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Abstract

We propose a method for implementing behavioral interface specifications on the .NET platform. Our interface specifications are

expressed as executable model programs. Model programs can be run either as stand-alone simulations or used as contracts to check

the conformance of an implementation class to its specification. We focus on the latter, which we call runtime verification.

In our framework, model programs are expressed in the new specification language AsmL. We describe how AsmL can be used

to describe contracts independently from any implementation language, how AsmL allows properties of component interaction to

be specified using mandatory calls, and how AsmL is used to check the behavior of a component written in any of the .NET

languages, such as VB, C], or Cþþ.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Component-oriented programming provides an ideal

domain for specification technology. Since clients are

ignorant of the implementation details, they are forced

to rely on a component�s specification in order to un-

derstand its behavior.

This paper proposes a flexible scheme for attaching
stand-alone executable specifications––contracts––to

components either statically or dynamically at runtime.

Once attached, they monitor the execution of the com-

ponent and signal any discrepancy in the implementa-

tion�s behavior relative to its specification. The focus of

this paper is on such runtime verification. However, there

are other uses for executable specifications. They can be

used during the testing process to derive test cases and
predict how the component should behave. During the

design process, they can simulate a design, allowing one

to explore its properties before committing to the long

development process.

A contract describes the behavior of a method inde-

pendently of its implementation. A contract implies that

a specification is expressed as a separate unit from the

program or implementation that it describes and that

there is some means for enforcing, or checking, the im-

plementation to verify its conformance to the dictates of

the specification. Ideally, this would be done statically,

but this is often not feasible. Therefore we propose to do

it dynamically; this limits the guarantees, but allows

unlimited flexibility and scalability.

Logically, the effect is shown in Fig. 1: the interaction
between a client and an implementation is mediated by a

monitor that verifies it relative to a specification. The

key idea is that the specification is a parallel construct to

the implementation; this has been obscured by the

dominance of pre- and post-conditions.

What exactly do contracts specify and check? We are

interested primarily in the direct input–output behavior

of a component�s methods. This is typically expressed
using declarative conditions. However, model programs

are often easier to write and understand, in particular

for programmers. In addition they allow the specifica-

tion of component interaction. This is required when

moving beyond hierarchical libraries to specify archi-

tectures in which components stand in a peer-to-peer

relationship. For example, the subject-view pattern

(Gamma et al., 1995) is characterized by required calls
from the subject to the view and potential callbacks

from the view to the subject. Such software architectures

require some method for specifying the sequencing of

calls. Our model programs use the concept of mandatory
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calls: these are the minimal external communications,

via public methods, that a component must make during

the execution of the method in which the mandatory

calls are located.

Nondeterministic contracts allow an implementation

freedom for a range of behavior. For instance, a speci-

fication for a lossy network is one that chooses to forget

some messages. Or, consider an enumerator for tra-
versing a collection of items. It is often the case that the

order in which the enumerator should return elements is

not specified: the actual order is the result of imple-

mentation decisions about data structures and index

ordering. The latter is an example of external choice; we

can observe whatever choice the implementation actu-

ally makes. The former type of nondeterminism is an

example of internal choice: only the internal state of the
implementation describes what choice has been made.

Checking sequencing and nondeterminism are two of

the outstanding challenges in the runtime verification of

model programs. In this paper, we address the latter;

a full treatment including the former is described in

Barnett and Schulte (2002).

Previously, contracts in the form of pre- and post-

conditions have been injected into the class or method to
which they apply; we discuss this work in Section 5.

Model programs have rarely been used for run-time

verification (see Blum and Wasserman (1997) for a dis-

cussion of a restricted form of model programs). But as

long as model programs are deterministic and do not

contain mandatory calls, they are also easy to check. In

previous work (Barnett and Schulte, 2001b) we pre-

sented a method for running restricted model programs
and their corresponding implementations side by side,

comparing the results at the method boundaries. But as

soon as the model programs contain nondeterministic

expressions or mandatory calls, we need a tighter inte-

gration.

