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ABSTRACT

We study Incentive Trees for motivating the participation of
people in crowdsourcing or human tasking systems. In an In-
centive Tree, each participant is rewarded for contributing to
the system, as well as for soliciting new participants into the
system, who then themselves contribute to it and/or them-
selves solicit new participants. An Incentive Tree mechanism
is an algorithm that determines how much reward each in-
dividual participant receives based on all the participants’
contributions, as well as the structure of the solicitation tree.
The sum of rewards paid by the mechanism to all partici-
pants is linear in the sum of their total contribution.

In this paper, we investigate the possibilities and limita-
tions of Incentive Trees via an axiomatic approach by defin-
ing a set of desirable properties that an incentive tree mecha-
nism should satisfy. We give a mutual incompatibility result
showing that there is no incentive tree mechanism that si-
multaneously achieves all the properties. We then present
two novel families of incentive tree mechanisms. The first
family of mechanisms achieves all desirable properties, ex-
cept that it fails to protect against a certain strong form of
multi-identity attack; the second set of mechanisms achieves
all properties, including the strong multi-identity protection,
but fails to give participants the opportunity to achieve un-
bounded reward. Given the above impossibility result, these
two mechanisms are effectively the best we can hope for.
Finally, our model and results generalize recent studies on
multi-level marketing mechanisms.
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1. INTRODUCTION

There has recently been substantial interest in crowd-
sourcing and human-computation systems. These systems
are based on mobilizing and utilizing people’s work in order
to quickly and efficiently achieve certain tasks. Commer-
cial offerings such as Gigwalk [1] or Amazon’s Mechanical
Turk [2] allow users to submit tasks and recruit people to
complete those tasks. Crowdsourcing is increasingly being
used as the method of choice to obtain large-scale user data,
such as environmental data, application traces, or to gener-
ate indoor-localization maps, e.g. [15, 14]. One key challenge
in successfully deploying any such system is the question of
how to incentivize people to actually perform tasks and con-
tribute meaningfully. In fact, the same challenge is found in
many other systems that rely on user contributions. For ex-
ample, systems such as social forums, file-sharing services,
public computing projects (e.g. SETI@Home), collaborative
reference work, etc suffer from the well-known network-effect
bootstrapping problem. These systems can become self-
sustaining when the scale of the participation list exceeds
a certain threshold, but below this threshold, they may not
provide sufficient inherent benefit for users to participate in.

One common type of incentive mechanisms for raising user
participation in such systems is Incentive Trees. Incentive
Trees are tree-based mechanisms in which (i) each partici-
pant is rewarded for contributing to the system, and in ad-
dition, (ii) a participant that has already joined the system
can make referrals, and thereby solicit new participants to
also join the system and contribute to it. The mechanism
incentivizes such solicitations by making a solicitor’s reward
depend on the contributions (and recursively also on their
further solicitations, etc) made by such solicitees. Incentive
Trees have been widely used in a variety of domains and un-
der different names, e.g., in referral trees, multi-level mar-
keting schemes, affiliate marketing or even in the form of the
infamous illegal Pyramid Schemes. The question of how peo-
ple can be incentivized using Incentive Trees to participate
in crowdsourcing or network-effect systems is of significant
interest and—starting from the work on Lottery Trees in [9],
and most prominently through the work by the MIT team
on the Red Balloon Challenge [6]—has recently attracted
significant interest from the research community.

In this work, we study the foundations of Incentive Trees.
An Incentive Tree Mechanism takes as input a weighted tree,
where each node’s weight denotes its contribution to the sys-
tem, and the tree structure reflects the solicitation history.
Based on this input, the mechanism then computes a re-
ward for each node in the tree in such a way that the sum



of rewards is linear in the sum of contributions. The ques-
tion is, how should this reward function look like? Ideally,
an Incentive Tree Mechanism is constructed such that every
participant is optimally incentivized to both i) contribute to
the system as much as possible, and ii) solicit as many new
and itself highly-contributing and highly-solicitating partic-
ipants as possible. As we will see, simultaneously achieving
both contribution and solicitation incentive is challenging,
especially if the mechanism should satisfy additional prop-
erties, such as fairness or robustness to strategic behavior.

In this paper, we take an axiomatic approach. We de-
fine a set of basic, desirable properties which ideally an in-
centive tree mechanism should satisfy. These include trivial
properties such as the continuing solicitation and continuing
contribution incentive properties, as well as more sophisti-
cated properties that relate to the mechanisms resilience to
strategic behavior. These are critically important. In web-
based campaigns for example, resilience to multi-identity
(Sybil [7]) attacks is key."

Results: We study 8 properties of Incentive Trees, that
have also been studied in earlier work on incentive trees and
multi-level marketing; and suitably generalize these prop-
erties to our more general model. We present two novel
families of incentive tree reward mechanisms, both of which
are based on algorithmic techniques previously unused in the
literature on multi-level marketing or incentive trees. The
first family of mechanisms achieves all desirable properties,
except that it fails to protect against a certain strong form
of Sybil attack (technically, it satisfies all properties except
UGSA). The second family of mechanisms does yield protec-
tion against the strong form of Sybil attack, but fails to give
participants the opportunity to achieve unbounded reward
(technically, it satisfies all properties except PO/URO). Both
mechanisms are resilient to the well-known multi-identity
attacks discussed above. Finally, we show that under some
mild assumptions, these two mechanisms are essentially the
best we can hope for. Specifically, we give an impossibility
result showing that no reward scheme can simultaneously
achieve UGSA and PO/URO, while maintaining the other
properties. Thus, our results imply that that both of our
mechanisms achieve a notion of optimality relative to the
axiomatic properties we define in this paper: The mecha-
nisms are optimal in the sense that they achieve a maximal
mutually satisfiable subset of properties.

1.1 Related Work

The two works most related to ours are the ones by Douceur
and Moscibroda on Lottery Trees [9], and the work by Emek
et al. on multi-level marketing schemes [10]. The former
work is aimed at motivating people to participate in net-
worked systems and bootstrap systems that rely on the net-
work effect. The paper addresses the following question:
Assume some system organizer is willing to spend a fixed
amount of money in order to incentivize people to do a spe-
cific type of work, how should the system be organized to
maximize the resulting work? The authors propose Lottery
Trees, formalize a set of desirable properties, prove impossi-
bility results, and devise two non-trivial mechanisms one of
which achieves near-optimality in terms of achieved desirable

In the commonly employed refer-a-friend programs, for ex-
ample, it is often very easy to forge identities by creating
new free email accounts, and then “referring oneself” in or-
der to get extra reward.

properties. Our model differs from [9]: In our incentive tree
model, the total amount of reward distributed to the partici-
pants grows linearly in the total contribution, whereas in [9],
the total reward is a fixed, constant value. This difference
significantly changes the achievable properties.

