Quantum Bootstrapping via Compressed Quantum Hamiltonian Learning
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Recent work has shown that quantum simulation is a valuable tool for learning empirical models
for quantum systems. We build upon these results by showing that a small quantum simulators can be
used to characterize and learn control models for larger devices for wide classes of physically realistic
Hamiltonians. This leads to a new application for small quantum computers: characterizing and con-
trolling larger quantum computers. Our protocol achieves this by using Bayesian inference in concert
with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simu-
lations for characterization. Whereas Fisher information analysis shows that current methods which
employ short-time evolution are suboptimal, interactive quantum learning allows us to overcome this
limitation. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an
8-qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while

using only about 750 kilobits of experimental data.

Rapid progress has been made within the last few
years towards building computationally useful devices
that promise to revolutionize the ways in which we
solve problems in chemistry and material science, data
analysis and cryptography [1-5]. Despite this, looming
challenges involving calibrating and debugging quan-
tum devices suggests another possible application for a
small scale quantum computer: building a larger quan-
tum computer. This application is increasingly relevant
as experiments push towards building fault-tolerant de-
vices [6] and demonstrating large scale verifiable quan-
tum computing protocols [7].

We develop this application by building on recent
work on quantum Hamiltonian learning (QHL) which
shows that a quantum simulator or quantum computer
can be used to exponentially reduce the cost of learn-
ing a Hamiltonian model for the system [8, 9] relative
to state of the art methods such as classical particle fil-
ters [10, 11]. Quantum Hamiltonian learning also in-
corporates prior information to reduce the number of
parameters, avoiding the exponential growth encoun-
tered by tomography-based approaches to characteriza-
tion [12]. Importantly, quantum Hamiltonian learning
has been shown to be robust to a wide variety of errors
[9], such that even in the presence of large-scale quan-
tum simulators, it remains a potentially practical algo-
rithm for characterizing large quantum systems.

A major limitation of the QHL approach suggested
in [8] is that the quantum simulator used to character-
ize the system is taken to be as large, or larger, than
the system of interest. This means that its utility is lim-
ited in cases where we would like to use it to charac-

* nawiebe@microsoft.com
* cgranade@cgranade.com

terize and control a larger quantum system. Alterna-
tive classical methods, such as the method of Da Silva et
al [13] do not suffer from this problem. However, the as-
sumptions that make classical learning practical in such
methods may render them impractical for learning con-
trol maps for poorly calibrated quantum devices, which
need not satisfy these assumptions. Furthermore, the
short time evolutions used in [13] to infer the Hamil-
tonian is shown in Appendix A to be suboptimal for
devices in which ensemble measurements are expen-
sive. A new method that overcomes the drawbacks of
both QHL and existing classical alternatives is therefore
needed before quantum control and characterization of
large quantum systems becomes a reality.

RESULTS

Our approach combines ideas from both quantum
Hamiltonian learning [8] and information locality [13] to
circumvent the limitations of each approach alone. Our
results therefore naturally lead to two distinct applica-
tions:

Compressed QHL: Learning a Hamiltonian model for a
large quantum system with rapidly decaying in-
teractions using a small quantum simulator.

Quantum bootstrapping: Designing controls for a larger
ppmng. gnng 8
quantum system with rapidly decaying interac-
tions using a small quantum simulator.

Information locality is what enables compressed QHL
and in turn quantum bootstrapping. This idea is made
concrete via Lieb—Robinson bounds, which show that an
analog of special relativity exists for local observables
evolving under Hamiltonians that have rapidly decay-
ing interactions [13-16]. Lieb-Robinson bounds give
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an effective “light cone”, as illustrated in Figure 1, in
which the evolution of an observable A can be accu-
rately simulated without needing to consider qubits out-
side the light cone. Specifically, they imply that a local
observable A(t) provides at most an exponentially small
amount of information about subsystems that are fur-
ther than distance st away from the support of A(0) =
A, where s is the Lieb-Robinson velocity for the system
and ¢ is the evolution time. Here, s is analogous to the
speed of light, and only depends on the geometry and
strengths of the interactions in the system [14-16]. Thus,
if st is bounded above by a constant and the support of
A is small then the measurement can be efficiently sim-
ulated.

We also use ideas from quantum Hamiltonian learn-
ing by swapping the quantum state of a subsystem of
the larger (uncharacterized) system into a quantum sim-
ulator and that approximately inverts the evolution by
simulating the inverse of a guess for the Hamiltonian
dynamics. One step of this process is illustrated in Fig-
ure 1. This not only leads to more informative exper-
iments but an expansion of the light cone, as repeated
applications of swaps and inverse simulations delay the
rate at which the light cone propagates from the observ-
able. This allows much longer evolution times to be
used without the observable stretching beyond the con-
fines of the trusted simulator.

In particular, this swapping procedure leads to char-
acteristic Lieb—Robinson velocities that shrink as the ex-
perimentalist learns more about the system. That is, the
light cone represents an “epistemic” speed of light in the cou-
pled systems that arises from the speed of information prop-
agation depending more strongly on the uncertainty in the
Hamiltonian than the Hamiltonian itself. Since the effective
speed of light slows as more information is learned, long
evolutions can be used when the uncertainty is small.
This removes a major restriction of [13].

We show several important analytical results involv-
ing compressed QHL. The first, and perhaps most sig-
nificant, is an upper bound on the error involved in sim-
ulating A(t) that reveals that the simulation error can be
made negligibly small at low costs in both space and ex-
perimental data for systems with exponentially decay-
ing interactions. Secondly, we provide bounds that are
potentially tighter in cases where the Hamiltonian terms
mutually commute. Finally, we show that the algorithm
is efficient if the Hamiltonian has interactions that decay
exponentially with distance and each experiment yields
a fraction of a bit of information about H.

Compressed QHL is a natural stepping stone towards
quantum bootstrapping, which uses a small quantum
simulator to design controls for a larger quantum de-
vice. This design process can then be repeated by using
the newly certified simulator to design controls for an
even larger simulator. Bootstrapping uses compressed
QHL to learn the effect of each control in isolation and
then inverts the resulting control map to find optimized
control settings for the target dynamics. We provide up-

Y

Lemmmmmmmm———

e ei e o o o \

i Untrusted Device :

‘e o e \Q o o 9/ o o o/
é Observable A

space >
Figure 1: Light cones for A(t) for a single step of an r
step protocol. The green region is the light cone after
the evolution in the untrusted device, and the blue
region is after inversion in the trusted device. The
dashed lines show the spread of A(t) due to inexact
inversion in the trusted simulator.

per bounds for the error in bootstrapping that show that
the process is efficient if compressed QHL is efficient
and the control map is invertible.

In order to show that the compressed quantum
Hamiltonian learning and bootstrapping algorithms are
scalable to large systems, we provide numerical evi-
dence that 50 qubit Ising Hamiltonians with exponen-
tially decaying interactions can be learned using an 8
qubit simulator. We further observe that only a few kilo-
bits of experimental data are needed to infer an accurate
model and that the observable, A, that is used for the
inference only needs to be supported on a small number
of qubits. Finally, we apply the compressed quantum
Hamiltonian learning algorithm to use the 8 qubit simu-
lator to bootstrap a 50 qubit quantum simulator from an
initially uncalibrated device with crosstalk on the con-
trols. The bootstrapping procedure reduces the calibra-
tion errors in a 50 qubit simulator by two orders of mag-
nitude using roughly 750 kilobits of experimental data.
This calibrated 50 qubit simulator could then be used to
bootstrap an even larger quantum device.

