
distinguish between two cases.

First case: In the first case reporting either one of the multi-sets Si and Ŝi induces the same
root r. Let us begin by proving that p(v) = p̂(v) for every point v ∈ V \ P . Let a be the lowest
common ancestor of u and û. Clearly, a ∈ P since no other point of V appears on the path between
u and û. The subtree of every point v ∈ V \P which is not an ancestor of a is the same (including
the size of the nodes) regardless of which multi-set di reports (Si or Ŝi), and therefore, p(v) = p̂(v)
because p(v) depends only on the subtree of v and on the question whether v is the root. Consider
now a point v ∈ V \ P which is an ancestor of a, and let v′ be the child of v that is an ancestor
of a when di reports Si (possibly v′ = a). Similarly, let v̂′ be the child of v that is an ancestor of
a when di reports Ŝi (possibly v̂′ = a and/or v′ = v̂′). Observe that the declaration of di affects
only the subtree of a, and therefore, does not affect any child of v except for v′ and v̂′. Moreover,
either v′ = v̂′ or they are both in P , and thus, treesize(v′) = treesize(v̂′) and v′ ∈ X ⇔ v̂′ ∈ X.
Since these are the only two properties of v′ and v̂′ used by the formula of p(v), we get, once again,
p(v) = p̂(v).

By Lemma B.2 the sum of the probabilities of all points of V is 1. Thus, the change in p(û)
following the deviation plus the change in p(u) must add up to 0. Formally,

[p̂(û)− p(û)] + [p̂(u)− p(u)] = 0⇒ p(u) + p(û) = p̂(û) + p̂(u) .

By the definition of X, if a ̸∈ X, then subtree(a) ∩ X = ∅ for the two declarations of di we
consider. Since both nodes of P are in the subtree of a, we get in this case that every point v ∈ P
has p(v) = p̂(v) = 0. Hence, the interesting case is when a ∈ X, which we assume next.

Assume û = a. Notice that this implies û ∈ X. We have three subcases to consider based on
the membership of u in X and X̂.
• If u ̸∈ X, then u ̸∈ X̂ because the median of Si is in u, and the median of Ŝi is outside of

u’s subtree. Hence, p(u) = 0 = p̂(u), which implies p(û) = p̂(û), since we already proved
p(u) + p(û) = p̂(û) + p̂(u).

• If u ∈ X and u ̸∈ X̂, then p̂(u) = 0 ≤ p(u), which implies p(û) ≤ p̂(û) (again, since we already
proved p(u) + p(û) = p̂(û) + p̂(u)).

• If u ∈ X and u ∈ X̂, then recall that û is not in the subtree of u and c(u) = ĉ(u) because
u ̸= r. Thus, by applying Lemma B.2 twice (once for p and once for p̂):

p̂(u) =
̂treesize(u)− ĉ(u)

n/2
−

∑
v∈ ̂subtree(u)

v ̸=u

p̂(v)

=
treesize(u)− ni − c(u)

n/2
−

∑
v∈subtree(u)

v ̸=u

p(v) = p(u)− 2ni

n
,

which implies p(û) < p̂(û), and the proof continues as before.
The case u = a is analogous, and therefore, we omit it.
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Second case: In the second case reporting each one of the multi-sets Si and Ŝi induces a different
root node r. By Observation 3.4, the root r must move from u to û. Therefore, the deviation does
not affect the subtree of every point v ∈ V \ P . Since p(v) depends only on the subtree of v and
on the question whether v is the root, we get that p(v) = p̂(v) for every point v ∈ V \ P .

Using the same argument as in the first case, we get from Lemma B.2 that p(u)+p(û) = p̂(û)+
p̂(u). If û ̸∈ X then p(û) = 0 ≤ p̂(û), and we are done. Similarly, if u ̸∈ X̂ then p̂(u) = 0 ≤ p(u),
which implies p(û) ≤ p̂(û) since we already proved p(u)+ p(û) = p̂(û)+ p̂(u). Thus, the interesting
case is when both û ∈ X and u ∈ X̂, which imply also u ∈ X and û ∈ X̂.