External choice can still be resolved at the method

boundaries; we check at runtime whether the imple-

mentation made a choice allowed by the specification.
Internal choices can be resolved only by using an addi-

tional abstraction function. Abstraction functions link

the state space of the implementation to that of the

specification. Thus when an internal choice is made,

first, the state space of the implementation is abstracted

into the state space of the model program; next it is

checked that the implementation made a choice allowed

by the specification.

To check correct sequencing we replace any manda-

tory call in the specification with a check that the call

occurred in the implementation. In addition, we check

that any updates in the specification that should occur

before a mandatory call are executed before the imple-

mentation makes the mandatory call.
To implement this checking our scheme takes ad-

vantage of the facilities provided on the .NET platform

(Microsoft Corporation, 2001) to perform intermediate-

code rewriting. For each class, we introduce new

methods and inner classes. In addition, we insert probes

into the beginning and end of each method within the

class. For component interaction, we manipulate a

separately introduced runtime stack containing the call
chain information needed to check the correct se-

quencing of method calls.

In our work the behavior of a class with contracts is

the same as it is without: removing or adding a contract

does not change the semantics. That is, a correct pro-

gram will behave identically whether or not it is being

monitored by a contract; but an incorrect program will

trigger a runtime violation of the specification.
Overview: In Section 2, we provide an introduction to

the relevant parts of the .NET platform and its class

library. Section 3 introduces our specification technol-

ogy for components and their interaction properties.

The specifications are written in our executable specifi-

cation language, AsmL. Section 4 presents our method

for implementing AsmL contracts in the .NET Frame-

work. Section 5 discusses related work; Section 6 sum-
marizes and describes future directions. In an

accompanying technical report (Barnett and Schulte,

2002), we discuss runtime verification in the general

context of software verification.

2. The .NET platform

Here we briefly introduce the platform; a more

complete introduction to .NET can be found on the

Microsoft web site (Microsoft Corporation, 2001).

From a programmer�s point of view the .NET Plat-

form can be understood as a new runtime environment

and a common base class library. The runtime is referred

to as the common language runtime (CLR). Its primary

role is to load, execute and manage .NET types. A .NET
type contains code in the form of IL, an intermediate

language that all .NET languages are compiled into. It is

only at execution time that IL is compiled into native

binary machine code. The CLR takes care of a number

of low-level details such as memory management and

language integration. The CLR also supports a simpli-

fied deployment of binary units, called assemblies. As-

semblies contain .NET types. The CLR allows multiple
versions of the same assembly to exist in parallel on a

single machine. Assemblies are the components of the

Fig. 1. Logical architecture for runtime verification.

200 M. Barnett, W. Schulte / The Journal of Systems and Software 65 (2003) 199–208



.NET world. We will specify the .NET types contained

in an assembly. Assemblies also contain metadata that

describes source level information like names or signa-

tures. Metadata information is essential to link model

programs to their implementations.

A language is called .NET aware if its types are im-
plemented within the common language subset (CLS).

Using the CLS ensures that an assembly can be used

seamlessly across all languages targeting the .NET

platform. AsmL, our executable specification language,

stays within the CLS. This guarantees that all .NET

aware languages (of which there are currently more then

20, ranging from C] and VB to SML) are able to make

use of contracts expressed in AsmL.

2.1. The .NET base class library: collections

We illustrate our techniques through specifications

for the .NET framework class library, specifically, por-

tions of the System.Collections namespace (Microsoft

Corporation, 2001). This namespace contains interfaces,

classes, and structures that provide functionality for
collections of elements. The most basic property of a

collection is being able to enumerate, in some order, the

elements contained within it.

All collections can be queried for an enumerator, i.e.,

they all support the method GetEnumerator which re-

turns a reference to the interface IEnumerator. Other

than that, collections are characterized by the number of

elements they contain, a way to store all of the elements
in an array and synchronization control for multi-

threaded access.

A collection does not necessarily allow modifications

to its elements (once it has been constructed). However,

if it does, then once it has executed GetEnumerator, any

modifications invalidate all existing enumerators; most

further operations invoked on those enumerators throw

an InvalidOperationException exception.
Extending this rudimentary functionality, there are

two main types of collection: lists (sequences) and dic-

tionaries, both allowing indexed access to the collection.

