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In a sponsored search auction, decisions about how to rank ads impose tradeoffs between objectives such as
revenue and welfare. In this paper, we examine how these tradeoffs should be made. We begin by arguing
that the most natural solution concept to evaluate these tradeoffs is the lowest symmetric Nash equilibrium

(SNE). As part of this argument, we generalise the well known connection between the lowest SNE and the
VCG outcome. We then propose a new ranking algorithm, loosely based on the revenue-optimal auction,
that uses a reserve price to order the ads (not just to filter them) and give conditions under which it raises
more revenue than simply applying that reserve price. Finally, we conduct extensive simulations examining
the tradeoffs enabled by different ranking algorithms and show that our proposed algorithm enables superior
operating points by a variety of metrics.
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1. INTRODUCTION

In a sponsored search auction, the mechanism designer is given a search query from a user
and bids from advertisers and faces the problem of deciding which ads to show in response
and where to place them. His choices govern the balance achieved between the interests
of stakeholders: the user wants meaningful content, the publisher wants revenue, and the
advertisers want engagement. In current sponsored search auctions run by Google or Bing,
ads’ placement is determined by a ranking algorithm. This ranking then determines prices
through the payment rule of the generalised second price (GSP) auction. Payment is made
when a user clicks on an ad (pay-per-click). Hence an ad’s ranking affects the user, both
through a direct position effect and an indirect externality on non-sponsored or algorithmic
content, has a consequent affect on the advertiser through the probability of engaging with
or clicking on the ad, and affects the price paid by the advertiser and revenue generated
to the publisher through the pricing mechanism. Higher positions typically receive more
attention from users and more clicks. Different ranking algorithms enable different tradeoffs
to be made among these stakeholders. In this paper, we examine the tradeoffs enabled by
different ranking algorithms and use a combination of theoretical analysis and empirical
study to gain insights into new ranking methods.
Historically, Yahoo! initially ranked advertisers by bid {bi}, then Google adopted a rank-

ing based on value per impression, or expected revenue, namely ranking by {biwi}, where
the relevance wi is an estimate of the likelihood that advertiser i’s ad will be clicked. Since
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then, there has been a widespread adoption of this rank-by-expected revenue approach,
subject to various enhancements such as setting reserves prices.
The framework for much of our paper is a single instance of an auction where advertisers

bid for slots, which differ in their “quality” (such as click-through rate). This is an ab-
straction of live ad-auctions, where advertisers bid on keywords as part of a campaign, and
keywords are matched to queries. We sidestep the matching issues and assume that the bids
represent bids for the actual query, which is indeed the case for exact match bids on specific
keywords. In the analysis phase, we assume many of the auction parameters are fixed, if
unknown: for example quality scores, click-through rates and the number of bidders. Later
in the paper we show simulation results using live data, where these assumptions certainly
do not hold.
In order to examine the necessary tradeoffs, we need a solution concept that describes the

outcome we expect. The standard analysis of GSP auctions [Aggarwal et al. 2006; Edelman
et al. 2007; Varian 2007] looks at complete information Nash equilibria, and in particular
their refinement to symmetric or locally envy-free Nash equilibria (SNE). However, the
standard approach to analyzing the revenue of auction designs, based on Myerson’s work
on optimal auctions [Myerson 1981], examines performance in Bayes-Nash equilibria.
Fortunately, it turns out that we do not need to choose between these two solution con-

cepts. In a striking result, several groups of authors independently showed that, when ads
are ranked by their bid multiplied by their click probability, the “lowest” SNE corresponds
to the the VCG outcome [Aggarwal et al. 2006; Edelman et al. 2007; Varian 2007]. Aggar-
wal et al. showed that this continues to hold when these “rank scores” are multiplied by
individualised weights, except that rather than VCG the results correspond to the outcome
of a truthful mechanism they call the “laddered auction.” As this is a single parameter
domain, this mechanism is a special case of Myerson’s general technique for transforming a
monotone allocation rule into a truthful mechanism [Myerson 1981].
Our first result futher generalises the connection between the Myerson outcome and the

lowest SNE of the GSP auction. We show that the it holds for a broad class of ranking
algorithms, which is large enough to to include almost all of those that have been pre-
viously considered in the literature. We discuss how an argument due to Edelman and
Schwartz [2010] provides additional justification for our adoption of the lowest SNE as our
solution concept; it also enables us to bound the performance of ranking algorithms out-
side our class, where SNE may not exist. A notable algorithm of this type is the practically
important case of simply imposing a minimum bid on the rank-by-expected revenue system.
Our second contribution is a proposal of a new ranking algorithm, inspired by features

of the revenue-optimal auction, with provably good properties. Rather than using a reserve
price simply as a minimum bid, we incorporate it directly into the ranking algorithm such
that ads with bids near the reserve price receive low rank scores relative to ads with high bids
but lower click probabilities. That is, we recommend the class of ranking algorithms {(bi −
r)wi}, where r is the reserve price. This change from {biwi} achieves a similar “squashing”
effect to introducing an exponent α < 1 and ranking by {biw

α
i }, proposed by Lahaie and

Pennock [2007]. Hence both squashing and setting a reserve are achieved through a single
parameter, as opposed to the effects being decoupled into a squashing exponent and a
reserve.
We prove that, for sufficiently small reserve prices, incorporating the reserve price into the

ranking algorithm raises more revenue than simply using that same reserve price purely as a
filter (i.e. the additional revenue is due the change in ordering, not merely the introduction of
a reserve price). The meaning of sufficiently small depends on the distribution of advertiser
valuations, but for a number of natural distributions (e.g. uniform and exponential) it
encompasses all choices of reserve price that do not exceed the revenue-optimal reserve.
While our ranking is inspired purely by the revenue-optimal auction, this theorem provides
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some insight into why it may enable favourable tradeoffs: to raise a given amount of revenue,
a lower (and thus less distortionary) reserve price can be used.
Our third contribution is an extensive consideration of the tradeoffs enabled by different

ranking algorithms through simulations. As the auctioneer cares about both short-term rev-
enue and the long-run health of the search platform, the relevant operating points likely do
not include the welfare-optimal and revenue-optimal designs. This is in contrast to previous
work, which tends to focus on performance only at these extreme points. We use two types
of simulation: one simulating a reactive environment where users react to changes in auction
design by forming revised equilibria; the other using real auction logs which assumes adver-
tisers do not react to changes, but which captures all the vagaries of real auctions. These
include budget constraints, a changing set of advertisers, and stochastic quality factors.
These simulations show that our proposed ranking algorithm enables favourable tradeoffs
using a variety of metrics. Our results also show that our proposed ranking has several nice
properties from an optimisation perspective.