Notice that subtree(û) = V \ ̂subtree(u) and V = ̂subtree(û), thus subtree(û) = ̂subtree(û) \
̂subtree(u). Moreover, treesize(û) = n− ̂treesize(u)− ni. Combining both observations:

p(û) =
treesize(û)− c(û)

n/2
−

∑
v∈subtree(û)

v ̸=û

p(v)

(∗)
=

treesize(û)− c(û)

n/2
−

∑
v∈ ̂subtree(û)

v ̸=û

p̂(v) +
∑

v∈ ̂subtree(u)

p̂(v)

=
[n− ̂treesize(u)− ni]− c(û)

n/2
−

∑
v∈ ̂subtree(û)

v ̸=û

p̂(v) +
̂treesize(u)− ĉ(u)

n/2

=
n− ni − c(û)− ĉ(u)

n/2
−

∑
v∈ ̂subtree(û)

v ̸=û

p̂(v)

(∗∗)
=

̂treesize(û)− ĉ(û)− ni

n/2
−

∑
v∈ ̂subtree(û)

v ̸=û

p̂(v) = p̂(û)− 2ni

n
,

where (*) holds because subtree(û) = ̂subtree(û) \ ̂subtree(u) and (**) holds ̂treesize(û) = n,
c(û) = ĉ(u) = n/4 and ĉ(û) = n/2. Hence, p(û) < p̂(û).

The next corollary generalizes the last lemma to the case where the two multi-sets Si and Ŝi

that di can declare have medians that are further apart.

Corollary B.15. Assume mediator di reports one of two multi-sets Si and Ŝi of agent locations.
Let u and û be the medians of Si and Ŝi, respectively. Let p(v) and p̂(v) denote the value of p(v)
given that di reports Si and Ŝi, respectively. We also define P (u, û) to be the path between u and
ui, and let u = w1, w2, . . . , ws = û denote the nodes along P (u, û). Then,
• For a node v ∈ V \ P (u, û), p(v) = p̂(v).
• For 1 ≤ k ≤ s,

∑s
j=k p(wj) ≤

∑s
j=k p̂(wj).

Proof. Let us consider s multi-sets S = S1, S2, . . . , Ss = Ŝ that di can declare, where the median of
Sh is wh, and let ph(v) denote the value of p(v) assuming di declares the multi-set Sh. Lemma B.14
gives the following properties of the relation between ph and ph+1 for every 1 ≤ h < s.
• A point v ∈ V \P (u, û) is not the median of either Sh or Sh+1, and therefore, ph(v) = ph+1(v).
• For k > h+ 1: ph(wj) = ph+1(wj) for every j ≥ k, and thus,

∑s
j=k ph(wj) =

∑s
j=k ph+1(wj).

• For k = h + 1: ph(wk) ≤ ph+1(wk) and ph(wj) = ph+1(wj) for every j > k. Thus,∑s
j=k ph(wj) ≤

∑s
j=k ph+1(wj).
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• For k ≤ h: ph(wj) = ph+1(wj) for every j such that k ≤ j < h or h + 1 < j. Also,
ph(wi) + ph(wh+1) = ph+1(wh) + ph+1(wh+1). Thus,

∑s
j=k ph(wj) =

∑s
j=k ph+1(wj).

Combining the above properties, we can conclude:
• For a point v ∈ V \ P (u, û), p(v) = p1(v) = p2(v) = . . . = ps(v) = p̂(v).
• For every 1 ≤ k ≤ s,

∑s
j=k p(wj) =

∑s
j=k p1(wj) ≤

∑s
j=k p2(wj) ≤ . . . ≤

∑s
j=k ps(wj) =∑s

j=k p̂(wj).

Next, we prove a simple technical observation that is used by the proofs of the following lemmata.

Observation B.16. Given a series v0, v1, . . . , vm of points in the tree such that the path from v0
to vm goes through v1, v2, . . . , vm−1 in this order, and values {Af , Bf | 1 ≤ f ≤ m} such that:∑m

f=hAf ≤
∑m

f=hBf for every 1 ≤ h ≤ m. Then:

m∑
h=1

dist(v0, vh) ·Ah ≤
m∑

h=1

dist(v0, vh) ·Bh .

Proof. Observe that dist(v0, vh) =
∑h

f=1 dist(vf−1, vf ). Therefore,

m∑
h=1

dist(v0, vh) ·Ah =
m∑

h=1

dist(vh−1, vh) ·
m∑

f=h

Af


≤

m∑
h=1

dist(vh−1, vh) ·
m∑

f=h

Bf

 =
m∑

h=1

dist(v0, vh) ·Bh .

In the rest of this appendix, we use Corollary B.15 and Observation B.16 to prove that TRM
is two-sided IC.

Lemma B.17. The Tree Randomized Mechanism (TRM) is agent-side IC.