In both cases, the indexing permits random access to

individual elements. (The implication is that such access

should be constant-time or almost constant-time. Such

nonfunctional properties are beyond the scope of our

specification methods.) The interfaces differ in the type
of the indices: a list uses natural numbers as indices,

while a dictionary allows the use of an arbitrary type.

We present only the parts of the IDictionary interface

that we need for our presentation, namely the Item

property. Here we show it in C]:
interface IDictionary : ICollection {

object this[object key] { get; set; }

}
We leave C] modifiers implicit. For instance, our

default access is ‘‘public’’; we also assume that all

methods can be overridden. A property is a class

member that allows actions to be associated with the

reading or writing of the member. Since the Item

property is marked as both get and set, it can appear

on either side of the assignment operator. It allows the

indexing of the collection with the familiar array access
syntax, i.e., square brackets.

In the rest of the paper, we focus on the method as-

sociated with setting the Item property.

3. Contracts

In this section we briefly introduce the specification
language AsmL and show its use for specifying com-

ponents. 1 While AsmL contains a declarative subset, we

use its operational character to specify a component by

a model program. There are several benefits to writing a

model program instead of simple pre- and post-condi-

tions:

• Model programs can be executed in isolation, for in-

stance, before the implementation even exists.

• Model programs at the interface level do not require

an abstraction function, in fact sometimes it is not
even possible to define an abstraction function.

• Model programs allow component interaction to be

specified.

3.1. The Abstract State Machine Language

Abstract State Machines (ASMs) (Gurevich, 1995)

provide the foundation for AsmL. We briefly review
their semantics here. ASMs are based on transition

systems; their states are first order algebras, that is, in-

terpretations of a functional signature. The transition

relation is specified by transition rules describing the

modification from one state to the next, namely in the

form of guarded updates, i.e., assignment statements

that are executed if a boolean condition holds. A se-

quential run of an ASM program P is a finite or infinite
sequence of states S0; S1; . . . where each Si, i > 0, is ob-

tained from Si�1 by executing the updates of P at Si�1.

The updates generated in a particular step are called the

update set for the step. For a wealth of ASM-related

literature see the Michigan Website (Huggins, 2001).

AsmL is Microsoft�s ASM language. To deal with

industrial applications AsmL extends ASMs with sub-

machines, objects, exception handling, bounded gene-
ricity and semantic subtypes (Gurevich et al., 2001). The

first version of AsmL had native COM connectivity, the

current release is .NET aware. AsmL is freely available

for noncommercial research or teaching purposes from

1 Complete documentation can be found on our web site (Founda-

tions of Software Engineering, 2001).
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our web site. It is currently used within Microsoft for the

modeling, rapid prototyping, analysis, semi-automatic

test-case generation, and checking of APIs, devices and

protocols.

ASMs are a perfect fit for the operational specifica-

tion of stateful components. Here is a simplified view of
the correspondence: The class or interface fields are

ASM functions. Method bodies describe guarded up-

dates (i.e., statements); when executed they compute an

update set. When the method terminates the update set

is committed, i.e., a step is performed. A run is defined

by a sequence of method calls.

3.2. Specifying a component with AsmL

AsmL specifications use abstract statements to op-

erate on the member variables of the interface to effect

the results that any implementation is supposed to de-

liver.

Using our running example, a possible specification

for IDictionary is shown in Fig. 2.

This example shows several features of AsmL that we
have not yet mentioned. AsmL is inherently parallel: to

indicate sequential ordering one must use the keyword

step. Within each step, all updates (assignment state-

ments) are collected and transacted as one atomic

transition. The keyword forall indicates that the

different calls to e.Invalidate will be performed in par-

allel.

