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Abstract— We study ΣΠΣ(k) circuits, i.e., depth three arithmetic
circuits with top fanin k. We give the first deterministic polynomial
time blackbox identity test for ΣΠΣ(k) circuits over the field Q of
rational numbers, thus resolving a question posed by Klivans and
Spielman (STOC 2001).

Our main technical result is a structural theorem for ΣΠΣ(k)
circuits that compute the zero polynomial. In particular we show
that if a ΣΠΣ(k) circuit C =

∑
i∈[k] Ai =

∑
i∈[k]

∏
j∈[d] `ij

computing the zero polynomial, where each Ai is a product of
linear forms with coefficients in R, is simple (gcd{Ai | i ∈
[k]} = 1) and minimal (for all proper nonempty subsets S ⊂ [k],∑

i∈S Ai 6= 0), then the rank (dimension of the span of the linear
forms {`ij | i ∈ [k], j ∈ [d]}) of C can be upper bounded by a
function only of k. This proves a weak form of a conjecture of
Dvir and Shpilka (STOC 2005) on the structure of identically zero
depth three arithmetic circuits. Our blackbox identity test follows
from this structural theorem by combining it with a construction
of Karnin and Shpilka (CCC 2008).

Our proof of the structure theorem exploits the geometry of finite
point sets in Rn. We identify the linear forms appearing in the
circuit C with points in Rn. We then show how to apply high
dimensional versions of the Sylvester–Gallai Theorem, a theorem
from incidence-geometry, to identify a special linear form appear-
ing in C, such that on the subspace where the linear form vanishes,
C restricts to a simpler circuit computing the zero polynomial. This
allows us to build an inductive argument bounding the rank of our
circuit. While the utility of such theorems from incidence geometry
for identity testing has been hinted at before, our proof is the first
to develop the connection fully and utilize it effectively.

Keywords-Arithmetic circuits, Derandomization, Sylvester–Gallai.

1. INTRODUCTION

Identity testing is the following problem: given an
arithmetic circuit1 computing a multivariate polynomial
f(X1, . . . , Xn) over a field F, determine if the polynomial
is identically zero. Algorithms for primality testing [2],
[3], perfect matching [23] and some fundamental struc-
tural results in complexity such as the PCP Theorem and
IP=PSPACE involve testing if a particular polynomial is
zero.

Schwartz [25] and Zippel [28] observed that by evaluating
a polynomial at randomly chosen points from a sufficiently
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1Arithmetic circuits are circuits with two types of internal nodes/gates: a
× gate computes the product of its inputs whereas a + gate is allowed to
compute an arbitrary linear combination of its inputs, and the wires carry
elements of a field F.

large domain, we can determine if the polynomial is nonzero
with high probability. The correctness of their algorithm
follows from the simple observation that any polynomial
of total degree d cannot have many roots over a field whose
size is much larger than d. The Schwartz–Zippel Lemma
combined with a standard counting argument implies that
for every integer s, there is a poly(s)-sized set of points
P such that for every circuit C of size s, C computes
the zero polynomial if and only if C(a) = 0 for every
a ∈ P. Blackbox Identity testing is the problem of giving
an explicit2 construction of such a test set P. Any explicit
construction of such a set of points immediately gives, via
interpolation, an explicit polynomial f which cannot be
computed by circuits of size s [1].

A more surprising connection between identity testing and
the task of proving arithmetic circuit lower bounds was
discovered by Impagliazzo and Kabanets [15] who showed
that any polynomial-time algorithm for identity testing (not
necessarily a blackbox identity test3) would also imply
certain arithmetic circuit lower bounds. More specifically,
they showed that if identity testing has an efficient deter-
ministic polynomial time algorithm then (almost) NEXP
does not have polynomial size arithmetic circuits. For the
pessimist, this indicates that derandomizing identity testing
is a hopeless problem. For the optimist, this means on the
contrary that to obtain an arithmetic circuit lower bound,
we “simply” have to prove a good upper bound on identity
testing.

Because of the difficulty of the general problem, research has
focussed on bounded depth arithmetic circuits. Grigoriev and
Karpinski [13] have shown that any depth three arithmetic
circuit over a finite field computing the permanent or the
determinant requires exponential size4. But progress in this
direction stalled and very recently, an “explanation” for this
was discovered by Agrawal and Vinay [4] who showed that
there is chasm at depth four - proving exponential lower
bounds for depth four arithmetic circuits already implies

2Over infinite fields such as the rationals, we require more so that the
evaluation can be carried out efficiently - the bit-length of the coordinates of
the points in P need to be polynomially bounded. Furthermore, if the degree
of the polynomial computed is huge then we also require the construction
to give a prime of small bit-length so that the computation can be carried
out modulo p.