The work by Emek et al. [10] has initiated the algorith-
mic study on multi-level marketing mechanisms. It proposes
mechanisms for a model in which users can purchase items
(specifically, each user can purchase one item of a fixed unit
price). Participants join the system by buying a product,
and can then refer friends to also buy this product. The pa-
per proves several properties of such unit-price multi-level
marketing schemes and proposes mechanisms that achieve
a subset of these properties. The incentive tree model we
study in this paper can directly be translated into the multi-
level marketing context. When viewed in this context, our
work yields a substantially generalized version of the model
in [10]: Participants correspond to buyers, and a partici-
pant’s contribution corresponds to the amount of goods pur-
chased. The difference is that whereas in [10], each buyer
can only purchase a single item of unit price (i.e., each par-
ticipant makes the same contribution to the system), in our
model participants can make arbitrary contributions, i.e.,
each buyer can buy goods at arbitrary price. This gener-
alized version of the problem yields a richer structure, and
allows us to generalize the desirable properties in meaning-
ful ways. The results in this paper directly apply to this
generalized version of the multi-level marketing model.

In addition to these two works, there has recently been
many other work on incentive systems [6]. For example,
the Bitcoin system by Babaioff et al. [12] studies a prob-
lem similar to multi-level marketing. The paper uses a
game-theoretic solution concept to study a problem in which
agents are incentivized to forward sensitive information in
such a way that the overall system performance is maxi-
mized. The work of Drucker and Fleischer [11] studies a
multi-level marketing model with multi-items proving prop-
erties defined in [10]. Other related work such as [5] on query
incentive networks, [4] on finding influential users in a social
network, or [3] on the effects of social structure on behavior
and norms, is only loosely related to our work. Finally, in-
centive mechanisms have also been used in mobile systems
to recruit people [13] [14].

2. MODEL

In our model, participants can join a system and con-
tribute to it (e.g. by doing work such as finding weather
balloons, uploading crowd-sourced data, solving tasks, etc).
For a participant u, we denote its contribution by C(u),
C(u) > 0. Participants can also solicit new participants.
Such referrals induce a referral forest F. Each participant is
anode u € F, and there is a directed edge (u, v) between two
participants v and v if v has joined the system in response
to a solicitation by u. In other words, if u joins the system
via a referral by v, it becomes a child-node of v in F'. A new
participant u who joins the system independently of any so-
licitation joins F' as an independent node. For simplicity,
we consider the equivalent referral-tree T', in which there is
an imaginary root node r with contribution C(r) = 0, and
all root-nodes in F' are children of r. T is a weighted tree
in which the weight of a node u is its contribution to the
system C(u). We denote by C(T) = > _C(u) the total
contribution in the system.

ueT



A reward mechanism is a function that takes as input the
weighted referral tree T', and computes for each v € T a
non-negative real reward, denoted by R(u). Following [10],
we impose a budget constraint on this function: The system
administrator is willing to spend no more than a certain
fraction ® < 1 of the total accumulated contribution on
rewarding participants. That is, the total reward R(T) =
> wer R(u) paid to participants grows linearly in the total
contribution, i.e., R(T") < ® - C(T"). While in principle, any
function satisfying these properties defines a possible reward
mechanism, a well-functioning mechanism should maintain
several desirable properties, which we define in Section 3.

Generalized Multi-Level Marketing When viewed in
the context of multi-level marketing, our model generalizes
the model of Emek et al. [10], allowing buyers to purchase
not just a single item of unit price or multi-items, but pur-
chase items at arbitrary prices. Buyers can purchase goods
from a seller. For some buyer u, her contribution to the sys-
tem C'(u) is the total cost of the goods purchased. The seller
is willing to return a certain fraction of his total income in
the form of rewards R(u) to the buyers. Notice that in this
context, the amount of money a buyer u effectively ends
up paying for the goods is his pay, Pay(u) = C(u) — R(u).
And since a buyer’s reward can potentially exceed his cost
(if he accumulates many contributing descendants), we also
consider the profit as P(u) = R(u) — C(u).

Comparison to Existing Models: The two main pa-
rameters in our model are contribution and reward. Many
existing models have restrictions on either or both parame-
ters. The Pachira in [9], Geometric Mechanism in [10] as well
as the winning strategy in the DARPA network challenge [6]
demand the total reward to be fixed. In [6] [10] the contri-
bution of each node is the same, while in [9], contributions
are allowed to be variable. In previous multilevel market-
ing models [10] [11], the total reward is linear in the total
contribution, but the contribution (payment) of each node
is fixed. We generalize these models such that each partici-
pant can make different contributions of arbitrary size, and
the total reward paid to participants is linear in the total
system contribution.

Tree Notation: We use standard tree notation. T de-
notes the subtree rooted at node u. pr(u) denotes the parent
of a node w in T. Finally, dep,(u) denotes the depth of u in
Ty, i.e., the distance between v and p. To simplify notation,
we define depp(u) = —oc0 if u ¢ Tj.

3. DESIRABLE PROPERTIES

In this section, we define the set of desirable properties
that an incentive tree mechanism should ideally satisfy. Sev-
eral of these properties are inspired by related properties
defined in [9] for lottery trees; others are taken from [10]
and adjusted appropriately to the generalized model with
arbitrary contributions.

3.1 Basic Properties

Continuing Contribution Incentive (CCI) [9]: A re-
ward mechanism satisfies CCI if it provides a participant
u with increasing reward in response to an increase of u’s
contribution. This encourages participants to continue con-
tributing to the system (e.g., to continue purchasing goods
from the seller). Formally, given a referral tree T'. If a node
u € T increases its contribution, C’(u) > C(u), and the con-

tribution of all other nodes v € T'\ {u} remains the same,
C’(v) = C(v), then the reward of u increases: R'(u) > R(u).
Continuing Solicitation Incentive (CSI) [9]: A reward
mechanism satisfies CSI if every participant always has an
incentive to solicit new participants. This encourages ongo-
ing solicitation and ensures continuing growth of the system.
Let T, and T}, be the subtree rooted at u before and after a
new participant has joined the system in u’s subtree. Then,
R'(u) > R(u).

Reward Proportional to Contribution (¢-RPC) [9]:
This property suggests that a reward mechanism should
maintain some basic notion of fairness among the partici-
pants, the degree of which is determined by the parameter
¢. We say that a reward mechanism satisfies ¢-RPC for
some 0 < ¢ < 1, if a participant u who contributes C(u),
should at least receive a reward of R(u) > ¢C(u). In other
words, every participant should receive at least a ¢-fraction
of his contribution to the system. Note that we assume
¢ < ® since otherwise no reward mechanism can satisfy the
¢-RPC property.