2. PRELIMINARIES

We adopt a standard (Bayesian) model of a GSP auction:

—There are n advertisers (bidders) and m slots.
— If bidder i’s ad is displayed in slot k, its click-through rate (CTR) is wisk. sk is a slot

effect, while wi is an ad effect and can be interpreted as the relevance of bidder i’s ad.
The slots are strictly heterogeneous, with effects s1 > s2 > · · · .

—Advertiser i has value θi for a click. Values are i.i.d. with cdf F (θi) and pdf f(θi).
—Advertisers are assigned to slots by a ranking algorithm. This can be represented by a

ranking function y(b, w) > 0. The advertisers are sorted by y(bi, wi) with the highest
score receiving the first slot. Advertisers with y(bi, wi) = 0 are excluded (e.g. if they are
below some reserve). We restrict y to be a monotone function with respect to b, but not
necessarily w.

—Advertisers pay the generalised second price for their slot. Assuming for simplicity that
advertisers are ordered such that advertiser i is in slot i, advertiser i’s payment is the
minimum bid needed to keep his slot

pyi (bi+1, wi+1;wi) = inf
{
b : y(b, wi) > y(bi+1, wi+1)

}
. (2.1)

—We ignore the possibility of non-trivial ties (i.e. y(bi, wi) = y(bj, wj) > 0) as they com-
plicate analysis, and it is not clear how ties should be resolved in a GSP auction. Our
analysis focuses on performance in expectation, and so we justify this oversight by noting
that for all our considered ranking functions, non-trivial ties occur with probability zero
and have no bearing on any expected quantity.

— In our analysis, it will be helpful to refer to the slot effect sk assigned to advertiser i as
his allocation xi. In some instances it is appropriate to consider this a function of the
realisation of advertiser types: xi(θ,w). If a ranking function y(b, w) is used to assign the
slots, then it is appropriate to consider an advertiser’s allocation as a function of the bid
and relevance vectors, which we write as xy

i (b,w).
—We use x (or xy) to denote an allocation rule, which comprises the set of allocation

functions {xi} (or {xy
i }).

The only new feature of this model is the use of a general ranking algorithm based on y
rather than assuming a particular instantiation.
Much of our theoretical work utilises virtual values, a common concept in economic the-

ory. Under general conditions, an advertiser’s virtual value may depend on both his true
value and his relevance. However in the interests of an easier analysis we assume indepen-
dence between these two variables, which defines an advertiser’s virtual value also to be
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independent of his relevance:

ϕ(θi) = θi −
1− F (θi)

f(θi)
. (2.2)

We further assume that the virtual value function is differentiable, and that the hazard
rate f(θi)/(1 − F (θi)) is non-decreasing, conditions which hold for numerous common dis-
tributions. Again, these assumptions are to accommodate an easier analysis. The value at
which an advertiser’s virtual value becomes zero is θ. That is, ϕ(θ) = 0. Given that θi has
distributional support at zero, our assumptions imply that θ exists and is unique.

3. PROPOSED RANKING ALGORITHM

In order to compare ranking algorithms, we must make some assumption about bidder
behaviour. A useful starting point is to assume a Bayes–Nash equilibrium (BNE) in which
each advertiser submits a bid maximising his own benefit in expectation over the others’
types and bids, and his own relevance. An advantage of working in the Bayesian setting is
that we can use Myerson’s [1981] theory to quickly calculate expected revenue R. In any
BNE,

R = R(x) = E

[ n∑

i=1

ϕ(θi)wixi(θ,w)

]
, (3.1)

where we write R(x) instead of R(x; f,w) to emphasise the dependence on the allocation
rule x.
Hence using (3.1), one can simply characterise the revenue-optimal auction. That is, it

ranks advertisers by ϕ(θi)wi, excluding any advertiser with negative virtual value (i.e. the

auction has a reserve price of r = θ where ϕ(θ) = 0). However, actually implementing this
auction is unlikely to be feasible in practice. In particular, this simple form relies on our
assumptions that bidders are symmetric, and that relevance and value are independent.
Otherwise, virtual values (and hence the ranking and reserve price) depend on the identity
and relevance of the bidder, which makes practical auction design difficult. Even if we could
implement such a revenue-optimal auction, other considerations such as advertiser and user
satisfaction would make doing so undesirable.
Instead, we note two qualitative features of the revenue-optimal auction. First, it uses a

reserve price. Second, bidders with values barely above the reserve price are very low in the
rankings. This inspires the new ranking algorithm we evaluate in Sections 5 and 6 which
ranks ads by {(bi − r)wi}, which is perhaps the simplest ranking with these two features.
Note that under our proposal the price paid for slot i is bi+1(wi+1/wi) + r(1 − wi+1/wi),
which follows from (2.1), assuming advertiser i is allocated slot i.

4. THE LOWEST SYMMETRIC NASH EQUILIBRIUM

We now identify one specific Nash equilibrium that we shall use to compare ranking algo-
rithms, which has appealing features. We also draw the connection to BNE.
Because of the difficulties involved in a full Bayes-Nash analysis for the GSP auction, a

commonly used alternative is to assume a symmetric Nash equilibrium (SNE), an ex-post
equilibrium concept proposed independently by Varian [2007] and Edelman et al. [2007],
(who used the term locally envy-free equilibrium). A SNE requires the following inequalities
to be satisfied:

(
θi − pyi (bi+1, wi+1;wi)

)
xi >

(
θi − pyi (bj+1, wj+1;wi)

)
xj for all i, j , (4.1)

where pyi is the GSP payment (2.1). Note that the SNE inequalities (4.1) are stronger than
those that define an ex-post Nash equilibrium, which for j < i would replace the subscripts
j + 1 with j in the right hand side of (4.1). Hence the set of SNE is a subset of the set of
ex-post equilibria.
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The striking result that both Varian [2007] and Edelman et al. [2007] realised is that
under the ranking algorithm {biwi} any SNE yields an efficient outcome, and furthermore
there exists a SNE — known as the lowest or bidder-optimal SNE — in which advertisers’
positions and payments are identical to those imposed by the VCG mechanism. Aggarwal et
al. [2006] showed a more general connection between the ranking algorithm {biwici} (where
ci is a positive constant) and the corresponding “laddered auction”, a family of truthful
mechanisms. This result is important for a number of reasons:

— It provides a focal outcome from the space of possible SNE.
— It creates a link between SNE behaviour and the Bayesian setting.
— It provides a natural lower bound on revenue, as every other SNE has higher revenue.