The update sets specified in the model programs say
exactly what is modified and what stays the same; we do

not explicitly specify frame conditions. We define any

method call to another interface (one different from that

in which the call occurs) as a mandatory call. In order to

be faithful to its specification, an implementation must

make (at least) all of the mandatory calls contained in its

specification. In our example, the calls to Invalidate are

mandatory calls.
With respect to the subject-view design pattern

(Gamma et al., 1995), the dictionary is the Subject and

any enumerator that has been returned from the method

GetEnumerator is a View. As discussed in Section 2,

.NET class library enumerators are read-only views on a

collection; if the collection is modified during an enu-

meration, the enumerator becomes invalid and most

further operations will throw an exception. This is why

setting the Item property in Fig. 2 calls the method In-

validate on each enumerator. (Unfortunately, Invalidate

was not included in the actual .NET design of the in-

terface.)

Here are some of the interaction properties that hold

for the dynamic relationship between setting the Item

property and Invalidate in Fig. 2:

1. Dictionaries update their internal state before notify-

ing the enumerators of the change.

2. A dictionary calls Invalidate for each registered enu-

merator; the call is made whenever the dictionary is
updated, even if the new value stored is identical to

the old value. The order of the calls is implementation

dependent.

3. Enumerators are synchronized with dictionaries.

That is, all enumerators receive a notification with

the dictionary in the same state. For instance, if each

enumerator calls back to the dictionary during the ex-

ecution of its Invalidate method, all of the calls will
see the same state. This is because the forall loop

is a parallel loop.

In Section 4.2, we show how to generate code so that
these properties are checked for. Although this example

is simple, consisting of only a uni-directional call, our

method can be used for arbitrary communication pro-

tocol specifications.

4. Runtime verification

In this section we show how to instrument imple-

mentation classes to provide runtime verification. We

describe our implementation using the example from the

previous section. Section 4.1 explains the simple case of

model programs without mandatory calls. Section 4.2

then presents the more complicated translation pattern

for the verification of sequencing constraints.

We implement runtime verification by IL code re-
writing. When the CLR loads a .NET type, its IL is

compiled into native code. We intercept this process; we

insert the IL of the contracts into the IL of the imple-

mentation and then give the resulting IL back to the

CLR, which finally compiles it into executable code.

This scheme allows us to immediately add contracts to

any .NET language, without having to write or modify a

parser for any one particular language.
For ease of reading we will use C] instead of IL to

show the result of the code injection. As a simplifying

assumption, we will treat exceptions as values that areFig. 2. Model program for IDictionary.
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only thrown, never returned. That way we can use a

single object to hold either the value returned by the

implementation or the exception thrown by it. We use

the following notations in the transformed code:

• ½½s1; s2; . . . ; sn�� represents the translation of the n

statements (or expressions) from AsmL into IL. As

part of the translation, we introduce new variables

for holding the pre-values of expressions that are be-
ing compared to their post-values in the post-condi-

tion.

• s½s1=s2� represents the substitution of s2 for s1 in s.

Substitution occurs within the same language, e.g.,

from AsmL code to AsmL code.

In the sequel we concentrate on how and where to

inject probes. We do not show the extra code needed to

copy the pre-values for expressions that are compared

to their post-values; such transformations are well

known and used in many of the existing contract im-

plementations (see Karaorman et al. (1999) for a good
explanation of the mechanism). Likewise we do not ex-

plain how to distribute conditions to check for behav-

ioral subtyping constraints (for recent work in this area

see Findler and Felleisen (2001)).

4.1. Runtime verification of model programs

Fig. 3 shows the translation for the model program
from Fig. 2. Note that the model program is translated

into a class which is separate from the implementation

class. We use dollar signs in the names to indicate that

the definitions have been automatically generated.

The type Map is exactly the AsmL type; all of the

AsmL types are implemented within the CLS. All of the

statements from setting the Item property are put into

set$Post. The return statement has been modified: it now
assigns the model�s return value to a newly introduced

variable. The assertion at the end of the method checks

to see that this variable is the same as the result from the

implementation. Similarly, it tests that any exceptions

thrown by the implementation are a subtype of the ex-

ceptions thrown by the model. What has been accom-

plished is that the operational AsmL method has been

translated into an assertion. (In AsmL, a return state-

ment is restricted to be the last statement in a method, so
we do not need to branch immediately after the newly

introduced assignment statement.)