Unbounded Reward Opportunity (URO) [10]: This
property demands that there should be no limit to the re-
ward a participant can potentially receive, even when his
own contribution is fixed by constant. Formally, a reward
mechanism satisfies URO if for every positive real R, C(u)
and positive integer k, there exists k trees Th,--- ,T) at-
tached to u in the referral tree such that R(u) > R.
Profitable Opportunity (PO): The PO property is a
weaker version of URO. It suggests that a buyer with any
positive contribution has the opportunity to get positive
profit (reward minus contribution). Formally, a reward mech-
anism satisfies PO if for every positive real C(u) and posi-
tive integer k, there exists k trees T1,--- , T} attached to u
in the referral tree such that R(u) > C(u). A mechanism
that satisfies URO satisfies PO.

Subtree Locality (SL) [10]: This property demands that
the reward paid to a participant u is determined uniquely
by its subtree T, R(u) = f(T.). The property ensures that
each user is credited only for actions (contributions and so-
licitations) performed by itself, or its descendants. Violation
of this property can have undesirable consequences. For ex-
ample, the reward of a user could increase or decrease with-
out him having taken any action (no new purchases or newly
solicited buyers in his subtree). Note that as an important
special case, the SL property subsumes the so-called Un-
profitable Solicitor Bypassing (USB) property defined in [9].
This property demands that for a new participant, it should
not matter where in the tree he joins, such that a new par-
ticipant has no incentive to join the system as a child of
someone other than his solicitor.

3.2 Sybil-Attack Resilience Properties

It is desirable that a reward mechanism is robust against
strategic behavior by participants. In particular, we seek
mechanisms that are resilient against multi-identity attacks,
commonly known as Sybil-Attacks [7]. A participant who is
able to forge multiple identities (which is typically simple in
web-based applications) should not be able to use this ability
and “cheat” the mechanism for his own benefit. Previous
work has defined two different notions of Sybil resilience.
Unprofitable Sybil Attack (USA) [9]: This property is
taken directly from [9], and it captures the classic notion of
Sybil resilience. The USA property imposes that no partic-



ipant can increase his profit purely by pretending to have
multiple identities: A mechanism satisfies USA if a partici-
pant with a given contribution cannot increase his reward by
joining the system as a set of Sybil nodes instead of joining
as a single node. In other words, a participant who makes a
certain contribution to the system should never have a ben-
efit of “splitting” himself and its contribution up and making
these contributions as two or more identities, even if these
“Sybil identities” join the tree as if referring themselves.
Unprofitable Generalized Sybil Attack (UGSA): This
property is strictly stronger than USA. It is a generalization
of the so-called Profitable Sybil Attack or Split Proof prop-
erty as defined in [10] for the restricted single-item multi-
level marketing model. The property demands that a par-
ticipant can never increase his profit by joining the tree as
multiple identities, even if by doing so, he increases his con-
tributions, i.e., purchases additional goods.

We can formally define USA and UGSA as follows. Given
a tree Tp. Let u be a participant that joins the tree. Let T}
be the tree that results when u joins T as a single node. Al-
ternatively, u can join the tree as a set of Sybil nodes S, =
{u1,...,ux}, which can be arbitrarily connected in the re-
ferral tree. Let T}’ be the tree that results when u joins T as
the Sybil node set S,,. Let J = v, v2,... be an arbitrary se-
quence of new participants joining the tree, and let T, T, . ..
and Ty, T%,... be a sequence of trees resulting from these
joins. Notice that in the case u joins as a set of Sybil nodes,
there can be many different such sequences because any new
child solicited by u can join as a child of any of the Sybil
nodes u1, . .., ux. Finally, let R;(u), C;(u) be the reward and
cost of u in T, and let R (u) = 3°,_, , Ri(u;),C{ (u) =
> ;=11 Ci'(u;) be the total reward and cost of u in T}, re-
spectively. We say that a reward mechanism satisfies USA
if for any 7 > 0, Rj(u) > Ry (u), if Ci(u) = C{'(u). We say
that a reward mechanism satisfies UGSA if for any 7 > 0,
Ri(u) — Ci(u) > R} (u) — C{'(u), if Ci(u) < C{(u). Notice
that the UGSA property strictly subsumes the USA prop-
erty by taking C;(u) = C{ (u).

Figure 1: Participant p joining (left) as a single node
with cost 1; (middle) as two Sybil nodes that refer
one another, each with cost 1; and (right) as a single
node with cost 2.

The difference between USA and UGSA is illustrated in
Figure 1. USA requires that a participant who contributes a
certain amount be unable to increase his reward by joining
as multiple identities. Therefore, participant p in the right
figure must receive at least as much reward as participant p
in the middle figure. UGSA additionally demands that p’s
profit (=reward-cost) in the middle figure cannot exceed his
profit in the left figure.

It is interesting to discuss the relative importance of these
properties from the point of view of the system administra-

tor or the seller in a multi-level marketing context. USA is
clearly a desirable property from his point of view because
if USA is violated, he will simply pay too much reward for
no additional contribution. The case of UGSA is much less
clear. In particular, it is possible that UGSA is violated
even though the seller does not actually lose money (i.e., if
the contribution exceeds the reward). This is possible if the
Sybil buyer p increases his contribution not at the cost of the
system administrator, but at the cost of other participants in
the system, for instance the parent of p. Practically speak-
ing, we therefore believe that USA is a more fundamental
and important property than UGSA. When discussing our
TDRM mechanism (end of Section 4.3), we will give a con-
crete example of TDRM violating UGSA.

4. REWARD MECHANISMS

We start by briefly reviewing existing (multi-level market-
ing and incentive tree) algorithms and analyze which desir-
able properties they achieve. We then give an impossibility
proof showing that there can be no reward mechanism that
simultaneously satisfies URO and UGSA. As the main tech-
nical contribution of this paper, we then present two novel
reward mechanisms, both of which achieve a maximal subset
of mutually satisfiable properties. The mechanism in Sec-
tion 4.3 achieves all properties except UGSA, and the mech-
anism in Section 4.4 achieves all properties except URO/PO.

4.1 Existing Incentive Tree Mechanisms

Geometric Mechanism: The simple geometric reward
mechanism is commonly used, e.g. in [6]. The idea is that
a certain fraction a of a node’s contribution “bubbles-up” to
its parent, a fraction a® bubbles up to its grand-parents, etc.
Given two constants 0 < a < 1 and b > ¢ such that b < (1—
a)®, the reward of a participant w in the (a,b) — geometric
mechanism is defined as follows.

Algorithm 1: (a,b)-Geometric Mechanism
RW) = Yier, ¢V -5-0() 5

The condition b < (1 — a)® is to ensure the budget con-
straint. Specifically, the total reward that a node u is re-
sponsible for is at most b1 C(u), which should be less than
®C(u). The fairness property ¢ — RPC is satisfied if we also
set b > ¢. It is easy to derive the following theorem.