METHODS
Bayesian Characterization and Sequential Monte Carlo

Bayesian methods have been used in a wide range of
quantum information applications and experiments; for
instance, to discriminate [17] or estimate states [18, 19],
to incorporate models of noisy measurements [20], to
characterize drifting frequencies [21], and to estimate
Hamiltonians [10, 22-24]. Bayesian approaches to char-
acterization are well-suited for quantum information,
owing to their generality and the ease with which prior
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Figure 2: Experiment and simulator design for (left) quantum Hamiltonian learning and (right) interactive
quantum Hamiltonian learning with an un-truncated quantum simulator. For generality, we also include Sgyap in
the simulation, which models noise or imperfections in the swap gate. Here we take Sgwap = 1.

information can be incorporated into the algorithm.
Moveover, Bayesian approaches have been shown to al-
low for near-optimal Hamiltonian learning in simple an-
alytically tractable cases [10, 25].

Bayes’ theorem provides the proper way to re-assess,
or update, prior beliefs about the Hamiltonian for a sys-
tem given an experimental outcome and a distribution
describing prior beliefs. In particular,

Pr(data|H)
Pr(H|data) = Pr(data) Pr(H), 1)
where Pr(H|data) is called the posterior distribution,
Pr(H) is the prior distribution that encodes our initial
beliefs about H and where Pr(data|H) is the likelihood
function, which computes the probability that the ob-
served data would occur if the Hamiltonian H correctly
modeled the system. The likelihood function can be
estimated by sampling from a quantum simulator for
the Hamiltonian H and thus Bayesian inference causes
Hamiltonian learning to reduce to a Hamiltonian simu-
lation problem [8-10, 25].

Once the posterior distribution is found, estimates H
of the Hamiltonian can be produced by considering the
expectation over the posterior,

A := E[H|data] :/HPr(H|data) dH. ()

This integral is unlikely to be analytically tractable in
practice, as it requires integrating the likelihood func-
tion Pr(data|H) over H. Monte Carlo integration, on the
other hand, can be much more practical.

The sequential Monte Carlo algorithm (also known as
a particle filter) provides a means of sampling from an
inaccessible distribution using a transition kernel from

some initial distribution [26]. We can sample from the
posterior by using Bayes’ rule as the SMC transition ker-
nel, given samples from a prior distribution and evalu-
ations of the likelihood function. These samples then
allow us to approximate integrals over the posterior, such
as H. SMC has seen use in a range of quantum infor-
mation tasks, including state estimation [19], frequency
and Hamiltonian learning [10], benchmarking quantum
operations [27], and in characterizing superconducting
device environments [11].

Hamiltonians are not usually represented explicitly as
matrices when using SMC algorithms, but are instead
often parameterized by a vector x of model parameters
such that H = H(x). This representation allows for pa-
rameter reduction with prior information and can in-
clude effects outside of a purely quantum formalism,
such as control distortions or stochastic fluctuations in
measurement visibility. It also has the advantage that
Hamiltonian learning is possible even in cases where
matrix representations of individual terms in the Hamil-
tonian are not formally known.

Concretely, the SMC algorithm approximates prior
and posterior distributions by weighted sums of delta-
functions,

M=

Il
—_

Pr(x) = ) wé(x —x;), 3)

1
such that the current state of knowledge can be tracked
online using a classical computer to record a list of parti-
cles, each corresponding to a hypothesis x;, and having a
relative weights {w;}. These weights are then updated
by substituting the SMC approximation (3) into Bayes’
rule (1) to obtain

w; — w; Pr(d|x;), 4)



where d is an observation from the experimental system.

Over time, the particle weights for the majority of the
particles will diminish as the SMC algorithm becomes
more confident that certain hypotheses are wrong. This
reduces the total effective number of particles in the
posterior distribution and ultimately prevents learning.
This issue is addressed by using a resampling algorithm,
which draws a new set of uniformly weighted SMC par-
ticles that approximately maintain the mean and covari-
ance matrix of the posterior distribution [28].

Quantum Hamiltonian Learning

Quantum Hamiltonian learning (QHL) builds upon
SMC by introducing weak simulation, in which the ex-
perimentalist has access to a “black box” that produces
data according to an input hypothesis x. By repeatedly
sampling this black box for each SMC hypothesis, the
likelihood can be inferred from the frequencies of data
output by the black-box simulator [29]. In this way,
QHL is a semi—quantum algorithm when augmented
with strong measurement of a quantum simulation de-
vice [8]. This augmented procedure is robust to errors in
the likelihood function introduced by finite sampling of
the black box and to approximation errors in the Hamil-
tonians used [9]. This latter property is of particular im-
portance, as it allows us to use as an approximate simu-
lator a truncation of the complete system.

The simplest experimental design proposed for QHL
is quantum likelihood evaluation (QLE), in which the
experimenter prepares a state [i) on the untrusted sys-
tem, evolve under the “true” Hamiltonian H(xj) for
some time t, and then measures {|¢)(¢|, 1 — [p) |} on
the trusted simulator. This experiment is then repeated
for each SMC hypothesis x; until the variance in the esti-
mated likelihood becomes sufficiently small. The exper-
iment design is illustrated in Figure 2. QLE can be ef-
fective for learning Hamiltonians, though it suffers from
the fact that the evolution times used by the experiments
must be small for most Hamiltonians. In the case of
QLE, long evolution times result for typical Hamilto-
nians (such as Gaussian random Hamiltonians [30, 31])
produce a distribution that is very close to uniform over
measurement outcomes, such that experiments provide
an exponentially small amount of information about the
parameters. The update step in the SMC algorithm be-
comes unstable under in such cases [9] which neces-
sitates using short, and in turn uninformative, experi-
ments (see Appendix A).

To use the long evolution times requisite for expedi-
ent high-accuracy characterization the system of inter-
est can be coupled to the simulator using SWAP gates, as
shown in Figure 2. This experiment design, interactive
quantum likelihood evaluation (IQLE), uses the simula-
tor to approximately invert the forward evolution under
the unknown system, such that the measurement is ap-
proximately described by H(xy) — H(x_) provided we

4

choose an inversion hypothesis H(x_) that is close to
H(xp). Intuitively, such experiments directly compare
the dynamics of H(x) and H(x_). Such experiments
also reduce the norm of the effective system Hamilto-
nian, which typically allows the system to evolve for
much longer before the quantum probability distribu-
tion becomes flat.

In order to combat the exponentially diminishing like-
lihood of the system returning to its initial state after the
inversion, we require that |H(x) — H(x_)||t is approx-
imately constant [8]. We use the particle guess heuris-
tic (PGH) to achieve this. The PGH involves drawing
two hypotheses about H, x_ and x’_, from the prior dis-
tribution and then choosing + = 1/||H(x_) — H(x")||.
Since ||H(x—) — H(x")| is an estimate of the uncer-
tainty in the Hamiltonian, we expect that at most a
constant fraction of the prior distribution will satisfy
|[H(x-) — H(x)||t > 1 assuming H(x) is linear and the
prior distribution has converged to a unimodal distribu-
tion centered about the true Hamiltonian. The heuris-
tic therefore seldom leads to experiments for which
| (1| B )te=iH@)E 1) 12 ~ 1/2" for most x. Also since
the PGH relies only on the current SMC approximation
to the posterior, and thus incurs no additional simula-
tion costs. It is furthermore an adaptive method since
the distribution for x_ and x”_ depends on the current
state of knowledge about the quantum system. Exper-
iment design via the particle guess heuristic has been
shown to enable the efficient estimation of Hamiltoni-
ans using IQLE [8], and has since been usefully applied
in other experimental contexts [11].