Given the transformed model program, we instru-

ment the code for any class that implements the inter-

face IDictionary. All of the constructors are modified to

create an instance of IDictionary$Checked. Each of the

methods, f, for which there are corresponding specifi-

cations, are modified to call f $Pre upon entry and
f $Post before returning. The bodies of the methods are

inserted into a try/catch block and any return statements

are changed to assignment statements just as shown for

the model program in Fig. 3. Space reasons prevent us

from discussing how to ensure that the initial state of the

model program corresponds to the initial state of the

implementation, or how to re-synchronize in the pres-

ence of uncontracted methods; full details can be found
in the accompanying technical report (Barnett and

Schulte, 2002).

4.2. Runtime verification of mandatory calls

As long as there are no mandatory calls, we can use

the translation scheme outlined in Section 4.1. It exe-

cutes the implementation and the specification, atomi-
cally, one after the other. In order to resolve

nondeterminism angelically, we execute the implemen-

tation first; its state is then available for choosing the

‘‘right’’ path in the model.

However, when an implementation method f makes a

mandatory call, the receiving component can call back

into the implementation. That callback will, we assume,

be to a method g with an attached contract. But the state
of the model program will not be correct because the

part of the model method for f will not have been exe-

cuted yet.

Logically, what is required is for the AsmL specifi-

cation to execute concurrently (i.e., in an interleaved

manner) with the implementation; each mandatory call

and the interface method boundaries are the synchro-

nization points.
In order to implement this, we split the body of each

model method into a set of blocks that can be executed

piece by piece. We insert triggers into the implementa-

tion, both in the contracted method and in the manda-

tory calls, to cause each piece to be executed at the

‘‘correct time’’; this is made precise in the following.

When the implementation behaves according to its

specification, then the combined effect is as if the model
program had been executed as one atomic proce-

dure call. An implementation that exhibits incorrectFig. 3. IDictionary interface model transformed into a contract.

M. Barnett, W. Schulte / The Journal of Systems and Software 65 (2003) 199–208 203



sequencing will throw a runtime exception, just as a

failed condition does.

4.2.1. Splitting bodies

The split body becomes an instance method on a new

class, Set$Checked, shown in Fig. 5, so that it can retain
its state between invocations. It has member variables

for the parameters of the call, for any local variables of

the method, the return value from the mandatory call,

and a reference to the contract of the contracted class.

The new class implements an interface ISteppable which

represents a method which can be suspended and re-

sumed, just like a co-routine.

interface ISteppable {
void Step();

object result { set; }

int pc { set; }

}

For example, consider the class Hashtable from the

System.Collections namespace in the .NET Framework,

one of the many classes that implements the interface

IDictionary. We transform its definition into the one
shown in Fig. 4 (we show only the setting of the Item

property). Instead of calling Pre and Post as described in

Section 4.1, calls to the method Step of the class

Set$Checked are inserted instead. Note that it still con-

tains an instance of IDictionary$Checked; that instance

still holds all of the member variables from the specifi-

cation. The code of the set method from Fig. 2 is now

encapsulated within Set$Checked:Step instead of Post.
An instance of Set$Checked is created for each invoca-

tion of setting the Item property since it must maintain

the state of the ‘‘concurrent’’ model program; the CLR�s
runtime stack maintains the state of the implementation

method.

Fig. 6 shows the generic template for Step, which acts

as an interpreter for the model program. It has an outer
loop that continually dispatches to the code for the

current value of the program counter, pc. The very first

‘‘instruction’’ (case 0) checks any pre-condition from the

specification (if present) and then pushes an empty

frame onto a global stack, called the mandatory call

stack, that we use to record the sequencing of the

mandatory calls. It is executed by the first call to Step

that is made in Fig. 4 at the beginning of the set method.

Fig. 6. Generic ‘‘Interpreter’’ for contract methods.Fig. 4. Modified implementation for set.