We show that this result is much more general. In particular, for any ranking function of
the form

y(b, w) =
(
g(w)b − h(w)

)+
, (4.2)

SNE always exist (g and h are arbitrary non-negative functions). Since y does not does not
necessarily rank the best ad highest, the outcome is, in general, no longer efficient. However,
it does respect y, in the sense that the ranking in all SNE is the same ranking that would
be used if bidders reported their true values. Finally, the lowest SNE still has a very special
structure. Recall that xy(b,w) = {xy

i (b,w)} are the allocations that result from bids b and
ranking function y. By (4.2), xy(b,w) is a monotone allocation rule. Therefore there are
unique payments that make xy an ex-post direct revelation mechanism. The lowest SNE
implements this mechanism in the exact same way that the standard ranking implements
VCG. In particular, since ex-post direct revelation mechanisms are also BNE, this allows
us to give a concise characterisation of the revenue in the lowest SNE.

Theorem 4.1. Consider a GSP auction subject to a ranking algorithm y(b, w) within
the class (4.2).1 For any realisation (θ,w), there exists a non-empty set of SNE and all
SNE order bidders by y(θi, wi). Furthermore, the lowest (revenue) SNE, defined by

y(bi, wi)xi−1 =
∑

j>i

y(θj , wj)(xj−1 − xj) , (4.3)

generates expected revenue

R(xy) = E

[ n∑

i=1

ϕ(θi)wix
y
i (θ,w)

]
. (4.4)

Proof. From the GSP payment rule (2.1), the price-per-click charged to bidder i is

pyi (bi+1, wi+1;wi) =
y(bi+1, wi+1) + h(wi)

g(wi)
.

The SNE inequalities (4.1) are then

(
θi −

y(bi+1, wi+1) + h(wi)

g(wi)

)
xi >

(
θi −

y(bj+1, wj+1) + h(wi)

g(wi)

)
xj ,

which is equivalent to
(
y(θi, wi)− y(bi+1, wi+1)

)
xi >

(
y(θi, wi)− y(bj+1, wj+1)

)
xj . (4.5)

1For simplicity, we assume that all bidders are ranked by the same algorithm y. However, our result still
holds if each is ranked using an individualised algorithm yi from the class (4.2). This enables our result to
apply to settings where, for example, the mechanism design incorporates other factors into the rank score.
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Varian’s [2007] analysis can be directly reapplied to this generalisation, leading to the con-
clusion that there exists a non-empty set of SNE, and furthermore all SNE use the same
allocation rule, ordering bidders by y(θi, wi).
In the lowest SNE (4.3), advertiser i’s payment pi satisfies

y(pi, wi) = y(bi+1, wi+1) =
1

xi

∑

j>i+1

y(θj, wj)(xj−1 − xj)

= y(θi, wi)−
1

xi

∑

j>i

xj

(
y(θj , wi)− y(θj+1, wj+1)

)

= y(θi, wi)−
1

xi

∫ θi

0

xy
i (t, θ−i,w) dy(t, wi) .

As dy(t, wi) = g(wi) dt,

pi = θi −
1

xi

∫ θi

0

xy
i (t, θ−i,w) dt ,

which precisely describes the payment functions imposed by the ex-post direct revelation
mechanism for the allocation rule xy(θ,w). Thus, the lowest SNE is also a BNE, and
therefore generates expected revenue (4.4).

This generalisation of the lowest SNE to the class of rankings (4.2) includes ranking by bid
{bi}, by expected revenue {biwi}, and the squashed ranking {biw

α
i } [Lahaie and Pennock

2007], all with a possible reserve score (i.e. a per-impression reserve). It also incorporates
our proposed algorithm {(bi − r)wi} with reserve price r (i.e. a per-click reserve).
Note, however, that the standard ranking algorithm {biwi} with reserve price r corre-

sponds to the ranking function z(b, w) = I{b > r} bw, which is not of the required form.
This introduces some analytical complexities later when we wish to compare the properties
of our proposed algorithm to this algorithm. While Theorem 4.1 guarantees SNE of ranking
algorithms in the class (4.2) are well behaved, the same cannot be said of the standard
ranking with a reserve price. In fact, we will see that this algorithm can be quite poorly
behaved, in a sense that will be made clear later.
We conclude this section with an additional justification of our focus on the lowest equi-

librium. This justification has the additional benefit of applying even for rankings outside of
the class (4.2), for which SNE may not exist, a feature we exploit in the next section. Edel-
man and Schwarz [2010] argue that because SNE is a full information solution concept used
to model the outcome of a game that is in reality one of incomplete information, one should
only consider SNE that are in some sense “feasible” in the Bayesian setting. They defined
what they called the Non-Contradiction Criteria (NCC), which deems a SNE implausible
if it generates greater expected revenue than any BNE of the corresponding repeated game
of incomplete information. Rather than characterising the BNE of the repeated game, they
use the revenue of the optimal BNE as an upper bound. In their setting, this upper bound
on revenue exactly matches the revenue of the lowest SNE, and therefore they argue it is
the only reasonable equilibrium.
In our work, we are interested in understanding the behaviour of a large class of ranking

algorithms, none of which need be optimal. So in our setting, the revenue of the optimal
BNE, while still an upper bound, does not necessarily match the revenue given by the lowest
SNE of an arbitrary ranking algorithm of the form (4.2). However, we know from Theo-
rem 4.1 that given a ranking function y, all SNE share the same allocation rule xy(θ,w).
Therefore, a natural comparison is to BNE that also share the same allocation rule. Follow-
ing Edelman and Schwartz, rather than characterising such equilibria, we instead derive an
upper bound on their revenue. Since we have fixed the allocations, Myerson’s theory allows
us to trivially derive such an upper bound.
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Proposition 4.2. Given a ranking function y, the optimal BNE that ranks ads by
y(θi, wi) has expected revenue

R(xy) = E

[ n∑

i=1

ϕ(θi)wix
y
i (θ,w)

]
.

By Theorem 4.1, this upper bound exactly matches the revenue of the lowest SNE, pro-
viding additional justification for our decision to use it as a focal outcome of a GSP auction.
Further, any method of selecting an SNE given types (θ,w) implicitly defines such a ranking
function y, not necessarily within the class (4.2), so this upper bound remains useful even
for ranking algorithms outside this class.