Previous work has analyzed the complexity of learn-
ing using IQLE [8]. In cases where the error in the char-
acterized Hamiltonian scales as e~ "New and Nsamp sam-
ples are used to estimate the likelihood function, the
protocol requires O(Nsamp Nparticles 10g(1/6) /) simula-
tions to learn the Hamiltonian to within error 4. In prac-
tice, the decay constant oy depends on the number of pa-
rameters used to describe H and the properties of the
experiments used. It does not directly depend on the
dimension of H [8, 9]. The updating procedure used to
combine these results is further known to be stable pro-
vided that the likelihoods of the observed experimental
outcomes are not exponentially small for the majority of
the SMC particles [8]. This occurs for well posed learn-
ing problems that use two outcome experiments.

Learning Commuting Hamiltonians

We begin by considering the special case that all terms
in the unknown system’s Hamiltonian are local and mu-
tually commute. This is true, for instance, in the Ising
models (21) that we consider in numeric examples. In
this case, compressed IQLE is particularly simple to an-
alyze; we discuss the more general case later.

Consider an observable A that has support on a sites
in a graph to analyze the error introduced by the com-
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Figure 3: Separation of Hint = Hintna + Hinp 4 where
Hintn 4 are interactions with qubits in the support of A
(red solid box) and Hip\ 4 interacts with qubits that are

swapped into the trusted simulator but are outside A
(blue dashed box).

pressed simulation, and expand the Hamiltonian of the
system as

H = Hint + Hin + Hout

= Hintna + Hinp\a + Hin + Hout, ©)
where Hyyt represents all terms that do not interact
with the subsystems in the trusted simulator, Hiny =
Hintna + Hipp\ 4 is the sum of all interactions between
these subsystems and the simulated subsystems, and
where Hj, represents the internal dynamics common to
both the simulator and the larger system. The decompo-
sition of the interaction Hamiltonian Hj,t into couplings
that include and exclude A is illustrated in Figure 3.

If we work in the Heisenberg picture then it is easy
to see from the assumption that the Hamiltonian terms
commute with each other (but not necessarily A) that
[Hinp\ 4 + Hout, A(t)] = 0. This implies that

A(t) — eiHinteiHintﬂAtAefiHintefiHintﬂAt
A(t) = Mol AgHint, (6)

where A(t) is the simulated observable within the
trusted simulator.

Using Hadamard’s Lemma and the triangle inequal-
ity to bound the truncation error || A(t) — A(t)]|, we ob-
tain that

IA(H) = AB)]| < [|Al|(Hmnallt 1) )

Thus, if we can tolerate an error of § in the simulation
then it suffices to choose experiments with evolution
time at most

) -1
t<In <||A|+1> (2||HinthH) : ®)

If the sum of the magnitudes of the interaction terms
that are neglected in the simulation is a constant then (8)
shows that ¢ scales at most linearly in § as 6 — 0. This is
potentially problematic because short experiments can
provide much less information than longer experiments
so it may be desirable to increase the size of the trusted
simulator as 6 shrinks to reduce the experimental time
needed to bootstrap the system. QHL is robust to ¢ [, 9]

and ¢ ~ 0.01 often suffices for the inference procedure
to proceed without noticeable degradation.

Note that if Hiy¢n 4 = 0 then infinite-time simulations
are possible for commuting models (such as Ising Mod-
els) because no truncation error is incurred. Non-trivial
cases for bootstrapping therefore only occur in commut-
ing models with long range interactions.

As particular examples, if we assume that the Hamil-
tonian is an Ising model on a line of length ¢ with non-
nearest neighbor couplings between sites i and j that

scale at most as be~*li=/l, A is supported on a sites and
the trusted simulator can simulate w sites then

w—a

[Hinenal ™t > (1 — e %)el "2 /ab. )

It therefore suffices to take w — a logarithmic in ¢ to guar-
antee error of ¢ for any fixed ¢. Similarly, if we assume
the interaction strength between sites i and j is at most
b/li — j|* for & > 1 then

(7 + V)" —1)

| Hinenal ™' > pr”

(10)
Picking w —a € O(t!/%) guarantees fixed error ¢ for
experimental time ¢. These scalings are justified in Ap-
pendix D.

Learning Non-commuting Hamiltonians

If the Hamiltonian contains non-commuting terms
then the factorization of e *H! used in (7) no longer
holds. This occurs because

ei(Hin+Hint+Hout) Ae*i(HinJFHintJrHout)

+ ¢l (HintHint) A =(HintHint) (11)

unlike in commuting models. A further issue arises
from the fact that such dynamics can rapidly lead to
observables, A(t), that have non-trivial support on the
edge of the trusted simulator. The trusted system will
not tend to simulate these evolutions accurately because
significant interactions exist between A(f) and the ne-
glected portion of the system. This means a more care-
ful argument will be needed to show that bootstrapping
will also be successful here.

We address this issue by generalizing IQLE experi-
ments. Typically each IQLE experiment is of the form
etH-tSe~iH! where S is a swap operation and H_ is a
Hamiltonian simulated by the trusted simulator. In-
stead of swapping the states of both devices once,
we generalize such experiments to consist of r swaps:
(eH-t/rge=1HI/ T before measuring A. It is then easy
to see from the Trotter formula that e/f-t/7e~/H!/r ~
e~ IH=H)t/7 This serves two purposes. Firstly, it causes
the terms in the Hamiltonian to effectively commute
with each other for r sufficiently large. Secondly, if ¢ is
small relative to ||[H — H_|| ! then r swaps of the two



registers will not cause the A(t) to have substantial sup-
port on the boundary of the trusted simulator at any
step in the protocol.

If a large value of r is chosen, then the system ef-
J

- i’2
1AC) = ABI < ({Hin, Alll + [[[Hine, Hin] DI Al = + 2[| Hiney all[| Al

6

fectively evolves under e i(H—H-)t — p=i(HoutHin+A)t
where A := Hj, — H_. We expect that the dynamics of A
will therefore be dictated by the properties of A for short
evolutions. We make this intuition precise by showing
that the error from using a small trusted simulator obeys

(12)

2] Hig, o [ Al { A}t How) [0 _ 1] 21t a1,

for cases of nearest-neighbor or exponentially decaying
interactions between subsystems. Here s is the Lieb—
Robinson velocity for evolutions under A and y is re-
lated to the rate at which interactions decay with the
graph distance between subsystems. It is worth noting
that (12) can be improved by using higher order Trotter—
Suzuki formulas in place of the basic Trotter formula to
reduce r [32] and also by using tighter bounds for cases
with nearest-neighbor Hamiltonians.

The variable A is related through the particle guess
heuristic to the uncertainty in the Hamiltonian, which
implies that the speed of information propagation is also
a function of the uncertainty in H [14, 15]. Thatis, longer
evolutions can be taken as H becomes known with ever
greater certainty. This means that the Lieb-Robinson
velocity does not pose a fundamental restriction on the
evolution times permitted because s — 0 as A — 0.

Of course, the error term 2||Hinenal|t in (12) does
place a limitation on the evolution time but that term can
be suppressed exponentially by increasing the diameter
of the set of qubits in the trusted simulator for systems
with interactions that decay at least exponentially with
distance. Thus the roadblocks facing compressed QHL
can be addressed at modest cost by using our strategy of
repeatedly swapping the subsystems in the trusted and
untrusted devices.

As an example, if we assume (a) that the interactions
are between qubits on a line (b) that w — a is chosen such
that 8st/p < w — a then in the limitas r — oo

o
t < ,
= 20| Al (I Hingy all+2[1 Hige, all [{A e /4)
(13)
suffices to guarantee simulation error of 4. This result is
qualitatively similar to the commuting case in (8).

Note that if the swap gates also have miscalibration
errors of A then there is a maximum value of 7 that can
be used before the contributions of such errors become
dominant. A simple inductive argument shows that
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suffices to guarantee that such errors sum to at most .
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Figure 4: Scanning procedure for 7 qubits, a 4 qubit
simulator and a 2 qubit observable. Blue (dashed) box
is support of simulator, red (solid) box is support of A.