Fig. 5. New inner class Set$Checked.
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Each frame contains a set of objects; each object rep-

resents one mandatory call that must be made in the

current step. (Remember that AsmL�s parallel semantics

means that all of the calls to Invalidate occur in the same

step without any state changes happening in the model.)

The last instruction (case END) contains the final
step and the check that used to be in the Post method. It

also checks that there are no outstanding mandatory

calls to be made. This case is executed at the end of the

set method as shown in Fig. 4. Any nondeterminism is

angelically resolved using the result of the implementa-

tion (see Barnett and Schulte (2002) for a full treatment

of nondeterminism).

The structure of the code in Fig. 6 is based on there
being three ‘‘instructions’’ per step, i, of the original

model program. The first instruction (case 3iþ 1) com-

putes any updates that were in the corresponding step of

the model program. It is very important to realize that

any updates performed in this case are not committed:

they are updates to AsmL variables. The Step method is

a sequential implementation of the parallel AsmL model

program, so an explicit commit is required to make any
updates visible. Also, the AsmL model program has

been transformed into a normal form where all steps are

at the outermost level. Our example is already in that

form. As mentioned earlier, all return statements are

required to be in the last step, so the only substitutions

for them are in case END. Furthermore, all variable

references are prefixed with the instance contract be-

cause the members of the model program live in the
contract object and not in each invocation of a con-

tracted method.

The important difference is that mandatory calls are

replaced with code that adds the information about the

call (the callee and the parameters) into the set of

mandatory calls in the current stack frame as an object

of type Call. That is because the actual call is to be made

by the implementation; the model program monitors the
calls as shown in Section 4.2.2. The test on NoOfCalls is

to see if there really are any mandatory calls in this step,

if not, the program counter is incremented to jump

around the handling of the mandatory call. But if there

is a mandatory call, then the interpreter returns, sus-

pending its execution. When it is resumed, it is because it

is called (indirectly) by a mandatory call; we show this

part of the scheme in Section 4.2.2. If any exceptions are
thrown during the evaluation of case 3iþ 1, the pro-

gram counter is set to END and the co-routine is sus-

pended.

Mandatory calls come back to the interpreter twice:

once before their body executes and once just before

they terminate. The first callback to the interpreter (case

3iþ 2) evaluates the assertion of the strongest post-

condition derived from the previous step in the model
program. In our example of invalidating enumerators, it

is this check that makes sure the value of mapðkeyÞ is still

the same, i.e., that the model state has not been incor-

rectly changed.

The second callback (case 3iþ 3) would store the

result from the mandatory call, if it returns a value. In

our example, Invalidate does not return any value. Since

there may be several mandatory calls in this same step,
due to AsmL�s parallel semantics, the current stack

frame is inspected to see if there are any more calls to

observe. (The epilogue code inserted into the mandatory

call removes the Call object from the stack frame.)

When there are more mandatory calls to be made during

step i, then pc is decremented and control is returned to

the mandatory call. If there are no more mandatory

calls, then step i has been completed and its updates are
committed. When step iþ 1 is the last step of the spec-

ification, then control is returned to the mandatory call.

All other steps, however, execute break and continue on

to begin the execution of the next step, setting up for

whatever mandatory calls are made in those steps.

The need to execute the last step of the contract fol-

lowing the implementation conflicts with the lockstep

synchronization used to monitor the mandatory calls.
When the specification contains nondeterminism that is

to be resolved automatically, it can be accommodated

only as long as it occurs in the final step and the final

step does not contain any mandatory calls. If the last

step does not contain any nondeterminism, but does

contain mandatory calls, then it can be translated into

one of the pre-END triples of cases.

4.2.2. Tracking calls

The object for each mandatory call that is put onto

the mandatory call stack contains enough information

for the mandatory call to recognize itself and to call

back to the method that made the call. That is, it calls

back to the model�s method, in particular it causes the

next step to occur in the piece-wise implementation of

the model method.
class Call {

ISteppable Caller;

object Callee;

object MethodReference;

object[ ] MethodParameters;

}

Then, in each method that could potentially be a

mandatory call, we insert two triggers that call back to
the model. In our running example, the method Invali-

date is a mandatory call that should be made when

setting the Item property; its modified form is shown in

Fig. 7 which would be part of the specification for the

IEnumerator interface.