THEOREM 4.1. The (a,b) — GeometricMechanism with
¢ < b < (1—a)® achieves all desirable properties, except
USA and UGSA.

The reason why USA (and thus, UGSA) is violated is also
easy to see. A node can increase his reward by splitting it-
self into multiple Sybil nodes that are linked to each other
as a chain. Some of the “bubbled-up” reward is then handed
to other Sybil nodes of u and the total sum of rewards ac-
cumulated by w is larger than if u joins as a single node.

Multi-Level Marketing Mechanisms derived from In-
centive Tree Mechanisms: In [9], two incentive tree
mechanisms are given (called Luzor and Pachira) for a model
in which the total reward in the system is a fixed constant.
Any such incentive tree mechanism A for the fixed total re-
ward model can be transformed into an incentive tree mech-
anism L — A in our model by simply multiplying the re-
ward paid to a user u by a factor of ®C(T) (assuming that



the total reward is normalized to 1). Applying this trans-
formation to Luxor and Pachira yields two mechanisms L-
Luxor and L-Pachira. As it turns out, L-Luxor is very sim-
ilar to the (a,b) — GeometricMechanism, and achieves the
same properties. On the other hand, L-Pachira is inter-
esting. For two parameters 0 < f < 1 and § > 0, the
(8,0) — L — PachiraMechanism is defined as follows.

Algorithm 2: (3, §)-L-Pachira Mechanism

Let u be a participant with k£ children q1,...,qx ;
Define n(z) = Bz + (1 — B)a'*? ;

R(u) = @ C(T) - [m(GE) - Xb, n()]

It was shown in [9] that Pachira achieves USA, and the
same proof carries over to L-Pachira as well. Moreover, ¢ —
RPC can be satisfied by setting 3 > ¢/®. Pachira does not
satisfy the CSI property in the Incentive Tree model. But
when transforming it into the multi-level marketing model,
L-Pachira does achieve CSI, although the fact is not straight-
forward. On the other hand, it is easy to see that L-Pachira
fails to satisfy the SL constraint, because of its dependency
on the total system contribution C(T').

THEOREM 4.2. The (8,8)— L— PachiraMechanism with
B > ¢/® achieves all desirable properties, except SL and
UGSA.

Split-Proof Mechanism [10]: For the single-item multi-
level marketing model studied in [10], Emek et al. give a
mechanism that achieves several properties, including the
single-item model equivalent of UGSA and URO. This al-
gorithm is based on the idea of computing a deepest binary
subtree of the referral tree and then computing the rewards
based on that subtree. Unfortunately, this fails the basic
CSI property because depending on the number of direct
children it has, a node may no longer have an incentive to
directly solicit additional children.

4.2 Impossibility Result

The subsequent constructions of our two new mechanisms
are motivated by the following impossibility result, which
suggests that if a mechanism satisfies the SL property, then
UGSA and PO (and thus URO) are mutually incompatible.
Since SL is a fundamental property, this result motivates
our search for i) a mechanism that achieves all the proper-
ties except UGSA (Section 4.3) and ii) a mechanism that
achieves all the properties except PO/URO (Section 4.4).

THEOREM 4.3. There is no incentive tree mechanism that
can simultaneously achieve SL, PO and UGSA.

PrOOF. We prove the theorem by contradiction. Sup-
pose a mechanism A can achieve SL;, PO and UGSA. In
the following proof, all reward computations are done using
mechanism A.

Consider a node v* with C(v*) > 0. According to PO,
there exists a case in which v* has one child tree, and yet v™*’s
profit is positive, P(v*) = R(v*)—C(v*) > 0. We denote the
child tree as T and its root as u*. Suppose the contribution
of u* is C(u*) and T\ {u"} forms a set of subtrees denoted
as Th, -+ ,Tx. According to SL, R(v*) only depends on
C(v*) and T*. We compare two cases. The first case is
exactly as described above (Fig. 2 (left)). The profit of u* is

Figure 2: Illustration of notation used in the proof.

P(u*) = R(u") — C(u"). In the second case (Fig. 2 (right)),
node u* launches a (generalized) Sybil attack by joining the
referral tree as two nodes u, and up with C(u,) = C'(v*) and
C(up) = C(u"). Notice that the Sybil attack is generalized
(i.e., of the USGA-type), since the total contribution of u,
and uyp exceeds the contribution of u*. Further notice that
in the second case, the root of v*’s descendant tree is uq;
Uq 18 up’s parent; and up is the parent of Ty, - -+ | Tk, i.e., we
keep every node in T unchanged except u*.

According to SL, it must hold that u, has the same reward
as v* (with T* attached to it), and for the same reason, up
must have the same reward as u*. Specifically, it holds that
R(uq) = R(v*) and R(up) = R(u*). The total profit of u™’s
two Sybil nodes u, and wup is thus P’ (u*) = R(ua)+ R(up) —
Cltta)—Cluv) = (R(w")—C(v"))+(R(u*)—C(u")) > P(u”).
This implies that ©* can get more profit by contributing
more, which violates UGSA. []

4.3 Satisfying All But UGSA: Topology
-Dependent Reward Mechanisms (TDRM)

We construct the mechanism in two steps. We first give
an intermediate mechanism which manages to satisfy USA,
but does not satisfy budget constraint. This preliminary
form of the mechanism could be turned into a feasible re-
ward mechanism that satisfies the budget constraint, but
doing so would violate Subtree Locality (SL). We then show
how we can eliminate the shortcomings of this preliminary
mechanism in such a way that both budget constraint and
SL are satisfied.

As we discussed in the previous section, the reason why
the simple Geometric Mechanism fails the USA property
is that it is beneficial for a node to split up and accumu-
late its own “bubbled up” rewards. This can be avoided
by changing the linear dependency of a node’s reward on its
own and other node’s contribution to a dependency that is of
quadratic nature. Specifically, when computing the reward
of a participant w, we multiply w’s contribution with the
contribution of every node in u’s subtree, including itself.
In this way, even though u could still accumulate “bubbled-
up” rewards from its own Sybil nodes, we can show that it
is always beneficial for u to focus its total contribution in a
single node. The resulting mechanism works as follows.