This shows that the protocol is only modestly sensitive
to such errors.

Scanning

The previous methods provide a method for charac-
terizing a subsystem of the global Hamiltonian. These
results cannot be used directly to learn the full system
Hamiltonian because the trusted simulator lacks cou-
plings present in the full system. Instead the Hamilto-
nian must be inferred by patching together the results
of many inferred Hamiltonians. This process can be
thought of as a scanning procedure wherein an observ-
able is moved across the set of qubits collecting informa-
tion about the couplings that strongly influence it. The
scanning procedure is illustrated in Figure 4.

In order to properly update the information about the
system we use two SMC particle clouds. The first is the
global cloud, which keeps track of the prior distribution
over all the parameters in the Hamiltonian model. The
second is the local cloud, which keeps track of all of the
parameters needed for the current compressed QHL ex-
periment. The global cloud is constrained such that the



weights of each particle in the cloud is constant (i.e. the
probability density is represented by the density of par-
ticles rather than their weight), whereas the local cloud
is not constrained in this fashion. This constraint on
the global cloud is needed because resampling does not
in general preserve the indices of each particle, so that
there is no way to sensibly identify a global particle that
corresponds to a particle in the local posterior.

Instead, by copying a subset of global parameters into
the local cloud, we approximate the prior by a product
distribution between the local and remaining parame-
ters. Resampling the local posterior then makes this ap-
proximation again, ensuring that the local weights are
uniform. Thus, we can copy the (newly resampled) lo-
cal cloud into the global cloud, overwriting the corre-
sponding parameters. Once the local cloud is merged
back into the global cloud in this way, we begin the next
step in the scan by selecting a different set of param-
eters for the local cloud, and continuing with the next
compressed QHL experiment.

We implement this scanning procedure in our numer-
ical experiments by using a local observable centered
as far left on the spin chain as possible. We then infer
the Hamiltonian for this location using a fixed number
of experiments, swap the Hamiltonian parameters from
each of the SMC particles to the global cloud and then
move the observable one site to the right. This process is
repeated until the observable has scanned over the en-
tire chain of qubits, and then we begin again by scan-
ning over the first 2a qubits in reverse, where a is the
width of the observable. We do this to reduce the sys-
tematic bias that emerges from the fact that Hamiltonian
parameters associated with couplings learned earlier in
the procedure will have greater uncertainty.

Learning Controls

Having shown a procedure for learning Hamiltonians
using compressed quantum simulators, we now apply
our algorithm to infer the map from control settings to
applied control Hamiltonians. This is of particular im-
portance, for instance, if cross-talk or defects cause dif-
ferent parts of the system to respond differently to the
same controls. In such cases, Hamiltonian characteriza-
tion is a necessary part of the control design process.

To show how quantum Hamiltonian learning can ad-
dress this challenge, we consider a model in which a
row-vector of control settings C is related to the system
Hamiltonian by an affine map H(C),

H(C)=C-[Hy,...,Hyu]+ Hy (15)
for some M + 1 unknown Hamiltonians {Hy, ..., Hy}.
By the same argument as before, let H; = H(x;) be rep-
resented by a model parameter vector, such that this is
an efficient representation of the control landscape.

The control learning process then proceeds as follows:

(a) Set C = 0 and learn Hy using compressed QHL.

(b) For k = 1,...,M set C; = ;) and learn Hy +
Hy using the compressed quantum Hamiltonian
learning procedure above.

(c) Subtract Hy from these values to learn the vector
vy that describes the model for Hy.

This yields a vector of Hamiltonian parameters that de-
scribes each control term Hy. If we then imagine the ma-
trix G such that Gy; = [4]; then a model for H(C) is

given by GCT, which allows the effect of control on the
quantum system of interest to be predicted.

Non-linear controls can be learned in a similar fash-
ion by locally approximating the control function with a
piecewise-linear function.

Bootstrapping

We complete our description of quantum bootstrap-
ping by detailing how control learning can be used
to calibrate an initially untrusted device. That is, we
use knowledge of the control landscape to find con-
trol settings that allow the system to act as a larger
trusted simulator. This larger device is then used in
subsequent rounds of bootstrapping to calibrate an even
larger quantum device.

If H(C) is an affine map then this can be accomplished
using the following approach:

(a) Learn H(C) using the above method.

(b) Choose a set of fundamental Hamiltonian terms,
H;, from which all Hamiltonians in the class of in-
terest can then be generated.

(c) For each H; apply the Moore-Penrose pseudoin-
verse of G to H; — Hp to find C; such H(C;) ~ H,.

(d) Treat the system as a trusted simulator and repeat
steps (a), (b) and (c) for a larger system.

In cases where Hy = 0, H(C) is linear and hence
H(aC1 + bCz) = aHq + bHy. This means that an arbi-
trary Hamiltonian formed from a linear combination of
the H; can be implemented. If Hy # 0 then this process
is less straight forward. It can be solved by applying a
pseudoinverse to find C that produces a1 + bH,, but
such controls will be specific to a and b. A simple way
to construct a general control sequence is to use Trotter—
Suzuki formulas to approximate the dynamics in terms
of 7‘[1 = H(Cl) and 7‘[2 = H(Cz) as

R
(16)
Higher—order Trotter-Suzuki methods can be used to re-
duce the value of R if desired [32].

2
(e—i’HluAt/Re—i"szAt/R>R:e—i(aH1+bH2)At+O At
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Figure 5: Error in QHL for a = 4 with varying Nexp per
scan. Data consistent with e~ *0Nex scaling.

It is also important to note that the bootstrapped sim-
ulator need not have as many controls as the simula-
tor that is used to certify it. This does not necessarily
mean that the controls in the bootstrapped device are
less rich than that of the trusted simulator. If we assume,
for example, that a general Ising is used to bootstrap
an Ising simulator with only nearest neighbor couplings
(and universal single qubit control) then more general
couplings terms can be simulated using two body in-
teractions. For example, next-nearest neighbor interac-
tions can be simulated using nearest neighbor couplings
and single qubit control via:

27D LRZAL

e 2iZQ1QZAL |¢>+O(At3)

_ e—iZ@X®]1Ate—i]1®Y®ZAteiZ®X®]lAtei]l®Y®ZAt ‘¢> ,
(17)

where the middle qubit in |¢) is set to |0). Higher—order
and parallel methods for engineering such interactions
are given in [33, 34].

Error Propagation in Bootstrapping

Let G be the control map that is inferred via the inver-
sion method discussed above and let G + £ be the actual
control map that the system performs. If we measure
the error in a single step of bootstrapping to be the op-
erator norm of the difference between the bootstrapped
and the target Hamiltonians then we have that the con-
trol error for the system after bootstrapping obeys

(G +E)GTHx—Hyll < (IGGT — 1|+ [[£€]] ||G+||)H2Lll§|)|
where G is the pseudo-inverse of G. Eq. (18) shows
that the error after a single step is a multiple of the
norm of the control Hamiltonian that depends not only

a|75™ percentile[Median error [25™ percentile
6 0.0043 0.0029 0.0014
4 0.0029 0.0018 0.0014
2 0.0252 0.0234 0.0225

Table I: |x — Xgrue|2 for QHL using different number of
qubits for the observable at 500 experiments/scan.

on the error in the compressed QHL algorithm but also
on ||GGT — 1| which measures the invertibility of the
control map. Since the error is a multiplicative factor, it
should not come as a surprise that the error after L boot-
strapping steps grows at worst exponentially with L. In
particular, the bootstrapping error is at most

Ll"maxe(L_l)(Kmax—l'f‘HEmaXHHGrJrrlaxH) max HHkH/ (19)
k

where T'max is the maximum value of (|GGt — 1| +
IEINIGT|) over all the L bootstrapping steps, kmax is the
maximum condition number for G, ||Emax|| and ||Ga. |
are the maximum values for the error operator and the
pseudoinverse of G over all L steps. The proof of (19) is
a straight forward application of the triangle inequality
and is provided in the appendix for completeness.