The method SelectCall looks through the set of calls

in the current mandatory stack frame, and if an object is

in the set where the last three members match the ar-
guments to the call, returns a reference to the object.

Remove just takes the call out of the current stack frame,
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but does not pop the mandatory stack. Invalidate cannot

just unconditionally jump back. Our models are minimal

models; an implementation may perform more exter-

nally visible communications than specified. We want to

ensure only that it makes at least the calls that occur in

the model program.

5. Related work

The field of specification and component technology

is vast. Here we concern ourselves only with work spe-

cifically in the area of attaching specifications as con-

tracts to component-based software. We restrict

ourselves to sequential systems: the issue of concurrency
is yet another entire area.

Previously, we had used a more limited technique for

attaching AsmL models to COM components (Barnett

and Schulte, 2001b), but it did not provide for nonde-

terministic specifications or for mandatory calls. We

have also produced a more general description of using

AsmL for component specification (Barnett and Schulte,

2001a). Other uses of AsmL are described in papers
available from our web site (Foundations of Software

Engineering, 2001).

Helm et al. (1990) and Holland (1992) were among

the first to use model programs as contractual specifi-

cations, but do not present a method for the automatic

conformance monitoring.

The Turku school has explored component specifi-

cation in the context of the refinement calculus (Back
and von Wright, 1998); in particular B€uuchi and Weck

(1999) have proposed the use of operational specifica-

tions to capture sequencing constraints. However they

analyze the specifications statically, not at runtime. A

case study of proving the correctness of Java collections

frameworks (Mikhajlova and Sekerinski, 1999) uses in-

terface contracts with abstraction functions, but it does

not address the issue of runtime checking for monitoring
an implementation�s conformance.

Almost all other work that we know of allows only

conditions, i.e., contracts specified only as pre- and post-

conditions and class/interface invariants.

Arguably, the most well-known system for attaching

contracts to components is Eiffel (Meyer, 1992). It al-

lows conditions to be added to classes; conditions must
be written in Eiffel as well. There are also plans to

provide Eiffel contracts for .NET components. The in-

tended implementation uses object wrappers to do so.

There are many systems for attaching contracts to

Java components. Generally they provide for class

specifications, not interface specifications. There are a

mix of systems from commercial and academic sources.

JMSAssert (Man Machine Systems, 2002) monitors
classes that have been annotated with conditions by

creating methods from the conditions and calling them

based on run-time interception. iContract (Kramer,

1998) uses an assertion language that is compatible with

OCL (IBM, 2001) and a source code pre-processor in

order to attach the contracts. It can not handle any of

the generic extensions to Java. Handshake (Duncan and

H€oolze, 1998) performs class modification at load time,
but is limited to conditions. It intercepts the call from

the JVM to the OS asking for a class file, instruments the

file and returns the modified file to the JVM. So it does

not modify the JVM itself or the class loader. The

original functions are renamed inside of the modified

class; the newly created methods check the conditions

and call the original function, trapping the return value

to compare against the specification. However, it does
not catch any exceptions that are thrown within the

original method. jContractor (Karaorman et al., 1999)

uses a modified class loader to perform essentially the

same functions as Handshake, but it does catch excep-

tions and allows for exception specification in addition

to simple contracts. Jass (Bartetzko et al., 2001) is a

similar system, but adds enough bookkeeping so that it

does not check assertions in methods that are called in
conditions located in other methods. It also has just

added trace assertions (Fischer, 2000) as class invariants

to specify valid method call sequences. Trace assertions

are written separately from the conditions. They can

express repetition, disjunction, and conjunction of traces

and even control and data dependence on arbitrary

predicates of the program state. Contract Java (Findler

and Felleisen, 2001) tries to lift conditions to the inter-
face level; they discuss how component-oriented pro-