5. REVENUE DOMINANCE

In this section we compare the revenue generated by our proposed ranking algorithm
{(bi − r)wi} with the standard ranking {biwi}, both employing the same per-click reserve
price r. This comparison is of particular interest as the two algorithms exclude the same
set of advertisers, thus isolating the effect of incorporating the reserve price into the rank-
ing function. We find that for sufficiently small2 reserve prices, our proposed algorithm is
guaranteed to generate greater revenue. While in practice the designer may not be solely
interested in revenue, this result helps to show how our algorithm may offer favourable
tradeoffs between revenue and welfare. That is, for a given target revenue, a designer using
our ranking algorithm needs to use a smaller (and thus less distortionary) reserve price than
a designer employing the standard ranking.
We take our assumption of equilibrium behaviour in GSP auctions to be SNE whose

revenue does not exceed the bound in Proposition 4.2. For our proposed ranking algorithm
{(bi − r)wi} this is equivalent to taking the lowest SNE. However, the standard ranking
algorithm {biwi} with reserve price r has the corresponding ranking function z(b, w) =
I{b > r} bw, which is not within the class (4.2). With this ranking algorithm, we are not
certain whether or not a SNE is guaranteed to exist. In Appendix A, we give an example
where we can show that any SNE that does exist cannot always rank ads by θiwi. That is,
ads do not necessarily appear in the desired order.
Despite the complexity of behaviour with this ranking algorithm, we present the following

theorem which states that, for sufficiently small reserve prices, the lowest SNE of the GSP
auction subject to our proposed ranking {(bi − r)wi} generates greater expected revenue
than any SNE under the standard ranking {biwi} (with the same reserve price r) that
respects the revenue upper bound from Proposition 4.2.

Theorem 5.1. For r ∈ (0, θ],3 define R1(r) and R2(r) to be the expected revenues from
two allocation rules that select outcomes that are SNE and do not exceed the bound from
Proposition 4.2 under the ranking algorithms {(bi − r)wi} and {biwi} respectively. If

r 6 inf
t>r

{
t−

ϕ(t)

ϕ′(t)

}
, (5.1)

then R1(r) > R2(r).

Informally, condition (5.1) seems to hold for most reasonable distributions and for most
r ∈ (0, θ]. More precisely, it will hold for all r ∈ (0, θ] when ϕ(θi) is weakly convex. It is
straightforward to show that sufficient conditions for ϕ(θi) to be weakly convex are that f is
log-concave and non-increasing. Log-concavity is a property of many common distributions

2We give a detailed discussion on the meaning of “sufficiently small” later, however most reasonable reserve
levels do suffice.
3Recall that θ is the theoretical revenue-optimal reserve price — that is, the value at which an advertiser’s
virtual value becomes zero: ϕ(θ) = 0.
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and is a standard assumption in economic analysis [Bagnoli and Bergstrom 2005]. Requiring
f to be non-increasing is somewhat restrictive, but permits, for example, the uniform or
exponential distribution. Conversely, If ϕ(θi) is concave then it is likely that condition (5.1)
does not hold for some choices of r. For example, consider θi ∼ Beta(2, 2) which has a
monotone hazard rate and defines ϕ(θi) to be concave. In this case θ = 0.4215, and for all r
the RHS of (5.1) is minimised at t = 1 to the value 1

3 . Thus, there exists an interval (13 , θ]
in which r does not satisfy condition (5.1).
For choices of r that do not satisfy condition (5.1), it does not follow that our ranking

algorithm therefore generates less revenue than the standard. On the contrary, we expect our
ranking algorithm to generate more revenue in most cases. To give an intuitive explanation,
our proof of Theorem 5.1 involves showing that one can apply a large number of pairwise
allocation swaps to transform the allocation rule arising from the standard ranking to that
of our proposed ranking, each of which increases revenue. If r is slightly greater than the
RHS of (5.1) then a small proportion of swaps will decrease revenue, while most will still
cause an increase. In many such cases, the net result will still be a revenue increase. Indeed,
we see such behaviour in our simulations given below.
We work up to Theorem 5.1 through a series of lemmas. As previously mentioned, the

upper bound from Proposition 4.2 is well defined for arbitrary monotone allocation rules.
Let R(x) be the value of this bound for the allocation rule x:

R(x) = E

[ n∑

i=1

ϕ(θi)wixi(θ,w)

]
. (5.2)

If x is not monotone then Proposition 4.2 no longer holds, however R(x) is still well defined
as the same functional form. The only difference in this case is that R(x) does not translate
as an achievable revenue.
Our first lemma shows how one can increase the integrand of (5.2) for a given realisation

(θ,w). This is achieved by performing a simple adjustment or swap to the allocation rule
x.

Lemma 5.2. Suppose x is an allocation rule for which there exists a realisation (θ,w)
and specific i, j such that

ϕ(θi)wi > ϕ(θj)wj ,

xi(θ,w) < xj(θ,w) .

Define the adjusted allocation rule x̃ which is identical to x except for the single swap
x̃i(θ,w) = xj(θ,w) and vice versa. Then,

n∑

i=1

ϕ(θi)wix̃i(θ,w) >

n∑

i=1

ϕ(θi)wixi(θ,w) .

Proof. Direct from the conditions.

Our next lemma follows as a corollary to Lemma 5.2, extending it to situations where
improvements are possible through a sequence of swaps.

Lemma 5.3. Let xy and xz be two allocation rules such that the following properties
hold for all θi, wi, θj , wj:

y(θi, wi) = 0 ⇔ z(θi, wi) = 0 , (5.3)

{
y(θi, wi) > y(θj , wj) AND z(θi, wi) < z(θj, wj)

}
⇒ ϕ(θi)wi > ϕ(θj)wj . (5.4)

Then, R(xy) > R(xz). Furthermore, if xy and xz differ with positive probability then
R(xy) > R(xz).
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Proof. The intuition behind Lemma 5.3 is clear — if it holds that any time y and z
disagree about the ranking of two advertisers then y is ‘correct’, then it should hold that
R(xy) > R(xz). The proof involves showing that one can perform a sequence of swaps
to transform xz into xy , where each swap satisfies the conditions of Lemma 5.2 (see Ap-
pendix B).

Our third lemma is the heart of the proof. It shows that for a sufficiently small reserve
price r, the two ranking functions defined by our proposed algorithm and the standard
satisfy conditions (5.3) and (5.4) from the previous lemma.

Lemma 5.4. Given a reserve price r ∈ (0, θ], let

y(θi, wi) = (θi − r)+wi , (5.5)

z(θi, wi) = I{θi > r} θiwi . (5.6)

If

r 6 inf
t>r

{
t−

ϕ(t)

ϕ′(t)

}
, (5.7)

then R(xy) > R(xz).

Proof. The proof of Lemma 5.4 involves showing that conditions (5.3) and (5.4) are
satisfied (see Appendix C).