Algorithm 3: Preliminary Version of TDRM — Not a
correct reward mechanism

R(u) = C(u) - 3 e, ™ 0 C(v) 5

The problem is that while the structure of this quadratic
geometric reward mechanism is such that it achieves USA,
it is not in fact a feasible mechanism: It fails the budget
constraint. On the positive, its structure is such that it



does achieve USA. To see why, consider a node u. Suppose
u can benefit from splitting itself into a set of Sybil nodes
U1, ..., ug, such that C'(u) = 3., , C(u:). We can re-write
the reward of w if it remains a single node as

R(u) =C(w)’ +C(u) Y a® . b.C(u).

veTy \u

If it splits itself into Sybil nodes, its new reward is at most

Ru) < [Clu)+...4+Cu)]- Y o b.Cv)

vET, \u
H(Cu) + ...+ Cw))?

because the distance between any descendant v € T, to any
of the Sybil nodes u; is at least as big as the original distance
between u and v in T'. Comparing the two expressions, it can
be seen that splitting u into multiple nodes w1, ..., u; does
neither increase the first summand (because of the quadratic
term), nor the second.

The fundamental problem with this approach is that in or-
der to stay within budget, we would need to scale down the
rewards R(u) that are distributed to the participants. How-
ever, the amount by which we would need to scale would
depend on a global property of the referral tree, for exam-
ple C(T'). Thus, such a scaling would fundamentally violate
the SL property. In order to overcome this problem, we
would like to constrain the reward a node can obtain. This
will allow us to meet the budget constraint by scaling each
node’s reward by a constant factor, independent of C(T).
This could easily be achieved if there was a constant upper
bound g on the contribution C(u) of every node u € T.
However, since our model allows a participant to potentially
have an unlimited contribution, our mechanism simulates
such an upper bound p by splitting each participant with
contribution exceeding p into a set of nodes, each with con-
tribution at most pu. The mechanism then computes the
rewards in the resulting Reward Computation Tree (RCT),
which may differ from the referral tree. In fact, one user can
correspond to multiple nodes in the RCT. A participant’s
final reward is the sum of the rewards of his corresponding
nodes in the RCT.

The effect of computing the rewards in the Reward Com-
putation Tree in this way is that for participants with very
large contribution, the algorithm effectively linearizes this
node’s reward with regard to its contribution. In the pro-
cess, we need to be careful about not violating the USA
property. Specifically, in order to make sure that this lin-
earization does not thwart the USA-achieving structure of
the quadratic reward computation, the mechanism must be
careful about the way it splits participants with large contri-
bution. In particular, our mechanism ensures that for any
such split, it is the best possible split for such a partici-
pant. In other words, even though the splitting effectively
reduces the reward of very large contributors (compared to
the preliminary quadratic TDRM mechanism), participants
can nevertheless not benefit from a Sybil attack, because they
are already given the best possible split.

The TDRM mechanism works as follows. Given four pa-
rameters A < ® — ¢, u > 0, a and b, such that a +b < 1,
TDRM first transforms the referral tree T into a reward
computation tree 7", and then computes the rewards on T".
We denote by C(u) and C(u) the contributions of a node u
in T and T”, respectively. For a participant u € T, we de-
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Figure 3: Transformation of a referral tree T into a
reward computation tree 7 by TDRM.

fine a chain CH, of length N,, in T” as a sequence of nodes
my,...,my,, such that m; is the parent node of mj’, for
all i = 1...Ny, — 1. We call m{ and m}(,u the head and the
tail of the chain, respectively.

Algorithm 4: TDRM Mechanism

Transformation of T into T :
for u € T do
No = [C(u)/4] ;
Create a chain CH, of length N, in T", such that

Cl(mu) — {C(u) - (Nu - I)M Jifi=1

’ M Jifi>1
end
for Every directed edge (u,v) € T do
‘ Create a directed edge (my, ,m{) in T";
end
for w € T' do
R(w) = 20(w) ¥, cqy, a®7* @b - Cla) + 6C(w)
— Reward Calculation in T’
end
for u € T do
‘ R(u) = ZueCHu R'(v) ;
— Reward Calculation in T
end

Figure 3 gives an example of how the mechanism trans-
forms the referral tree T' (left) into a corresponding reward
computation tree T” (right). After this transformation, TDRM
first computes the rewards for each node in 7" according a
function similar to the one given in the preliminary TDRM
mechanism. Finally, the reward of a participant v € T is
computed as the sum of all the nodes in the corresponding
chain CH, in T’. It remains to show that the mechanism
meets the budget constraint — we do this in the next section.
With this, we can prove the following key theorem.

THEOREM 4.4. The T'D RMmechanism with parameters
A< ®—9¢,b<1—a, and p > 0 achieves all desirable
properties except UGSA.

PrOOF. It will be convenient to use the following defini-
tion. Let Sa,Sp be two subsets of T'. We define

Bsws= 3 5 B ctictn

ueSy veESE

Intuitively, B(Sa,Sg) is the sum of the rewards accumu-
lated by nodes in S4 through nodes in Sg. Using this def-
inition, we can reformulate the reward function R(u) for
u € T as R(u) = B(CHu, Tpyu) + ¢C(u).



Budget Constraint: We start by proving that the mech-
anism meets the budget constraint. First, observe that the
total rewards in the referral tree is equivalent to the total re-
wards in the reward computation tree. Then, in the reward
computation tree 7", it holds that

> R() = Z[cw)%Zad”’““)-bo(v)wc(u)]

ueT’ ueT’ veT’
< Y Ccw)dldbl+ Y ¢Cu)
veT’ =0 ueT’

A

A+¢) Y Cu).

ueT’

By the constraint imposed on A, this last expression is at
most ® 3~ ;v C(u), which is the budget.

We now prove the desirable properties one by one.

CCI: Consider a participant u, who increases his contri-
bution from C(u) to C*(u) = C(u) + €. Let R"(u) and
CH; = {mi",...,my%} denote the new reward and the
new corresponding chain, respectively. There are two cases
depending on whether u’s contribution increase leads to a
change of its corresponding chain C'H;, in the RCT, or not.
We consider the two cases independently.

First, if N;; = N, then only the head-node m{’s contri-
bution increases in T': C(mi%) = C(m}) +e. We can get
R*(u) > R(u).

Second, if N; > N,, then we only need to consider the
sub-chain in C'H;; with N,, nodes from the leaf node up. As
each node of the sub-chain has contribution u, we get that
R*(u) > R(u).
¢-RPC: By the definition of the R(u), it holds that R(u) =
B(CHy, Tiny) 4 ¢C(u) > ¢C(u).

CSI: The property holds because by the definition of R(u),
the reward of a participant u is strictly increasing when a
new node v attaches to u.

SL: The property holds because by the definition of R(u),
the reward of a participant u is independent of any node
outside of T,.

URO: Consider a participant u, whose contribution is C'(u) =
sp + €, for some integer s and 0 < € < u, and suppose u has
k children in the referral tree, namely there are k trees at-
tached to u. Here s can be any non-negative integer and k
can be any positive integer. We denote one of w’s children
as v and the corresponding subtree as T,. Suppose v has ¢
children with contribution p. It holds that R(u) is at least
R'(m},) in the reward computation tree. Calculating the
value of R'(mf%, ) using the definition, it can be shown that
R'(my,) > ¢- abhe. As £ can become arbitrarily large, the
reward of R(u) can increase to infinity.