Given that the error tolerance in the bootstrapping
procedure is A < 1, G is invertible and that w, a and
t are chosen such that ||Emax|| < e~ "New (i.e. a constant
fraction of a bit is learned per experiment) it is easy to
see that (19) is less than A if

L— 1+ In (L Lmax(maxc 1)
Nexp 2

20
5 (20)
This process is then clearly efficient provided « is at
most polynomially small. If G is not invertible then the
error cannot generally be made less than A for all A > 0.

It is difficult to say in general when the conditions
underlying (20) will be met. This is because it is al-
ways possible for experiments to be chosen that pro-
vide virtually no information about the system. For
example, the observable could be chosen to commute
with the dynamics. No information can be learned from
the measurement statistics in such cases. Great experi-
mental care must be taken in order to ensure that such
pathological cases do not emerge [9]. However, we will
see that these pathological experiments can be avoided
Ising models with exponential decaying interactions in
the following section and expect exponential decay of
||Emax || to be common for a wide range of models based
on previous studies [8-10].

NUMERICAL RESULTS
Compressed Quantum Hamiltonian Learning

Since quantum devices capable of implementing our
bootstrapping protocol do not yet exist, we examine
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Figure 6: Distribution of errors for each of the 49 Hamiltonian terms in the bootstrapped Hamiltonian for a 50 qubit
Ising model using (left) 100 (right) 200 and (bottom left) 300 IQLE experiments per scan.

systems that can be simulated efficiently using classical
computers in order to demonstrate that our algorithm
applies to large systems. Thus, we focus on the exam-
ple of an Ising model on a linear chain of qubits, with
exponentially decaying interactions,

H(x) = in,jﬂz(l)lfz(]), (21)
i#]

where the parameters x;; are distributed according to
x;,; ~ unif(0, 1)10-2(i=/1=1) _In all cases, the observable
used is A = (|+)(+])®* for a = {2,4,6}, as this ob-
servable is maximally informative for Ising models. For
more general models, a pseudorandom input state and
observable can be used instead [9].

Compressed QHL on the full 50-qubit system then
gives a (520) = 1225 parameter estimation problem. In
order to ensure classical simulatability, we cap the max-
imum value of ¢ allowed to satisfy (8) with § = 0.01.
Previous studies, show that errors on this scale lead to a
negligible shift in the speed with which the algorithm
learns the Hamiltonian [9]. Also, all experiments are
performed with a 20,000 particle SMC approximation
to the prior distribution, and the Liu-West resampling
algorithm is used [28], also described in [10]. We also

use the open-source implementation of SMC provided
by the QlInfer, SciPy and fht libraries [35-37].

Figure 5 shows that a compressed quantum simula-
tor using only 8 quantum bits is capable of learning a
Hamiltonian model for a system with 50 qubits. The er-
rors, as measured by the norm of difference between the
actual Hamiltonian and the inferred Hamiltonian, are
typically on the order of 10~ after as few as 300 exper-
iments per scan where 49 scans are used in total. This
is especially impressive after noting that this constitutes
roughly 750 kilobits of data and that this error of 1072 is
spread over 1225 terms. The data also shows evidence
of exponential decay of the error, which is expected from
prior studies [8, 9].

An important difference between this result and [8, 9]
is that the observable will need to be, in some cases,
substantially smaller than the simulator. Choosing a
small observable is potentially problematic because it
becomes more likely that an erroneous outcome will be
indistinguishable from the initial state. Also, if a is too
small then important long-range couplings can be over-
looked because their effect becomes hard to distinguish
from local interactions. We find in Table I that the cases
where a = 4 and a = 6 are virtually indistinguishable
whereas the median errors are substantially larger for



a = 2, but not substantially worse than a = 4 for 200
experiments/scan. This provides evidence that small a
can suffice for Hamiltonian learning.

Quantum Bootstrapping

The next set of results build upon the previous results
by showing that compressed QHL can be used to boot-
strap a quantum simulator for a 50 qubit 1D Ising model.
The bootstrapping problem that we consider can be
thought of as addressing crosstalk in the large simulator.
This crosstalk manifests itself in the fact that when the
experimentalist attempts to turn on only one of the Ising
couplings in the simulator, all 1225 interactions are also
activated. We further assume that the 50 qubit simulator
only has 49 controls corresponding to each of the near-
est neighbor interactions. This means that a perfect con-
trol sequence will generally not exist because 49 < 1225.
The control Hamiltonians [Hjy, ..., Hy] in (15) conform
to (21) with x;; ~ 105,30, ;_1 + unif(0,1)10~2(i=/I=1).
We also take Hy = 0.

Figure 6 reveals that our bootstrapping procedure re-
duces control errors by two orders of magnitude in cases
where 300 experiments/scan are used in the QHL step.
Further reductions could be achieved by increasing the
number of experiments/scan, but at 300 scans much of
the error arises from |GG — 1|| # 0 so a richer set
of controls in the 50 qubit system would be needed to
substantially reduce the residual control errors. The er-
rors are sufficiently small, however, that it is reason-
able that the device could be used as a trusted simulator
for nearest-neighbor Ising models. This means that it
could be subsequently used to bootstrap another quan-
tum simulator.

CONCLUSION

We show that small quantum simulators can be used
to characterize and calibrate larger devices, thus pro-
viding a way to bootstrap to capabilities beyond what
can be implemented classically. In particular, we pro-
vide a compressed quantum Hamiltonian learning al-
gorithm that can infer Hamiltonians for systems with
local or rapidly decaying interactions. The compressed
algorithm is feasible because of the fact that local ob-
servables remain confined to light cones. Typically these
light cones spread at a velocity that is dictated by the
Hamiltonian; whereas it spreads at a speed that de-
pends on the uncertainty in the Hamiltonian in com-
pressed QHL. This not only allows more informative ex-
periments to be chosen but also shows that an epistemic
speed of light can exist in systems that interact with an
intelligent agent.
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We then show that this algorithm provides the tools
necessary to bootstrap a quantum system; wherein a
small simulator to learn controls that correct Hamilto-
nian errors and uncertainties present in a larger quan-
tum device. This protocol is useful, for instance, in
calibrating control designs to deal with cross-talk, un-
certainties in coupling strengths and other effects that
cause the controls to act differently on the quantum sys-
tem than the designed behavior.

Our approaches, being based on quantum Hamilto-
nian learning, inherit the same noise and sample error
robustness observed in that algorithm [8, 9]. We have
provided numerical evidence that our techniques ap-
ply to systems with as many as 50 qubits, can further
tolerate low precision observables, and are surprisingly
efficient. Thus, our quantum bootstrapping algorithm
provides a potentially scalable technique for application
in even large quantum devices, and in experimentally-
reasonable contexts. Our work therefore provides a crit-
ical resource for building practical quantum information
processing devices and computationally useful quan-
tum simulators.

There are several natural extensions to our work.
Firstly, we have not investigated how to calibrate the
SWAP used to interact the trusted simulator with the un-
trusted device. Although previous work showed that
QHL is robust to such errors [9], they can be substan-
tially larger in bootstrapping experiments because mul-
tiple rounds of SWAP gates are used to mitigate trun-
cation errors and also such gates might not be im-
plemented with a single Hamiltonian. Thus calibrat-
ing those controls may fall outside the purview of our
Hamiltonian learning methods. Finally, while we have
focused on the case of time-independent quantum con-
trols and Hamiltonians, our approaches can be gener-
alized to the time dependent case using more general
Lieb—Robinson bounds [38]. This is significant because
techniques such [13] do not apply for H(t).