The only remaining technical detail is that the ranking function z(b, w) = I{b > r} bw
is not within the class (4.2). As previously discussed, this means that we need to consider
the possibility that there may exist SNE with a different ranking from z(θi, wi), to which
we cannot directly apply the upper bound R(xz). However, our final lemma shows that any
such alternate rankings can only reduce our upper bound on revenue.

Lemma 5.5. Let x be an allocation rule that selects a SNE of a GSP auction with the
ranking function z(b, w) = I{b > r} bw. Then R(xz) > R(x).

Proof. See Appendix D.

The addition of Lemma 5.5 is sufficient to complete our proof of Theorem 5.1. By Theo-
rem 4.1, R1(r) = R(xy); by Lemma 5.4, R(xy) > R(xz); and by Lemma 5.5, R(xz) > R2(r).
Thus we have R1(r) > R2(r).

6. SIMULATIONS

In this section, we use simulations to examine the performance of our ranking algorithm and
show that it generally dominates existing ranking algorithms. We examine three metrics:
revenue, welfare, and click yield. Revenue is what the auctioneer cares about (at least in the
short term). Welfare is the total value created for advertisers (

∑
θiwixi), and the auctioneer

also cares about this for the long-term health of the platform. Similarly, click yield (i.e. the
total number of clicks

∑
wixi) can be thought of as a proxy for the value created for the

users who are clicking on (presumably) useful ads.
There is one technical detail relevant to Figs. 1-6. As previously discussed, the stan-

dard ranking algorithm coupled with a reserve price r corresponds to the ranking function
z(b, w) = I{b > r} bw, which is not within the class (4.2). As a consequence, any existing
SNE may not be well-behaved. Instead of trying to characterise such equilibria, we use the
relevant statistics of the optimal BNE which ranks ads by z(θi, wi). By Lemma 5.5, the
BNE revenue R(xz) is an upper bound for the corresponding SNE revenue. Thus, the (red)
curves may display overestimates of the true revenues.
The figures’ legends in this section use a simple notational shorthand to signify the type

of reserve — that is, r denotes a reserve price and ̺ a reserve score (i.e. a per-impression
reserve).



Proceedings Article

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.58

0.6

0.62

0.64

0.66

0.68

R
ev

en
ue

 

 

r

{biwi} / r

{(bi − r)wi}

Fig. 1. Revenue comparison between our pro-
posed algorithm and the standard ranking in a
simple setting.

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

Welfare

R
ev

en
ue

 

 

{biw
α
i } / ̺

{(bi − r)wi}
{biwi} / r

{biw
α
i }

{biwi} / ̺

Fig. 2. Feasible welfare-revenue operating
points in a simple setting.

We begin with a simple (albeit unrealistic) example, which satisfies the distributional
assumptions made in Sect. 2. There are eight advertisers bidding for three slots. Advertisers
have i.i.d. types (θi, wi) where θi and wi are independent and both uniformly distributed
on [0, 1]. Figure 1 illustrates Theorem 5.1 in this setting: for all r 6 0.5 (= θ), our proposed
algorithm of incorporating the reserve price into the ranking function raises more revenue
than the standard ranking. In this simple setting, we can actually achieve the optimal
revenue at r = 0.5.
However, Theorem 5.1 does not tell us what the cost of this added revenue is in terms

of welfare. Figure 2 shows us that this revenue is essentially free: for any welfare we desire,
we can achieve more revenue with our ranking algorithm. Note that this does not mean
that with the same reserve price our algorithm is more efficient. Instead, if separate reserve
prices are chosen such that both algorithms have the same welfare, our algorithm has higher
revenue.
In Fig. 2, we also compare performance against Lahaie and Pennock’s [2007] squashed

ranking algorithm with reserve score ̺ (i.e. y(b, w) = (bwα − ̺)+). Since there are two pa-
rameters, the operating points form the entire shaded region. Our algorithm leads to a set
of operating points that dominates this algorithm as well. Two special cases of this ranking
algorithm are the squashing ranking algorithm with no reserve (̺ = 0) and the standard
ranking algorithm with a reserve score (α = 1). The latter is particularly interesting to
compare to the standard ranking algorithm with a reserve price. We observe that for iden-
tical pre-reserve rankings, the addition of a reserve price dominates the alternative option
of a reserve score. Despite the fact that the plotted revenues of the standard ranking with
a reserve price may be overestimates, this still suggests that it is generally better to use
reserve prices than reserve scores. Figure 3 shows that these results do not change if we
examine click yield rather than welfare.
Lahaie and Pennock [2007] examined the performance of the squashed ranking in a more

realistic setting, which they selected by fitting Yahoo! data from a particular query. This
distribution violates several of our assumptions. Bidder valuations have a lognormal dis-
tribution, which does not have a monotone hazard rate. Values are also correlated with
relevance. Nevertheless, Figs. 4-6 show that the results from our simple setting are essen-
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tially unchanged, with our proposed algorithm of incorporating a reserve price into the
ranking function offering superior tradeoffs.
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Finally, all of these results are based on the assumption that bidders are in equilibrium.
In reality, if parameters are changed, the algorithm may take some time to reach the new
equilibrium, and there is empirical evidence that some advertisers react quite slowly to
changes. Therefore, a natural question is what happens when the ranking algorithm is
changed but advertisers do not react? If the short-term effect is revenue-positive or revenue-
neutral, it is much easier for the auctioneer to be patient. Furthermore, by not requiring
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an equilibrium analysis, we can examine the performance of different ranking algorithms on
historical data, which has many realistic features not captured by our simple model (e.g.
changing bidders, matching of bids to multiple queries, and stochastic quality scores).
Figure 7 shows the effect on revenue of changing from from the standard ranking algo-

rithm to our proposed ranking algorithm while keeping the reserve price fixed on Microsoft
historical data for a keyword with over 500 bidders, which we have selected as representative
of a “thick” market. The data has been normalised, but the exact values are not relevant
for our purposes. In such markets, incorporating the reserve price into the ranking function
seems to consistently increase revenue.