USA: At the heart of our proof is that TDRM satisfies
USA. To do so, we define an ¢ — chain as a chain in the
reward computation tree of which only the head node can
have contribution less than pu.

USA states that no participant can increase his reward by
pretending to have multiple identities. Consider a partici-
pant u that joins the referral tree as j Sybil nodes (j > 1),
v1, V2, ..., Vj, with total contribution C(u). Further assume
that w has s children, ¢, --,qs. Suppose vi,va,...,v; are
transformed into k nodes u1,--- ,u in the reward compu-
tation tree. By definition, it holds that C'(u) = 3¢, C(u;)
and C(u;) < p,s = 1,--- k. For q1,--- ,qs, we denote the
subtrees rooted at q1,- - - , ¢s in the reward computation tree

myP

mP -

msP T

myP,

e

e N
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Io||ms
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Figure 4: Illustration of notation used in the proof.

as Th,--- ,Ts. We define a partition as any configuration
of nodes u1,- - ,uk, subtrees T1,--- ,Ts, and contributions
C(ui), (i = 1,--- ,k) in the reward computation tree that

can feasibly result from node u joining the referral tree as a
set of multiple Sybil nodes.

Our proof idea is the following: Consider the set of optimal
partitions for u in the reward computation tree (partitions
maximizing R(u)). We show that at least one optimal par-
tition has the structure of a single € — chain in the RCT.
In other words, we show that u’s best possible Sybil attack
is to join in such a way that the resulting structure in the
RCT is an € — chain. However, since the TDRM mechanism
transforms u into an € — chain in the RCT even if u joins
as a single node, it follows that u has no benefit of joining
the referral tree as multiple Sybil identities. The mecha-
nism itself will give u the best possible split, thus giving u
no incentive to split itself.

We formally prove this intuition by a sequel of structural
lemmas. The lemmas describe the properties of a reward-
maximizing partition ui,- - ,uk, 11, -+ ,Ts in the RCT, ul-
timately showing that the optimal such partition is an € —
chain. As a first step, notice that because we have proven
SL in TDRM, we consider only w1, -+ ,ux,T1, -+ ,Ts in the
RCT. All other nodes are irrelevant for u’s reward. The first
lemma shows that ui,--- ,ug, 11, -+ ,Ts forms a tree. Here
notice that according to the soliciting sequence, u; can not
beachildof T; (i =1,2....,k, j =1,2,..., ).

LEMMA 4.5. If R(u) is mazimized, w1, ,ug, T1,- -, Ts
forms a tree.

ProOOF. We prove the lemma by contradiction. Suppose
R(u) is maximized and w1,--- ,ug,T1, -+ ,Ts forms a for-
est ' with more than one tree. We pick any two trees
To, Tp in F with roots a and 3. As u is the parent of
qi,- - ,qs, it holds that T1,--- , T, will be attached as sub-
trees to u1,-- - ,ur. Thus, a,8 € {u1, - ,ur}t. Now, as-
sume that we attach T3 to «, thereby makeing it one tree.
The attachment does not change the reward accumulated by
nodes in T3, but it strictly increases the rewards accumu-
lated by « (due to the CSI property). This contradicts the
assumption that R(u) is maximized. (]

Thus if R(u) is maximized, u1,--- ,uk, T1, -+ ,Ts forms
a tree. We denote this tree as Ty, and define T, as the
tree induced by w1, - ,ur, and T, as the forest induced by
T1,- -+ ,Ts. With these definitions, we can write R(u) as

R(u) = B(Tu, Tu) + B(Tu, T) + ¢C(u).



Before continuing the proof, we distinguish different parts
of R(u): The inner reward R*(u) = B(Tw, T,) which is the
part of reward purely coming from w’s own contribution, and
the external reward R®(u) = B(Ty,T.) which is the part of
reward coming from u’s descendants. Then we can rewrite
R(u) as R(u) = R'(u) + R°(u) + ¢C(u). According to our
assumption that u has a fixed contribution, the third term
¢C(u) is a constant and does not influence u’s decision.

As mentioned before, we need to prove that the best parti-
tion of u, maximizing the reward, is an e—chain. Concretely,
as R(u) = R'(u) + R®(u) + ¢C(u), we show that u can max-
imize R'(u) and R®(u), respectively, if T, is an € — chain.
Our next step is to prove w’s partition as an € — chain will
maximize R(u). We transform the topology of T, step by
step. The lemma below shows that if u wants to maximize
his inner reward R’(u) at most one node in T, can have
contribution less than .

LEMMA 4.6. If R'(u) is mazimized, there can be at most
one node v € Ty, with contribution C(v) < .

PrOOF. We prove the lemma by contradiction. Suppose
there is more than one node with contribution less than
p. We denote two such nodes as x,y, ie., z,y € T, with
C(z) < pand C(y) < p. Let Sy = Ty \ {z,y}, and let
P, P, be the set of ancestors of z,y in the reward compu-
tation tree. The inner reward of u is R*(u) = B(Tu, Tu)

= B({JJ, y}7 SU)+B(SU7 Su)-i-B({LE, y}7 {Z‘, y})+B(SU7 {.Z‘, y})

To simplify the calculation, we define a function ~,(S) =
D ves bu C(v) max{a?P»™) PP} for any node p in T,.
According to the definition of B(:), it can be shown that

B({z,y}, Su ): B(x, Su) + B(y, Su)
C(z )%(T \ {2, y}) + C(W)vy(Ty \ {2, 9}),

B(Su,{z,y}) = B(Su,z) + B(Su,y)
= C(2)7s (P \{z,y}) + C(W)v(Py \ {z, y}),

B({z,y},{=,y})

= L [(@7+ )+ P ) C@)Cly) + C)? + C(w)°)
Expanding R’(u) and combining the above bounds, we get
R'(u) = C(2)7e((Pe UTo) \ {z,y})

+C W) (Py UTy) \ {z,9)})

+2 (=) + a® Py ) O(2)Cy) + C(x)* + C(v)*)

+B(Su, Su). (1)
Without loss of generality, suppose v, ((Pr UT:) \ {z,y}) >
Yy ((Py UTy) \ {z,y}). Then, consider two cases:

a) If C(z)+ C(y) > 1, we can change C(z) to p and C(y)
to C(z) + C(y) —

b) If C(x)+C(y )
and C(y) to 0.