Proof. Consider an agent ai,j , and assume di is truthful. We would like to show that it not beneficial
for ai,j to deviate and report a fake location t̂i,j instead of its real location ti,j . If the deviation does
not affect the median of the agents’ locations reported by di, then the deviation does not affect the
outcome of TRM, and is clearly not helpful for ai,j . Hence, the interesting case is when the median
of the locations reported by di changes following the deviation from u to û. By Observation 3.4, u
and û are both located along the path connecting ti,j and t̂i,j , and u is closer to ti,j than û.

Let P (u, û) denote the path connecting u and û, and let us denote the points of V ∪ {û} along
the path P (u, û) by u = w1, w2, . . . , ws = û. Also, let p(v), V and p̂(v), V̂ denote the probability
p(v) and the set V before and after the deviation, respectively. We can now evaluate the cost paid
by ai,j :

∑
v∈V

p(v)·dist(v, ti,j) =
∑

v∈V \P (u,û)

p(v) · dist(v, ti,j) +
s∑

h=1

p(wh) · dist(wh, ti,j)

≤
∑

v∈V \P (u,û)

p̂(v) · dist(v, ti,j) +
s∑

h=1

p̂(wh) · dist(wh, ti,j) =
∑
v∈V̂

p̂(v) · dist(v, ti,j) ,

where the inequality follows from Observation B.16 (when v0 = ti,j , vh = wh, Ah = p(wh) and
Bh = p̂(wh) for every 1 ≤ h ≤ s) and Corollary B.15. Notice that the leftmost hand side is the

42



cost of ai,j before the deviation, and the rightmost hand side is the cost of ai,j after the deviation.
Hence, the above inequality proves that ai,j has no incentive to deviate. The lemma follows since
ai,j is an arbitrary agent.

Lemma B.18. The Tree Randomized Mechanism (TRM) is mediator-side IC.

Proof. Consider an arbitrary mediator di, and let us assume the agents of di are truthful. Let ℓi
be a median of the reports of all the agents represented by di, and let ℓ̂i be an arbitrary point. Our
objective is to show that the expected social cost of the agents of Ai does not improve if di deviates
and reports a set of agent locations whose median is ℓ̂i.

Let p(v) and p̂(v) denote the probability p(v) before and after the deviation, respectively. Also,
let ℓi = w1, w2, . . . , ws = ℓ̂i denote the points of V ∪{ℓ̂i} along the path from ℓi to ℓ̂i. To simplify the
notation, let p∆(v) = p̂(v)− p(v) be the change in p(v) following the deviation. By Corollary B.15,
p∆(v) = 0 for every point v ∈ V which is not on the path between ℓi and ℓ̂i. Hence, the change in
the expected social cost of the agents represented by di following the deviation is:

ni∑
j=1

s∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
. (4)

To prove the lemma, it is enough to show that the last expression is always non-negative. Let us
partition Ai into two kinds of agents: A′

i contains agents for which the path connecting them to ℓ̂i
goes through ℓi, and A′′

i contains the rest of the agents represented by di. Notice that all the agents
of A′′

i are connected to each other via paths that do not go through ℓi. Hence, by the definition
of a median, |A′′

i | ≤ |Ai|/2, which implies |A′
i| ≥ |A′′

i |. For every agent ai,j ∈ A′
i and point wh, we

have dist(ti,j , wh) = dist(ti,j , ℓi) + dist(ℓi, wh). Hence,

∑
ai,j∈A′

i

s∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
=

∑
ai,j∈A′

i

s∑
h=1

[
dist(ti,j , ℓi) · p∆(wh)

]
+

∑
ai,j∈A′

i

s∑
h=1

[
dist(ℓi, wh) · p∆(wh)

]
=

∑
ai,j∈A′

i

[
dist(ti,j , ℓi) ·

s∑
h=1

p∆(wh)

]
+ |A′

i| ·
s∑

h=1

[
dist(ℓi, wh) · p∆(wh)

]
= |A′

i| ·
s∑

h=1

[
dist(ℓi, wh) · p∆(wh)

]
, (5)

where the last equality follows from Corollary B.15 since:

s∑
h=1

p(wi) = 1−
∑

v∈V \{w1,w2,...,ws}

p(v) = 1−
∑

v∈V \{w1,w2,...,ws}

p̂(v) =

s∑
h=1

p̂(wi)⇒
s∑

h=1

p∆(wi) = 0 .