0 20 40 60 80 100
31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

R
ev

en
ue

 

 

r

{biwi} / r

{(bi − r)wi}

Fig. 7. Revenue comparison between our pro-
posed algorithm and the standard ranking in
thick market auction replays.
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Figure 8 is a similar plot of a “thin” market with fewer than 10 bidders. Here, at certain
values, the standard ranking raises somewhat more revenue. The included histogram of bid
frequencies suggests an explanation for this: setting the reserve price at a common bid makes
those bidders pay their full value, while the standard ordering ranks them highly to extract
as much revenue as possible. In practice, such reserve prices are unlikely to be chosen, as
setting a reserve price to match common bids would essentially make that auction first
price, as well as being very sensitive to small changes in bid. At more reasonable choices
of reserve price, our proposed algorithm of incorporating it into the ranking function yields
greater revenue.
Figures 7 and 8 also demonstrate several advantages of our ranking algorithm from an

optimisation perspective. First, the blue lines are “smoother”, which creates a somewhat
easier problem. Second, the fact that bidders near the reserve price have low rank scores
means that the revenue from an advertiser begins to decrease before the reserve price is
actually raised past his bid. This reduces the tendency of optimisation to overfit and choose
a reserve price directly below an advertiser’s bid.
To examine the tradeoff between revenue and click yield, we tested a subset of the ranking

algorithms using global parameter settings on a sample of a week’s worth of Microsoft
data across all queries. As there is a minimum bid of 5 cents in the actual system, an
implicit reserve price of 5 cents is applied to all ranking algorithms in addition to any other
parameters. Figure 9 shows that incorporating the reserve price into the ranking function
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results in a better tradeoff than using the reserve price solely as a minimum bid. As in the
single query case, the standard ranking experiences bigger peaks and drops as the reserve
price approaches common bids (in this figure increasing the reserve corresponds to moving
right to left). Interestingly, a reserve score does not generate a useful tradeoff (at least when
set globally) as increasing it reduces both revenue and clicks. Any gains from raising the
price the last ad shown pays are more than offset by the lower number of clicks. We cannot
investigate the tradeoff between revenue and welfare as we do not know the true values of
advertisers.

7. RELATED WORK

A number of papers have examined auctions other than GSP designed for sponsored search
auctions. Abrams and Ghosh [2007] considered the design of auctions that guarantee revenue
to be at least some fixed proportion of the optimal revenue that can be generated by an
omniscient designer, something that is not achieved by the GSP auction. Yenmez [2010]
studied equilibrium properties of general auction designs, including looking at conditions
under which the VCG outcome is implementable in equilibrium.
GSP auction literature is generally divided between Bayesian and non-Bayesian analysis.

In the former, Gomes and Sweeney [2009] pursued existence and uniqueness results regarding
BNE of the GSP auction. Pin and Key [2011] and Athey and Nekipelov [2012] proposed
separate models from which advertisers’ values can be inferred from bid data. Pin and
Key derive an advertiser best-response in the face of uncertainty in a repeated auction
setting, and make a connection to certain scenarios when the BNE of [Gomes and Sweeney
2009] exist; whereas Athey and Nekipelov start directly from a BNE setting. Both models
can be interpreted in a Bayesian setting, but differ in the precise information available to
advertisers. Athey and Nekipelov do consider the the tradeoffs from introducing various
changing to the ranking algorithm, but only consider one particular choice of parameters
rather than the full range of operating points. Athey and Ellison [2011] examined tradeoffs in
the context of a model of consumer search where reserve prices can actually increase welfare.
In their model a reserve price changes consumer perceptions of an ad’s relevance, which can
lead to more overall clicks. Vorobeychik [2009] presented a simulation-based technique to
approximate a BNE of the GSP auction, made feasible by restricting the space of possible
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bidding strategies. Liu and Chen [2006] and Liu et al. [2010] compare the designs of the
welfare-optimal and revenue-optimal auctions in a simplified settings where there are only
two types of advertisers, but also provide some insight into settings with more than two
types.
Analysis of the GSP auction in the complete information setting was pioneered indepen-

dently by Edelman et al. [2007], Varian [2007], and Aggarwal et al. [2006]. All three papers
note the striking equivalence result between the VCG outcome and one specific ex-post
equilibrium of the GSP auction — that is, the ‘lowest SNE’ or ‘bidder-optimal locally envy
free equilibrium’. Ashlagi et al. [2009] showed that this result holds more generally. That
is, for many auction designs in which advertisers’ payments are calculated as functions of
lower-ranked bids, there exists a specific equilibrium with payoffs equivalent to the VCG
outcome. Paes Leme and Tardos [2010] note that the set of ex-post equilibria of the GSP
auction is larger than the set of SNE, and may contain inefficient equilibria. For both the
complete-information and Bayesian settings, they investigated the maximum possible loss
of welfare — that is, they found upper bounds on the price of anarchy. Their results have
since been strengthened in a line of work that includes [Lucier et al. 2012; Caragiannis et al.
2011, 2012].
Edelman and Schwarz [2010] examined the revenue of various SNE and argue that the

‘lowest’ is the only reasonable one based on a criterion that compares SNE revenue to
the optimal revenue possible in the Bayesian setting. They use the resulting insight to
argue that that reserve prices raise more revenue through their indirect effects (increasing
equilibrium bids) than through their direct effects (raising prices paid) and that going from
a zero reserve price to the optimal reserve price leads to only a small welfare loss while
significantly increasing revenue.
Ostrovsky and Schwarz [2011] presented the results of a field experiment aimed at testing

the effects of employing Myerson’s [1981] optimal reserve price in GSP auctions. Working
in conjunction with Yahoo!, they used historical bid data for a large number of queries to
estimate distributions of advertisers’ values and subsequently optimal reserve prices. After
employing the new reserve prices, they observed substantial increases in revenue. However,
their reserves were implemented as minimum scores and were not used to change to ordering
of ads.
Lahaie and Pennock [2007] suggest a different method of increasing revenue. They found

that incorporating a squashing exponent α < 1 into the ranking algorithm {biw
α
i } generally

has a positive effect on revenue. They used simulations to show that the optimal value of
α is sensitive to the correlation between advertisers’ values and relevances. They observed
that introducing a squashing exponent to increase revenue incurs a smaller welfare loss
than that of setting a reserve score. Thus, they argue their method to be preferential.
Further strengthening this justification, Lahaie and McAfee [2011] showed that when there
is uncertainty in the estimates of advertisers’ relevances, introducing a squashing exponent
can actually increase welfare by reducing the weight placed on these uncertain estimates.
While we have not explored this issue for our proposed ranking algorithm, it certainly has
the same effect, which makes it plausible that their conclusion would apply to our algorithm
as well.