In both cases, the change does not have an impact on
the total contribution, but it increases R'(u). Specifically,
the sum of the first two expressions in (1) will increase due
to the change. Then, using the fact that if for two reals
Aand B with A > B,0 < t < 458k < 2 and S =
A? 4 B?+kAB and So = (A—t)2 +(B+t)* +k(A—t)(B+1),
it holds that S1 > S2, it follows that the third expression
in (1) also increases. Meanwhile, the forth expression is
unchanged. This leads to a contradiction because it means
that this hypothetic partition does not maximize the inner
reward. []

, we can change C'(z) to C(z)+C(y)

Next, we characterize the location of the at most one node
in T, that has contribution less than u. Due to space lim-
itations, we omit full proofs, and instead sketch the main
proof ideas.

LEMMA 4.7. If R'(u) is mazimized, T, is an ¢ — chain
or a chain in which only the leaf node has contribution less
than w.

Proof Sketch. According to Lemma 4.6, if R*(u) is max-
imized, there is at most one node with contribution less than
win T,,. We call it € — node and suppose its contribution is
€(< p). (Here we need to pay attention that the e —node has
contribution strictly less than p.) We can prove the lemma
by case analysis and contradiction.

a) Suppose Ty, is not a chain. We distinguish three sub-
cases.

al) Suppose in Ty, there is an € —node and the € — node is
not a leaf node. We denote the e —node as  with C(z) = ¢,
and denote the leaf node which is a descendent of = as y
with C(y) = u. If we change C(z) to u and C(y) to €, R*(u)
increases which contradicts the assumption.

a2) Suppose in Ty, there is an € —node and the ¢ — node is
a leaf node. In this case, T, has at least two leaf nodes. At
least one leaf node denoted as = has contribution . Then we
can delete z, add a new node y with contribution C'(y) = u
and make the remaining tree T, \ {z} attached as a subtree
to y. R'(u) will increase.

a3) Suppose in T, there is no e —node. The proof method
is the same as that in a2).

b) Suppose T}, is a chain and there is an ¢ — node which
is neither the root nor the leaf of the chain. We denote the
€ —node as x and the leaf of the chain as y. We can increase
R'(u) by changing C(z) to p and changing C(y) to e which
contradicts the assumption. [J

Thus we have shown that an € — chain in the reward com-
putation tree maximizes R'(u). We will now prove that u’s
partition as an € — chain also maximizes his external reward
R?(u). The next lemma shows it is better to root each tree
in Ty to one leaf node in T,.

LEMMA 4.8. For any given topology T, suppose uy, uz, ...,
u, are the nodes in T,,. There exists a partition that maxi-
mizes R®(u) in which each tree in Ty, is attached to a single
node u;, for some i =1,2,.... k.

Proof Sketch. We denote the trees in Ty, as T1,---,Ts.
According to the definition of the external reward, it holds
that

R°(u) = B(T,, Tu) = ZBTH,T

Suppose that by attaching 71 to u; (1 < t < k), B(Ty,T4)
can be maximized. The proof works by showing that by
attaching each tree T; (i = 1,2,...s) to u¢, we can maximize
R¢(u). O

We now know that R®(u) can be maximized when each
tree in 7T, is attached to a single node in T,,. For any given
T,, in order to maximize R®(u), we thus only need to con-
sider partition in which each tree in T, is attached to some
node u* in T,,. Then using this property, we show that an
€ — chain is the best partition for maximizing u’s external
reward.

LEMMA 4.9. If R°(u) is mazimized, T, must be an € —
chain and u* is the leaf node of T,,.



Proof Sketch. The first step is to show that if R®(u) is
maximized, T,, must be a chain and u* is a leaf node in T,.
We prove it by contradiction. Suppose T, is not a chain or
u* is not a leaf node in T,,. Then we find that there exists
a leaf node ur in T, which is not u*. As no tree in Ty is
attached to ur, it holds that B(ur,Tu) = 0. We delete ur,
in T, and relocate uy, to be the root of T, \ur.. The external
reward of u will increase due to this change. So if R®(u) is
maximized, T, must be a chain and u* is a leaf node in T.

Our next step is to show T, is an ¢ — chain. We also
prove it by contradiction. Suppose Ty is a chain but not
an € — chain and u can get the maximum external reward.
Then there exists a node x which is not the root node of
T, and has contribution C(z) < u. As z is not the root,
we denote z’s parent as y. Then we find that if we change
C(z) to C(z) + a and C(y) to C(y) — a, (The constraints
are @ < g — C(z) and a < C(y); we can take very small
a.) u can get higher external reward. This establishes the
contradiction. Thus, if u wants to maximize R®(u), he must
join the referral tree in such a way that T, results in an
€ — chain, and u* is the leaf node of T,,. O

With this, we are now in a position to complete the proof.
By Lemmas 4.7 and 4.9, we know that the partition which
makes T, an € — chain, and in which all trees in T, are
attached to the tail node of T, can maximize both R’(u)
and R°(u). According to the definition that R(u) = R*(u)+
R*(u) + ¢C(u), we can infer that such a partition thus max-
imizes R(u). However, if the participant u simply joins the
referral tree as a single, non-Sybil node with its entire con-
tribution, TDRM will automatically also transform u parti-
tion into the same € — chain in the reward computation tree.
Thus, v has no benefit from joining as multiple identities,
which proves USA.

Example : To show that TDRM does indeed violate UGSA,
consider the following counter-example. Let u be a partici-
pant with C'(u) = 3 and let vy, -+, v be w’s children with
C(v1) = --- = C(vk) = p (k > —). The profit of u as
computed by TDRM is P(u) = 1((ak + 1)Aub + ¢p — p).
If we increase u’s contribution to C'(u) = p, then we can
show that the new profit of u is P'(u) = R'(u) — C'(u) =
(ak+1)Aub+ ép — p, which is larger than P(w). That is, by
increasing his contribution w can increase his profit, which
violates UGSA.

4.4 Satisfying All But URO: Contribution-
Deterministic Reward Mechanisms

Given the impossibility results in Theorem 4.3, we cannot
expect to achieve a mechanism that achieves all the desir-
able properties defined in this paper, in particular, we can-
not hope to simultaneously achieve UGSA and URO. The
TDRM mechanism in the previous section has achieved all,
but UGSA. In this section, we show that we can also re-
lax the other property, URO, and satisfy instead all the
remaining properties. For this, however, entirely different
algorithmic techniques are required.

The key idea is that whereas the previously discussed
mechanisms are topology-dependent (i.e., the reward is among
other things a function of the structural property of a node’s
descendant tree), we now consider mechanisms in which the
reward of a participant u is independent of the topology
of its subtree. In particular, we seek mechanisms in which
the reward R(u) is purely a function of u’s own contribu-

tion and the sum 3 .. C(v) of the contributions in T..
We show that this can yield a family of mechanisms that
achieve UGSA, albeit at the cost of URO.