As a final remark, our work partially provides an im-
portant step towards the calibration and control of large
quantum devices, by utilizing epistemic light cones to
compress the simulation, thus enabling the application
of small quantum devices as a resource. In doing so, our
approach also provides a platform for building tractable
solutions to more complicated design problems by the
application of quantum simulation algorithms and char-
acterization techniques.
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Appendix A: Fisher Information for Hamiltonian Learning

In the main body, we stated that short-time experiments typically do not lead to good estimates of the Hamiltonian
parameters. Here, we justify this claim here by computing the Fisher information, which allows us to estimate the
scaling of the Cramér-Rao bound, which lower bounds the expected variance of any unbiased estimator of the
Hamiltonian parameters. In particular, the Fisher information matrix can be written for a Hamiltonian H = H(x)

and measurement in a basis {|1),...,|D)} as

I(H) := E4[V InPr(d|H)VT InPr(d|H)], (A1)

where d is a random variable representing the outcome of the measurement.


http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.050505
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.050505
http://dx.doi.org/10.1146/annurev-physchem-032210-103512
http://dx.doi.org/10.1146/annurev-physchem-032210-103512
http://arxiv.org/abs/1403.1539
http://epubs.siam.org/doi/abs/10.1137/S0097539795293172
http://dl.acm.org/citation.cfm?id=2535649.2535654
http://dl.acm.org/citation.cfm?id=2535649.2535654
http://www.nature.com/ncomms/2014/140624/ncomms5015/full/ncomms5015.html
http://www.nature.com/ncomms/2014/140624/ncomms5015/full/ncomms5015.html
http://www.sciencemag.org/content/335/6066/303
http://dx.doi.org/ 10.1103/PhysRevLett.112.190501
http://dx.doi.org/ 10.1103/PhysRevLett.112.190501
http://dx.doi.org/ 10.1103/PhysRevA.89.042314
http://dx.doi.org/ 10.1103/PhysRevA.89.042314
http://dx.doi.org/ 10.1088/1367-2630/14/10/103013
http://dx.doi.org/ 10.1088/1367-2630/14/10/103013
https://scirate.com/arxiv/1407.5631
http://dx.doi.org/10.1016/S0375-9601(00)00660-5
http://dx.doi.org/10.1016/S0375-9601(00)00660-5
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://arxiv.org/abs/math-ph/0507008
http://arxiv.org/abs/math-ph/0507008
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1007/s00220-006-1556-1
http://arxiv.org/abs/1008.5137
http://www.nature.com/nphoton/journal/v7/n2/full/nphoton.2012.316.html
http://dx.doi.org/10.1088/1367-2630/12/4/043034
http://dx.doi.org/10.1103/PhysRevA.85.052120
http://dx.doi.org/10.1103/PhysRevA.85.052120
http://arxiv.org/abs/1201.1493
http://arxiv.org/abs/1201.1493
http://arxiv.org/abs/1405.0485
http://dx.doi.org/10.1103/PhysRevA.84.052315
http://dx.doi.org/10.1109/ISCCSP.2010.5463437
http://dx.doi.org/10.1109/ISCCSP.2010.5463437
http://dx.doi.org/10.1109/ISCCSP.2010.5463437
http://dx.doi.org/10.1103/PhysRevA.80.022333
http://dx.doi.org/10.1103/PhysRevA.80.022333
http://link.springer.com/article/10.1007/s11128-012-0407-6
http://link.springer.com/article/10.1007/s11128-012-0407-6
https://scirate.com/arxiv/1404.5275
https://scirate.com/arxiv/1404.5275
http://ftp.stat.duke.edu/WorkingPapers/99-14.html
http://ftp.stat.duke.edu/WorkingPapers/99-14.html
http://dx.doi.org/10.1103/PhysRevLett.112.130402
http://dx.doi.org/10.1103/PhysRevLett.112.130402
http://dx.doi.org/10.1103/PhysRevLett.111.080403
http://dx.doi.org/10.1103/PhysRevLett.111.080403
http://arxiv.org/abs/1306.3995
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1103/PhysRevLett.108.140502
http://dx.doi.org/10.1103/PhysRevLett.108.140502
http://dx.doi.org/10.1063/1.4811386
http://dx.doi.org/10.1063/1.4811386
https://github.com/csferrie/python-qinfer
https://github.com/csferrie/python-qinfer
http://www.scipy.org/
http://www.scipy.org/
https://github.com/nbarbey/fht
http://link.springer.com/chapter/10.1007/978-3-319-06379-9_17
http://link.springer.com/chapter/10.1007/978-3-319-06379-9_17
http://projecteuclid.org/euclid.bj/1186078362
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1088/0305-4470/23/24/019

12

Applying the chain rule and writing out the expectation value gives that

0, Pr(d|H)ox Pr(d|H)
Pr(d|H)

Lj(H) = Y,

de{1,..,D}

(A2)
By Born’s rule, if we let U be the time—evolution operator for the experiment and define the initial state to be |0) that

Pr(d|H) = | (d|U0) |* = (0| U" |d){d| U |0). (A3)
We then have that
Ay, Pr(d|H) = (0| 9y, U™ |d)(d| U |0) + (0| U™ |d) (d] 9, L |0) . (A4)
Upon substituting back into (A2), this yields
(0] 9, U™ |d){d| U |0) (0] 8, U™ |d) {d| U ]0) + (0] 9, U* [d) {d| UL |0) (0] U" |d)(d| U |0)

L (H) =
) =2, (O U 4) (22, 0]
(0[U" |d){d] 9, U |0) (0] 2, U™ |} (d| UL |0) + (0] U™ |d) (d| 9, U [0) O] " |d) {d| 9, LI [0)
a (ojut|d){d| u|o)
d|u'|o) (o[u|d)
a*d8+d<7 a5 U |d) (0] 0y, Ul |d) 71—t
+ (0] 95, UT |d) (0] 9, U |d) + (0] 9, U |d) (0] 9, U™ |d) . (A5)
d
It is then straight forward to see that there exists ¢, such that for every d
(0| U |d) = ' (d| U |0). (A6)
Furthermore from differentiating UUT = 1 and using the fact that U is unitary, it is clear that for || - || the induced
2-norm,
lox, U™l = [lox, U]l (A7)

Seeking an upper bound on the Fisher information, we use the Cauchy-Schwarz inequality to show that

d

ZM%Wwwmﬂ%%®S¢Z®%WWW@MWWZ®MMWWW%WYW (A8)
d d

Using the resolution of unity and the fact that ||At|| = || A|| for the 2-norm, we find from (A8) and (A7) that

3 (0] 0, U™ |d) (0] 9x,UTe 4 |d) < [|o, U] [|0x, U] (A9)
d

The triangle inequality and equations (A9) and (A5) then imply that
Iij(H) < 4flox U [lox U]. (A10)

An experiment for either the case where an inversion step is employed or the case where only forward evolution

is used can be written using the unitary U = e'f-fe~/H*, where H_ = 0 for the inversion—free case. Regardless, H_
is explicitly independent of the parameters {x,} of H; therefore since U is unitary,

19, Ull = [le™-19x, e || = [[ox, e ] (A11)

Using the definition of the parametric derivative of an operator exponential, we find using the triangle inequality
that

) 1 ) ‘
||axpe—th|| = H/O 6(1’7)(7”7”)(—itapo)eT(*’Ht)dT

<l ]t (A12)
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This leads us to the conclusion that
lij(H) < 4]0 H][[[ox,H]| (A13)
The Cramér-Rao bound then states that, for any unbiased estimator @ of the Hamiltonian parameters,
Egata[Cov(%)] — I"'(x) >0, (A14)

where the expectation value is taken over all data records, here taken to be measurements of d € {1,...,D}. Tracing
both sides of the inequality immediately implies that the mean error incurred by any unbiased estimator of the
Hamiltonian parameters scales with Tr[I(H) '] € Q(t2).