8. CONCLUSION

In this paper, we have examined the tradeoffs between revenue, welfare, and click yield
enabled by the choice of algorithm to rank sponsored search ads. In developing our solution
concept, we have extended the connection between the lowest SNE and the VCG mechanism
[Varian 2007; Edelman et al. 2007; Aggarwal et al. 2006] to a much wider class of ranking
algorithms. As this class includes inefficient rankings, our extension instead establishes an
equivalence between the lowest SNE and the corresponding Myerson [1981] outcome, of
which the SNE/VCG result is a special case.
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We then proposed a new class of ranking algorithms that incorporates a reserve
price/minimum bid into the ranking algorithm that governs the ordering of advertisers
(not just whether they appear at all), a system which shares several qualitative features
with the revenue-optimal auction. Our proposed ranking essentially combines two methods
of increasing revenue previously discussed in literature — namely, squashing [Lahaie and
Pennock 2007] and setting a reserve [Edelman et al. 2007; Ostrovsky and Schwarz 2011].
Where previously these two methods have been implemented using separate parameters,
our algorithm achieves the aims of both with a single parameter.
We derived conditions under which, for a fixed reserve price, our proposed ranking algo-

rithm generates greater revenue than the standard ranking. This comparison is particularly
informative, as it isolates the effect of incorporating the reserve price into the ranking func-
tion. It also provides intuition for why our ranking enables good tradeoffs: to raise a given
amount of revenue our ranking algorithm can use a lower (less distortionary) reserve price.
Our theorem work relies on various distributional assumptions that may not hold in real-
ity, however we expect the comparison to be very similar in many cases which violate the
underlying assumptions.
We finished with extensive simulations of the tradeoffs enabled by different ranking algo-

rithms. We used two types of simulation: one simulating an reactive environment where users
react to changes in auction design by forming revised equilibria; the other using real auction
logs which assumes advertisers do not have time to react to changes, but which captures
all the vagaries of real auctions, where bids change in the light of budget constraints and
changing users, and where underlying quality factors are stochastic. These simulations show
that our proposed ranking algorithm enables superior tradeoffs using a variety of metrics.
In particular, to achieve a fixed revenue increase, our ranking algorithm incurred a smaller
loss of welfare and click yield than the alternative rankings. These simulations also showed
that our proposed ranking has several nice properties from an optimisation perspective.
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Appendix

A. NON-EXISTENCE OF AN ORDER-PRESERVING SNE

For the standard ranking algorithm with a reserve price (i.e. z(b, w) = I{b > r} bw), we
show that a SNE cannot always rank ads by z(θi, wi), in contrast to SNE under ranking
algorithms within the class (4.2). The SNE inequalities (4.1) can be written as

(
θiwi −max{rwi, bi+1wi+1}

)
xi >

(
θiwi −max{rwi, bj+1wj+1}

)
xj for all i, j . (A.1)

Consider the following realisation. There are precisely two advertisers who submit qualifying
bids (bi > r), with bidder 1 being awarded the top slot and bidder 2 the second (b1w1 > b2w2

and x1 > x2). Bidder 1 is less relevant (w1 < w2).
Suppose a SNE always ranks ads by z(θi, wi), so that θ1w1 > θ2w2. The bids (b1, b2) must

satisfy the inequalities
(
θ1w1 −max{rw1, b2w2}

)
x1 > (θ1w1 − rw1)x2 , (A.2)

(θ2w2 − rw2)x2 >
(
θ2w2 −max{rw2, b2w2}

)
x1 . (A.3)

It is necessary that b2 > r in order to satisfy (A.3), and as w1 < w2, we have
max{rw1, b2w2} = max{rw2, b2w2} = b2w2. Then inequalities (A.2) and (A.3) can be
rewritten:

b2w2x1 6 θ1w1(x1 − x2) + rw1x2 , (A.4)

b2w2x1 > θ2w2(x1 − x2) + rw2x2 . (A.5)

We need the RHS of (A.4) to be at least as large as the RHS of (A.5). However, this is not
always the case. For example, suppose (θ1, w1) = (1, 0.7), (θ2, w2) = (0.6, 1), r = 0.5, and
(x1, x2) = (1, 0.5). We find the bounds on advertiser 2’s bid to be b2 > 0.55 and b2 6 0.525.
Thus, a SNE under the standard ranking algorithm with a reserve price does not necessarily
rank ads by θiwi.

B. PROOF OF LEMMA 5.3

Lemma 5.3.. Let xy and xz be two allocation rules such that the following properties hold
for all θi, wi, θj, wj :

y(θi, wi) = 0 ⇔ z(θi, wi) = 0 , (B.1)

{
y(θi, wi) > y(θj , wj) AND z(θi, wi) < z(θj, wj)

}
⇒ ϕ(θi)wi > ϕ(θj)wj . (B.2)

Then, R(xy) > R(xz). Furthermore, if xy and xz differ with positive probability then
R(xy) > R(xz).

Proof. Given a realisation (θ,w), suppose there are k advertisers who receive positive
scores. Take the labelling of advertisers:

y(θ1, w1) > y(θ2, w2) > · · · > y(θk, wk)

xy
1(θ,w) > xy

2(θ,w) > · · · > xy
k(θ,w) . (B.3)

Recall that in Sect. 2 we make the assumption of strict heterogeneity of slot effects (s1 >
s2 > · · · ). We specify the weak ordering in (B.3) because the number of available slots
may be less than k. However, if advertiser i receives a positive allocation then the strict
inequality xy

i > xy
i+1 holds.

From now on we will use the shorthand notation y(θ1, w1) = y1, x
y
1(θ,w) = xy

1 etc. Let
Γ be the permutation of indices such that

zΓ(1) > zΓ(2) > · · · > zΓ(k)

xz
Γ(1) > xz

Γ(2) > · · · > xz
Γ(k) .
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That is, if an advertiser has the i’th highest score w.r.t. z, he has the Γ(i)’th highest score
w.r.t. y.
We need to show that Γ can be reordered through a sequence of swaps, each of which

either satisfies the conditions of Lemma 5.2, or is a trivial swap. Let S be the set of inversions

S =
{(

Γ(i),Γ(j)
)
: i < j and Γ(i) > Γ(j)

}
.

We use the fact that Γ (and Γ−1) can be decomposed into a product of |S| adjacent trans-
positions, where each transposition resolves precisely one of the inversions in S. Applying
such a decomposition to the allocations xz , each non-trivial swap resolves some inversion(
Γ(i),Γ(j)

)
. Note that

— zΓ(i) > zΓ(j) as i < j.
— yΓ(i) < yΓ(j) as Γ(i) > Γ(j).
— ϕ(θΓ(i))wΓ(i) < ϕ(θΓ(j))wΓ(j) as (B.2) holds.
— xΓ(i) > xΓ(j) as the inversion has not been previously resolved, and the swap is non-trivial.

By the repeated application of Lemma 5.2, given an arbitrary realisation (θ,w) at which
the allocation rules xy and xy differ,

n∑

i=1

ϕ(θi)wix
y
i (θ,w) >

n∑

i=1

ϕ(θi)wix
z
i (θ,w) .

This process can be applied to all realisations, showing that R(xy) > R(xz) pointwise.
Furthermore, if xy and xz differ with positive probability then R(xy) > R(xz).