For every agent ai,j ∈ A′′
i , let wh(i,j) denote the first point from the list w1, w2, . . . , ws that appears

on the path from ti,j to ℓi. Then,

∑
ai,j∈A′′

i

s∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
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=
∑

ai,j∈A′′
i

h(i,j)∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
+

∑
ai,j∈A′′

i

s∑
h=h(i,j)+1

[
dist(ti,j , wh) · p∆(wh)

]

=
∑

ai,j∈A′′
i

h(i,j)∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
+

∑
ai,j∈A′′

i

dist(ti,j , wh(i,j)+1) ·
s∑

h=h(i,j)+1

p∆(wh)


+

∑
ai,j∈A′′

i

s∑
h=h(i,j)+2

[
dist(wh(i,j)+1, wh) · p∆(wh)

]

≥
∑

ai,j∈A′′
i

h(i,j)∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
+

∑
ai,j∈A′′

i

dist(ti,j , wh(i,j)+1) ·
s∑

h=h(i,j)+1

p∆(wh)

 ,

where the inequality follows from Observation B.16 (when v0 = wh(i,j)+1, vh = wh+1+h(i,j),
Ah = 0 and Bh = p̂(wh+1+h(i,j))−p(wh+1+h(i,j)) for every 1 ≤ h ≤ s−h(i, j)−1) and Corollary B.15.
Notice that for every h ≤ h(i, j): dist(ti,j , wh) = dist(ti,j , ℓi)− dist(ℓi, wh). Hence:

∑
ai,j∈A′′

i

h(i,j)∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]

=
∑

ai,j∈A′′
i

dist(ti,j , ℓi) · h(i,j)∑
h=1

p∆(wh)

− ∑
ai,j∈A′′

i

h(i,j)∑
h=1

[
dist(ℓi, wh) · p∆(wh)

]
.

Additionally, dist(ti,j , wh(i,j)+1) ≥ dist(ti,j , ℓi) − dist(ℓi, wh(i,j)+1), and
∑s

h=h(i,j)+1 p
∆(wh) ≥ 0

by Corollary B.15. Hence:

∑
ai,j∈A′′

i

dist(ti,j , wh(i,j)+1) ·
s∑

h=h(i,j)+1

p∆(wh)


≥

∑
ai,j∈A′′

i

dist(ti,j , ℓi) · s∑
h=h(i,j)+1

p∆(wh)

− ∑
ai,j∈A′′

i

dist(ℓi, wh(i,j)+1) ·
s∑

h=h(i,j)+1

p∆(wh)


=

∑
ai,j∈A′′

i

dist(ti,j , ℓi) · s∑
h=h(i,j)+1

p∆(wh)

− ∑
ai,j∈A′′

i

s∑
h=h(i,j)+1

[
dist(ℓi, wh) · p∆(wh)

]
+

∑
ai,j∈A′′

i

s∑
h=h(i,j)+2

[
dist(wh(i,j)+1, wh) · p∆(wh)

]

≥
∑

ai,j∈A′′
i

dist(ti,j , ℓi) · s∑
h=h(i,j)+1

p∆(wh)

− ∑
ai,j∈A′′

i

s∑
h=h(i,j)+1

[
dist(ℓi, wh) · p∆(wh)

]
,

where the second inequality follows again from Observation B.16 (when v0 = wh(i,j)+1, vh =
wh+1+h(i,j), Ah = 0 and Bh = p̂(wh+1+h(i,j))− p(wh+1+h(i,j)) for every 1 ≤ h ≤ s− h(i, j)− 1) and
Corollary B.15. Combing the last results, we get:∑

ai,j∈A′′
i

s∑
h=1

[
dist(ti,j , wh) · p∆(wh)

]
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≥
∑

ai,j∈A′′
i

[
dist(ti,j , ℓi) ·

s∑
h=1

p∆(wh)

]
−

∑
ai,j∈A′′

i

s∑
h=1

[
dist(ℓi, wh) · p∆(wh)

]
= − |A′′

i | ·
s∑

h=1

[
dist(ℓi, wh) · p∆(wh)

]
, (6)

where the equality holds since
∑s

h=1[p̂(wh) − p(wh)] = 0 by Corollary B.15. Adding up Expres-
sions (5) and (6) we get that (4) is lower bounded by:

ni∑
j=1

s∑
h=1

[dist(ti,j , wh)·p∆(wh)] ≥ (|A′
i| − |A′′

i |) ·
s∑

h=1

[
dist(ℓi, wh) · p∆(wh)

]

= (|A′
i| − |A′′

i |) ·
s−1∑
h=1

dist(wh, wh+1) ·
s∑

j=h+1

p∆(wh)

 ≥ 0 ,

where the second inequality follows since the internal sum is non-negative due to Corollary B.15
and |A′

i| ≥ |A′′
i |.
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