We also consider the Bayesian Cramér-Rao bound [39-41], which bounds the performance of biased estimators by
taking the expectation of the Cramér-Rao bound over a prior 7,

Exre[Edata[Cov(2)]] — Bxwre [T (H(x))] > 0. (A15)

Here, we note that the * scaling obtained in (A13) is independent of x, it factors out of the expectation over Hamil-
tonian parameters, such that the Bayesian Cramér-Rao bound is also Q(t~2) by the same argument, such that even
biased estimators require evolution time that is inversely linear in the desired standard deviation.

This implies that as t — 0 the lower bound on the variance of the optimal estimator for x diverges, implying that
the experiments become uninformative for the small values of time required for existing Hamiltonian identification
methods to succeed. Also, since the cost of performing an experiment becomes dominated by the time required to
prepare the initial state for small ¢, it is clear that the reduced cost of short-time experiments will not compensate for
the exponentially diverging CRB and BCRB in such cases.

Appendix B: Lieb-Robinson Bounds

Our goal in this section is to provide rigorous estimates for the truncation error in cases where the Hamiltonian
is non-commuting. The proof of the error bounds is elementary, with the exception that the results depend on the
use of Lieb—Robinson bounds. To begin, let us first define some notation. Let us assume that r time reversals are
used, that the Trotter formula (rather than higher order variants) is used, and then let us define the observable after
n evolutions/inversions to be

A . GiHE/1o=iHt/1 p(n=1) jiH /1 ,—iHL/r (B1)

with A(®) = A. Now, let H_ = Hi, — A, were A is the discrepancy between the inversion Hamiltonian and the true
Hamiltonian, supported on the region that can be simulated by the trusted device. Let us also define

A(n) = eiAt/?’A(l’lfl)efiAt/T, (BZ)

where A(0) = A; since we have assumed a Trotter formula, [H_, Hint|t/r = 0, such that Aln) represents the observ-
able as simulated by the trusted device alone. Thus, define the error operator ¢ (1) such that

s .= Al _ A(n), (B3)

The goal of this section will then be to provide upper bounds on ||6(")|| which represents the error incurred from
truncating the trusted simulator.

First, note that ||6(?)|| = 0. This will serve as the base case in our inductive argument about the norm of § (1), The
triangle inequality, together with the unitary invariance of || - ||, implies
Hé(n—H) ” — ||eth/re—iH,t/rA(n)eiH,t/re—th/r _ eiAt/rA’“(n)e—iAt/rH
< ”5(11) H + ”eth/refiH,t/rA(n)eiH,t/refth/r o eiAt/rA(n)efiAt/r”' (B4)

Eq. (B4) provides a recursive expression for the error after n + 1 steps in terms of the error after n steps. Our bounds
for the error in (12) follow from unfolding this recurrence relation after applications of the triangle inequality. The
main challenge is that e!1!/7e=HH-t/7 (n) giHt/ro=iHt/r _ oiAt/r A(n)—iAt/7 ig difficult to bound directly. So instead
we introduce a telescoping series of terms such that the difference between any two consecutive terms in the series
can be estimated. Then by using the triangle inequality, we arrive at (12).
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Our first such step considers the trotter error involved in using the approximation e~ #1-#/" x5 ¢=iHint/rp=iAt/r

in (B4). First, note that
||eth/refiH_t/rA(n)eiH_t/refth/r o eth/Ve*iHint/VA(”Jrl)eiHint/Ve*th/r H

_ HefiH,t/rA(n)eiH,t/r _ efiHint/reiAt/rA(n)efiAt/reiHint/rH — ||[e*iAt/VeiHint/Ve*iH—t/V,A(”)]||. (B5)

Using the result of Huyghebaert and De Raedt [42], we have that for any two operators A, B that have commutators
of bounded norm,

1
lete® — ) < 2[4, B (B6)

Then, using (B6) we see that there exists an operator C such that ||C|| < 1and e?ePe~(4*E) = 1+ §||[4, B]||.
Now noting that H_ = Hj, — A, we see that

H [efiAt/reiHmt/refiH,t/r’A(n)] ” _ H [efiAt/reiHint/refi(HmfA)t/r,A(n)} H ) (B7)

Therefore there exists an operator C with norm at most one such that

H [e—z'At/reiHmt/re—i(Hin—A)t/r,A(n)} H _ H {1 e ||[H12n,2A]|| tZ,A(n)} H
T
< || [Hin, AJ[[[|AM) |2 /72
= ||[Hin, ALl Al|£2 /7. (BS)

Eq. (B8) provides an upper bound for the error incurred by treating the evolution on the trusted simulator as if it
were evolving separately under Hj, and A during the inversion phase, rather than evolving under H_ = H;, — A.

Second, we have from similar reasoning and the facts that (a) H = Hout + Hint + Hin and (b) Hin and Hoyt are
disjoint in support and hence [Hin, Hout] = 0 that

‘|eth/re—iHint/rA(n-&-l)eiHint/re—th/r _ ei(Hout+Hint)t/VA(n+l)e—i(Hout+Hinf)f/r|| < H [Hintr Hin] ” ||AHt2/1’2. (B9)

It is then straightforward to see from adding and subtracting appropriate terms and then applying the triangle
inequality that

2 _ ‘ )
61 < 18|+ ([ Hin, Alll + | [Hine, HmH\)\IAII% - || Hout Hind)t/7 A1) i (Howt Hint /7 — AL+ (B10)

Third, as illustrated in Figure 3, there are two types of interaction terms: interactions between the neglected
particles and those in the support of A and interactions between neglected qubits and those not in the support
of A. The Hamiltonians composed of only these interactions are denoted Hintna and Hipp 4, such that

||ei(Hout+Hint)t/rA(”Jrl)e*i(HoutJFHint)t/" _ ei(Hout+Hint\A)t/”A(”Jrl)e_i(Hout""Hint\A)t/r||

— || [e_i(Hout""Hint\A)t/rei(HouH“Hint)t/r’ A(ﬂ+1)] || (Bll)

Using the fact that ||e*i(H0ut+Hint\A)t/ Tet(Hout Hind)t/7 _ || < | Hintn 4t/ 7, the triangle inequality yields

oo o )6 o i), A < 2 gy ]| A7 (B12)

This bound estimates the error incurred by neglecting direct interactions between the observable and the particles
omitted from the trusted simulator. Thus (B10) can be simplified to

t2
18D < 18+ (11 (Hin, AV + [ Hine, Hinl DA 5 + 20 Hineryall [ All£/7

+ || Hout+Hine )t/7 A (n+1) p=i(Hour+ Hine A)t/7 _ Z(n41))| (B13)
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Using Hadamard'’s lemma, this can be written as

t2
18D < 18 1+ (1| (Hin, AN+ 1 Hines Hinl D11l + 20 Hiney allllAl1E/7
. ~ 1 -
- [liHout + Hine, 4, A" 1t/ = 5 [Hout + Hin 4, [Hout + Higeya, A2 /72 40 (B19)

Applying the triangle inequality, factoring and recombining terms as an exponential yields

t2
1D < 16 ||+ (11 [Hin, Alll + 1T Hine, Hinl D1 All 5 + 21| Hine all 1A/ 7

+ H [Hout + Hint\AfA(n+1)] HezHHOUt+Him\AHt/rt/r. (B15)