C. PROOF OF LEMMA 5.4

Lemma 5.4.. Given a reserve price r ∈ (0, θ], let

y(θi, wi) = (θi − r)+wi , (C.1)

z(θi, wi) = I{θi > r} θiwi . (C.2)

If

r 6 inf
t>r

{
t−

ϕ(t)

ϕ′(t)

}
, (C.3)

then R(xy) > R(xz).

Proof. Consider two advertisers i and j where θi > θj > r. Using the shorthand
notation ϕ(θi) = ϕi, we write the ratio of their virtual values as

ϕi

ϕj

=
θi − g(θi, θj)

θj − g(θi, θj)
,

where

g(θi, θj) =
θjϕi − θiϕj

ϕi − ϕj

. (C.4)

Note that

∂

∂k

( θi − k

θj − k

)
=

θi − θj
(θj − k)2

> 0 .

If r 6 g(θi, θj),

θi
θj

<
θi − r

θj − r
6

ϕi

ϕj

.
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In this case the following properties hold:
{
θi − r

θj − r
>

wj

wi

AND
θi
θj

<
wj

wi

}
⇒

ϕi

ϕj

>
wj

wi

, (C.5)

θi − r

θj − r
<

wj

wi

⇒
θi
θj

<
wj

wi

. (C.6)

We would like to find under what conditions r 6 g(θi, θj) for all θi > θj > r.
Denote the upper bound of the range of θi by T (possibly infinite), and consider the

infimum of g(θi, θj). We argue that this must occur either at one of the limit points as
θj → θi for some θi ∈ [r, T ], or at (θi, θj) = (T, r).
Consider the minimising value of θi given a fixed θj = t. This is either (a) at θi = T , (b)

at some θi ∈ (t, T ), or (c) at the limit as θi → t. In case (b), we must have ∂g/∂θi = 0 as g
is continuous. From (C.4) this is equivalent to

ϕ′
i =

ϕi − ϕ(t)

θi − t
,

in which case g can be rewritten as

g(θi, t) = θi −
ϕi

ϕ′
i

= lim
θj→θi

g(θi, θj) .

Thus in both cases (b) and (c), the infimum of g(θi, t) w.r.t. t is some limit point of g(θi, θj)
as θj → θi.
A similar argument can be made regarding the minimising value of θj given a fixed θi,

leading us to the conclusion that the infimum value of g(θi, θj) must occur either (i) at one
of the limit points as θj → θi or (ii) at (θi, θj) = (T, r). In case (ii)

r 6 θ ⇒ ϕ(r) 6 0 ⇒ r 6 inf
{
g(θi, θj)

}
.

In case (i), we require condition (C.3) to obtain r 6 inf
{
g(θi, θj)

}
.

Therefore, if (C.3) holds then r 6 g(θi, θj) for all θi > θj > r. Then properties (C.5) and
(C.6) imply (B.2) holds and we can invoke Lemma 5.3 to show R(xy) > R(xz). Furthermore,
as θi has continuous support over its range, the allocation rules xy and xz must differ with
positive probability, implying R(xy) > R(xz).

D. PROOF OF LEMMA 5.5

Lemma 5.5.. Let x be an allocation rule that selects a SNE of a GSP auction with the
ranking function z(b, w) = I{b > r} bw. Then R(xz) > R(x).

Proof. Given a realisation (θ,w), suppose the allocation rule x selects the SNE in which
advertiser i bids bi(θ,w). We make the following intuitive assumptions about advertisers’
bidding strategies:

(1) θi > r ⇒ r 6 bi 6 θi.
(2) xi = 0 ⇒ bi = θi.

Assumption 1 makes sense as if θi > r, then bi = r is a dominant strategy over bi < r and
bi = θi is dominant over bi > θi. Assumption 2 is a little less intuitive, but is a common
concept in auction theory — that is, any losing bidder submits the maximum bid without
exposing himself to the possibility of a loss, which is clearly a (weakly) dominant strategy
and further drives competition in the auction. Assumptions 1 and 2 imply

z(θi, wi) = 0 ⇔ z(bi, wi) = 0 . (D.1)
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Suppose there are k qualifying advertisers (θi, bi > r). Take the labelling of advertisers such
that

b1w1 > b2w2 > · · · > bkwk

x1 > x2 > · · · > xk .

Consider any realisation at which the allocation rules x and xz differ. That is, there exists
a pair of advertisers j < i such that bjwj > biwi, θjwj < θiwi, and xj > xi. From the SNE
inequalities (A.1) we have

(
θjwj −max{rwj , bj+1wj+1}

)
xj >

(
θjwj −max{rwj , bi+1wi+1}

)
xi (D.2)

(
θiwi −max{rwi, bj+1wj+1}

)
xj 6

(
θiwi −max{rwi, bi+1wi+1}

)
xi . (D.3)

Taking (D.3) away from (D.2):

(θjwj − θiwi)(xj − xi) >max
{
rwi, bi+1wi+1

}
−max

{
rwi, bj+1wj+1

}

+max
{
rwj , bj+1wj+1

}
−max

{
rwj , bi+1wi+1

}
.

As xj > xi and θjwj < θiwi, the LHS (and thus the RHS also) is negative. In the interest of
brevity, denote the four terms in the RHS by A, B, C, and D respectively. We know C > D
(as bj+1wj+1 > bi+1wi+1), thus it is necessary that A < B. This implies B = bj+1wj+1 as
A > rwi. This implies C > B, and thus it is necessary that A < D. This implies D = rwj

as A > bi+1wi+1. Now we have

RHS = max
{
rwi, bi+1wi+1

}
− bj+1wj+1 +max

{
rwj , bj+1wj+1

}
− rwj

= max
{
rwi, bi+1wi+1

}
−min

{
rwj , bj+1wj+1

}
.

For this to be negative, it is necessary that rwj > rwi and thus wj > wi. As θjwj < θiwi,
we need θj < θi. As the hazard rate f(θi)/(1− F (θi)) is non-decreasing,

1− F (θi)

f(θi)
6

1− F (θj)

f(θj)

1− F (θi)

f(θi)
wi 6

1− F (θj)

f(θj)
wj .

Taking this inequality away from θiwi > θjwj , we get ϕ(θi)wi > ϕ(θj)wj . Thus,
{
θiwi > θjwj AND biwi < bjwj

}
⇒ ϕ(θi)wi > ϕ(θj)wj . (D.4)

Note that (D.4) coupled with (D.1) closely resemble the properties (B.1) and (B.2) required
for Lemma 5.3. Indeed, one can follow the same process described in Appendix B and show
that R(xz) > R(x).