gramming prevents meaningful contracts when

restricted to the class level since many parameters are of

an interface type. But their interfaces do not have model

variables and so the conditions are restricted to predi-

cates on parameters. They also point out that many

contract-checking systems do not correctly enforce be-

havioral subtyping. JISL, the Java interface specification
language (M€uuller et al., 1999), is mostly concerned with

the specification of frame properties. JML (Leavens

Fig. 7. Modified code of a mandatory call.
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et al., 2000), which is very similar to our work, can be

used to check Java programs (Bhorkar, 2000) via a

source-to-source transformation. The current imple-

mentation allows only pre-conditions that do not con-

tain quantifiers. Although the tool is limited, JML itself

goes beyond simple contracts: it can be used to specify
interface contracts which can contain model variables

and even model programs. But it tends to use model

programs only for interaction properties and continues

to use conditions for everything else.

There are also other systems for runtime verification

that are not specifically targeted at Java. Edwards (2001)

uses specifications for components to generate wrapper

components that check the pre- and post-conditions. An
abstraction function is required because the conditions

are expressed in terms of abstract values. But without

model programs, synchronization properties cannot be

specified. Soundarajan and Tyler (2001) use trace vari-

ables in specifications to record method calls in order to

reason incrementally about subtypes. Their trace vari-

ables are similar to our mandatory calls, but they also

do not have model programs. Using a simple specifica-
tion language, (Ball and Rajamani, 2002) instrument C

programs to monitor certain temporal properties.

There are type systems that impose restrictions to

address the frame problem (see for example M€uuller et al.
(2001)), but in our opinion, they force too many pro-

grammer annotations to be feasible in our setting. It also

does not directly address the issues of runtime verifica-

tion for behavioral conformance.
Gannod and Cheng (1996) explore the derivation of

predicate-style specifications from program statements

showing one way to unite declarative specifications and

model programs.

The specification language B (Abrial, 1996) is similar

in many respects to AsmL, but while it is object-based, it

is not object-oriented. Also it is targeted at static veri-

fication which limits its scalability. OCL (Warmer and
Kleppe, 1999), an industry-standard specification lan-

guage used with UML, is restricted to conditions; it

cannot be used to describe model programs.

6. Conclusions

Our work occurs within the context of specifying and
checking software components. In particular, we are

interested in the behavioral specification of interfaces.

That means we require a mechanism for specifying the

abstract behavior of any implementation of an interface;

additionally, component interaction must be taken into

account.

By using model programs, we are able to specify all of

the traditional design-by-contract concepts of pre- and
post-conditions and invariants. Model programs go

further in that they can be used to specify properties of

component interaction through the concept of manda-

tory calls. They also lend themselves to more uses than

runtime verification of an implementation, although this

paper has focused on that aspect. (See Grieskamp et al.

(2001) for other uses of AsmL.)

The desirability of having higher-order data types
and control structures in specifications leads us to pro-

pose the use of a new specification language, AsmL,

which is freely available for noncommercial use from

our web site. It contains the essential feature of nonde-

terministic choice, which allows specifications to pre-

scribe behavior while still giving the implementor the

freedom to choose efficient data structures and algo-

rithms.
We have demonstrated a feasible method for per-

forming runtime verification by using the facilities pro-

vided on the .NET Platform. Because our method

operates at the level of IL, our specifications can be

applied to components written in any .NET language.

Under reasonable restrictions, and with limited human

intervention, our method can cope with nondetermin-

istic specifications. Using abstraction functions, the state
correspondence between an implementation and its

specification can be made arbitrarily precise. The more

effort that a user puts into writing an abstraction func-

tion, the sooner any divergence is discovered. However,

even without an abstraction function, our method de-

tects any nonconformant behavior as soon as it is visible

to a client of the implementation.

We have performed some pilot projects within Mi-
crosoft with earlier versions of our scheme. Within those

scenarios, we did not find the need for any difficult ab-

straction functions; our method appears to be quite

practical for industrial use.

The single most important missing aspect is concur-

rency. Our specifications do not explicitly deal with

multi-threaded components. We would like to address

this topic in the future.
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