Fourth, and finally, we apply the Lieb-Robinson bound to upper bound ||[Hout + Hine\ AHD]||. Assuming that
the interactions that comprise Hj,; are nearest-neighbor or exponentially decay with the graph distance between the
qubits in question, the Lieb—Robinson bound states that there exist constants s and p that are only dependent on the
properties of A [14] such that

| [Flout + Hing, s A V]| < 20| Hou + Hingy all | A {A} e How) [2s00)/7 ] (B16)

Substituting (B16) into (B15) and noting that [Hout, A" 1] = 0 (because A and Hoy have disjoint support) yields

t2
181 < 16 || + (1| [Hin, A][| + I [Hine, Hin] DAl + 2| Hinen allllAllE/7
—+ 2HHint\A|| HAH|{A}|e_ﬂdi5t(A/Hout) |:e25‘t‘(}’l+1)/r _ 1i| 62‘|Hout+Hint\A”t/7’t/r' (B17)

Applying (B17) recursively, it is then clear that

~ t2
lA(E) = AON = 1671 < (1Hin, Alll + | [Hint, Hin] ) 1411 + 21| Hiney all 1Al
+ 21| Hing, ||| A]| | { A} re8it(AHow) {2511 g | 2Houct Hunall/r - (B18)

There are a few interesting points to note about (B18). Firstly, the Lieb-Robinson velocity that appears in the
equation is that of A not H. If the particle guess heuristic is used to select experiments, then the speed at which the
commutator depends on the uncertainty in the Hamiltonian rather than the actual Hamiltonian. A consequence of
this is that the Lieb—Robinson velocity here is an epistemic, rather than a physical, property of the system. This means
that, even though the experimental times increase under the particle guess heuristic as more information is learned
about H, the Lieb—Robinson velocity relevant to this problem will shrink. Very long experiments can therefore
be used without requiring that the distance between A and the neglected qubits (i.e. the volume of the trusted
simulator) grows linearly with the evolution time. In particular, dist(A, Hout) must grow at most logarithmically
with the evolution time rather than linearly.

It should also be noted that in cases where nearest-neighbor couplings are present, rather than exponentially
decaying couplings, that these bounds are known to be loose. More sophisticated treatments of the Lieb-Robinson

bounds show that the error shrinks as e~<onstxdist(A,Hout)* for such systems [16]. Taken together with the observation

that Hi,¢n 4 = O for nearest neighbor couplings, since A is not supported on the boundary of the trusted simulator,
this tighter scaling implies that the volume of the trusted simulator can be quadratically smaller in such cases.

Appendix C: Scaling with n

All of the examples considered so far examine compressed QHL for 50 qubits. Although the fact that the protocol
scales successfully up to 50 qubits already provides strong evidence for its scalability, we provide further evidence
here that the errors in compressed QHL do not rapidly vary as a function of the number of qubits in the untrusted
system, n. As per the previous numerical examples, we consider a 1D Ising model with x; ; ~ unif(0, 1)10~2(=1=1)
and use a 4 qubit observable. Also 20, 000 particles are used in the SMC approximation to the posterior and we take
all data using 200 experiments per scan. Roughly 20 data points per value of n were considered.
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Figure 7: Median error in compressed QHL as a function of the number of qubits in the model.

We see in Figure 7 that the error, as measured by the median L, distance between the inferred model and the true
model, is a slowly increasing function of n. The data is consistent with a linear scaling in 7, although the data does
not preclude other scalings. This suggests that the error in compressed QHL does not rapidly increase for the class
of Hamiltonians considered here and provides evidence that examples with far more than 50 qubits are not outside
the realm of possibility for compressed QHL.

Appendix D: Justification of scalings for Ising model

Assume that the Hamiltonian is an Ising model on a line of length ¢ with a trusted simulator that can simulate at
most w sites and an observable that has support on a sites. We then can write the norm of the Hamiltonian terms

that are neglected by the trusted simulator as || Hinen al| < a Zf;‘f( (j) for some function f(j) that describes

w—a)/2|+1 f
how quickly the interactions decay with distance from the observab)le.J Here we take the lower limit of the sum to
be | (w —a)/2] + 1 because this is the closest possible site within the support of the observable A to the un-modeled
portion of the spin chain. Note that in cases of non-periodic boundary conditions this minimum distance may be
farther for simulations that occur near the end of the chain. Similarly, the furthest any site can be in the chain from A
is £ — a which justifies the upper bound for the sum. Again this upper limit may not be tight for periodic boundary
conditions.

The two most interesting cases, experimentally, are cases with exponential decay and polynomial decay with j. If

we assume that f(j) < be~ (=D then

(=a o0 , —L57 e
Y af)s Y aeteo T (D1)
j=l(w=a)/2)+1 j=l(w=a)/2)+1 —¢
This justifies the claim made in the main body.
Polynomial decay is similar. Assume f(j) < b/j* then
fil ab  ab "”‘%”‘1 1
j:L%JJA ].IX ( w2—uJ + 1)a k=0 (1 + (w_k]‘)/z)vé
ab t—a—|%71]-1 1
< (14 / B — (D2)
(L5 + 1) ( 0 (1+ ) )

This bound can be evaluated for cases where & = 1, and logarithmic divergence with ¢ will be observed in those
cases. Given the assumption that £ > 1, the integral is convergent so for simplicity we can take the limit of this
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equation as ¢ — co. Evaluating the integral and some elementary simplifications leads t

e gp abua

— < . D3
P e 3

w

j=1*7"

This justifies the claim in the main body about polynomial scaling and shows that increasing w to increases the
maximum value of t allowable in the experiment design step.

Appendix E: Derivation of (19)

To begin let us consider the error incurred by trying to find a control sequence that produces a Hamiltonian #; on
an initially untrusted quantum device. If the inferred control map is G; and the actual control map is G1 + &; then
the error in the implemented Hamiltonian, after one bootstrapping step, is

1((G1+ €16 = DHil| < (IGIG] — 1| + [IEIIGT D[ Hl- (E1)

Now let us consider the error incurred after bootstrapping L times. Or in other words, consider the error that
arises from using a trusted simulator that was calibrated via L — 1 steps of bootstrapping. If we define G; and &; to
be the control maps and error operators that arise after j steps (where each &; is the error with respect to the “trusted
simulator” calibrated via j — 1 bootstrapping steps) then the error is

[(((GL+EL)G ) (Gro1 4+ EL-1)G]_1 -+ (G1 + &1)Gy — 1) Hyel|. (E2)

By adding and subtracting (G; + £1)G;, (G2 + &)G5 (G1 + &)G; and so forth from (E2) we obtain from the triangle
inequality that the error is at most

L i—1
Y UGG =1+ IEG N TT UGG T+ &G - (E3)
j=1 k=1

Noting that the condition number, xy, for Gy is || Gi|[|G," ||, (E3) can be upper bounded by the maximum values of of
each of the terms involved. If we specifically define I'max to be the maximum value of ||G; G]-Jr =1 + &l G]-Jr || and
Kmax t0 be the maximum condition number then

L j—1
Y (IGGH =L+ &G I TT (IGkIHNG I+ NG N) < Lmax (14 (Kmax — 1) + [| Emax || GaraxD™ - (B4)
=1 k=1

The result in (19) then follows from the fact that (1 + x) < e* forall x € R.

Note that this bound is expected to be quite pessimistic for bootstrapping in general. The analysis makes liberal use
of the triangle inequality and uses worst case estimates on top of that. Additionally, the user in the bootstrapping
protocol has some knowledge of the error from the fact that G;G* — 1 can be computed for these problems since
the matrices are of polynomial size. We avoid including this knowledge in the argument since the user does not
necessarily know what &; is and hence it is conceivable in extremely rare cases that the errors from the approximate
inversion could counteract the errors in the Hamiltonian inference. A more specialized argument may be useful for
predicting better bounds for the error in specific applications.
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