For ease of notation, define z, = C(p) and y, = C(T,\{p})
for a participant p € T. Then, we want that the reward
function R(p) is purely a function of x, and y,. What prop-
erties should this function R(z,,y,) have in order to satisfy
the desirable properties? The SL constraint is automatically
satisfied by the definition of R(zp, yp). The CCI property de-

mands that R(zp,yp) is increasing in zp, i.e. 0 < %pp’y").

In order to satisfy CSI, it should hold that an increase in
Yp increases p’s reward, hence 0 < %”p’y’)). If we want
to globally ensure the budget constraint, one way to do
this is to demand that R(zp,yp) < ®zp, and similarly, the
¢ — RPC property can be enforced by ¢z, < R(zp,yp).
It is important to point out that demanding the budget
constraint to be satisfied by means of R(zp,yp) < Pz, im-
plies that we cannot achieve the unbounded reward prop-
erty URO. The reason is that if URO were to be satisfied,
R(zp,yp) would need to be able to grow larger and larger
as yp increases, which would eventually violate this con-
straint. In order to also achieve USA, we need the condition
that for any zj,, = such that zj, + z; = z,, it holds that
R(zp,yp) > R(zy, zy +yp) + R(z}, yp), and, finally, in order
to achieve UGSA (under the assumption that we already
have USA satisfied), we only need %”p’y") <1
Combining these observations, we can demand that a func-
tion R(zp,yp) satisfy four properties. If it satisfies all of
them, we call the function successfully contribution
-deterministic. The properties are, for any x, > 0, y,:

dR(a:I% yp)
dxz,

”Z) ¢y < R(zp,Yp) < Py,

i”) R(xp:yp) > R(a?;n 96;' + yp) + R(ﬂ?}'»yp)»

<1, i)0< dR(zp, yp)

i) 0 < dy
P

)

’ 7 ’ 7
for any x,, @}, such that =, + xj, = z;.

THEOREM 4.10. If R(xp,yp) is a successfully contribution-
deterministic function, then the reward mechanism that dis-
tributes rewards according to R(xp,yp) achieves all proper-
ties, except URO.

ProOOF. The proof follows closely along the lines of how
the properties are defined. The SL constraint is obviously
satisfied. CCI is satisfied because R(zp,yp) is increasing in
zp (Property i); CSI is satisfied because R(zp,yp) is increas-
ing in y, (Property ii); and both ¢ — PPC and the budget
constraint are clearly satisfied because of Property iii.

We prove that USA is satisfied by contradiction. Suppose
there is a participant p that can maximize his reward by
joining the system as & > 2 nodes, and assume that the
cardinality k£ is minimal among all those maximal splits.
Consider two of these Sybil nodes p1 and p2, and define
21 = C(p), @2 = Cp2), g1 = C(Ty,) — Clpr) and o =
C(Tp,) — C(p2). There are two cases:

a) p1 is an ancestor of ps (or vice versa). Then we know

that y1 > z2 + 42, 0 < dR(zp,yp)

q = so for any x, and y,
p

R(z1,y1) + R(x2,y2) < R(w1,y1) + R(x2,y1 — x2).
According to Property iv defined above, we know that
R(z1,31) + R(z2,y1 — 22) < R(x1 + @2, 91 — x2).



Combining these two expressions implies that the following
inequality holds:

R(z1,y1) + R(z2,y2) < R(x1 + 22,91 — 22).

This means that p can get at least the same reward by merg-
ing p1 and p2 into one node, which contradicts our assump-
tion.

b) p1 is not an ancestor of ps (or vice versa). According
to Property iv, it holds that

R(z1 4+ z2, 31 + y2) > R(z1, 31 + y2 + 22) + R(z2, Y1 + y2)

> R(w1,y1) + R(x2,y2)-

Like in case a), this implies that p can get at least the same
reward by merging p; and p2 which contradicts our assump-
tion. This concludes the proof that USA is satisfied.

Finally, we prove that UGSA is satisfied. Consider some
participant p. We need to compare two cases. In the first
case, p joins the system as k nodes, pi,...,pr. In the sec-
ond case, p joins the system as a single node. In order
to prove UGSA, we need to show that for any k£ and any
¥*_,C(p;) which is equal to or larger than C(p), in the
second case, p can get higher payoff, namely ¥, (C(p;) —
R(C(p:), C(Tp; \pi))) = C(p) — R(C(p), C(T,\p)). Accord-
ing to the USA property, we know that any participant p
with a fixed cost can get the highest reward by joining the
system as single node. Therefore, we can assume that there
is an optimal choice in the scenario in which k = 1.

It remains to prove that for any ¢ > 0, it holds z, —
R(zp,yp) < zp + € — R(xp + €, yp). According to Property i,
we know that for any zp, yp,

dR(‘TI% yp)

<1
dxp

Therefore, it follows that for any € > 0,

R(zp + €,yp) — R(wp,yp) < €

= xp — R(2p, yp) < Tp + € — R(zp + €,Yp).

As € > 0, the total profit decreases, which implies that
UGSA is satisfied. [

4.4.1 CDRM Mechanisms

The properties derived in the previous section imply a
family of reward mechanisms all of which achieve all prop-
erties except URQ. It remains to find specific, practical func-
tions that belong to this family. In this section, we give two
examples. First, we set R(xp,yp) = f(Zp, yp)Tp, so that the
reward function is proportional to xp.

Algorithm 5: Two examples of a CDRM Mechanism
i) R(p)Z(@—ﬁ)xp, for 0+ ¢ < @
ii) R(p) = ®xp + Oln — 22 for 0+ ¢ < ®

zptyp+1’

In both cases, it is easy to verify that the reward function
does satisfy all the properties stated in the theorem. Hence,
both CDRM mechanisms satisfy all our desirable properties,
except URO.

S. CONCLUSIONS

In this work, we have studied incentive tree mechanisms,
thus formalizing and generalizing previous algorithmic work
on referral trees, lottery trees [9, 6] and multi-level market-
ing mechanisms [10][11]. We design two families of incentive
tree mechanisms, both of which achieve all but one among
the set of axiomatic properties. Furthermore, our impossi-
bility result suggests that this is optimal. We are encouraged
that both of these mechanisms achieve the slightly weaker
notion of unprofitable Sybil attack (USA). This shows that
mechanisms can be designed that are provably resilient against
basic forms of multi-identity attacks.

Any axiomatic approach based on a choice of desirable
properties is questionable as different people may deem dif-
ferent properties to be more important. Indeed, as we point
out, not all of the properties are equally relevant to the
successful operation of an incentive tree scheme in practice.
However, in ongoing work, we have been studying the effect
of our mechanisms in practical deployments; and experience
has strengthened our belief the properties defined in this
paper are indeed of critical practical importance.
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