3A non-blackbox algorithm is given a full description of the circuit and
it needs to decide whether it is identically 0.

4The size of the field is held constant and a lower bound is obtained on
the size of the circuit as a function of the dimension of the matrix.



exponential lower bounds for arbitrary depth arithmetic
circuits. They also showed that a complete blackbox de-
randomization of Identity Testing problem for depth four
circuits with multiplication gates of small fanin implies a
nearly complete derandomization of general Identity Testing.
As most of these questions are fairly easy for depth two
circuits, we see that depth three circuits stand between the
relatively easy (depth-two) and the difficult, fairly general
case (depth-four). Hence it is a worthwhile goal to get a
good understanding of depth-three circuits.

Another important direction of research, pursued in the
works of Chen and Kao [8], Lewin and Vadhan [22], Klivans
and Spielman [21] and Agrawal and Biswas [2] on the
identity testing problem has been the effort to take advantage
of the structure of a polynomial to reduce the number of
random bits needed for identity testing. In this process,
Klivans and Spielman gave a blackbox identity testing
algorithm for depth two arithmetic circuits and posed as a
challenge the problem of devising blackbox identity testers
for depth three circuits with bounded top fanin. Recall that
a depth three arithmetic circuit, also called a ΣΠΣ-circuit,
has an addition gate at the top (output) layer, followed by
multiplication gates at the middle layer, followed by addition
gates at the bottom layer, the gates being of arbitrary fanin5.
In other words, a ΣΠΣ circuit is a sum of terms, each
of which is a product of a linear function of the input
variables. We denote the set of n input, depth three circuits,
where the top addition gate has fanin k, and the middle
multiplication gates have fanin at most d, by ΣΠΣ(k, d, n).
The challenge posed by Klivans and Spielman was taken up
by Dvir and Shpilka [9] and then by Kayal and Saxena [19]
and a non-blackbox deterministic polynomial-time algorithm
was devised (see also [5]). Recently Karnin and Shpilka [16]
obtained a quasi-polynomial time blackbox identity test for
ΣΠΣ(k, d, n) circuits. Despite the progress made on this
question, a deterministic polynomial-time blackbox test had
remained elusive.

In this paper we fully resolve the Klivans–Spielman chal-
lenge for arithmetic circuits with rational coefficients by
giving the first deterministic blackbox identity test for
ΣΠΣ(k, d, n) circuits whose running time, for every fixed
value of k, is polynomial in d and n. Our main technical
contribution towards the proof of this result is a structural
theorem for such circuits that answers a weak form of a
conjecture by Dvir and Shpilka. In particular we prove that
the “rank” of bounded top-fanin ΣΠΣ circuits is a constant
depending only on the size of the top fanin. Combined
with a result from [16] which says that a good rank bound
suffices for black-box identity testing, we obtain the full
result. The proof of our structure theorem uses results from

5If the depth three circuit has a multiplication gate at the top then
problems pertaining to identity testing and lower bounds boil down to the
relatively easy case of depth two circuits.

the incidence geometry of Rn. In particular we invoke a
high dimensional version of the Sylvester–Gallai Theorem
that enables us to identify certain configurations of linear
forms appearing in any high rank circuit that prevent it from
being identically zero. The survey by Borwein and Moser
[7] contains a good introduction to the Sylvester–Gallai
Theorem - its history, its proofs and its many generalizations.
Before we state the conjecture and our main result, we
introduce some terminology.

2. DEFINITIONS AND STATEMENT OF RESULTS

[k] denotes the set {1, 2, . . . , k}. Q denotes the field of
rational numbers and R the field of real numbers.

Depth Three Arithmetic Circuits. We consider arithmetic
circuits with coefficients in a field F (in this paper, F will
always be either Q or R) . A ΣΠΣ circuit C is a formal
expression of the form∑

i∈[k]

Ai =
∑
i∈[k]

∏
j∈[d]

`ij ,

where the `ij are linear forms of the type `ij =
∑
k∈[n] ak ·

Xk = a ·X, where a = (a1, . . . , an) is a fixed vector in Qn,
and X = (X1, . . . , Xn) is the tuple of indeterminates. k is
the fanin of the top gate of the circuit and d is the fanin of
each multiplication gate Ai. The Ai’s are referred to as the
terms or the constituent ΠΣ subcircuits of C and the `ij’s
as the set of linear forms that belong to the circuit. Recall
that we denote the class of such circuits by ΣΠΣ(k, d, n).

Remark Note that the above definition only captured
homogeneous circuits. For the purpose of identity testing, we
can assume this without loss of generality. Indeed, notice that
a polynomial C(X1, . . . , Xn) of degree less than or equal
to d is zero if and only if the corresponding homogeneous
polynomial Zd·C(X1

Z , . . . ,
Xn

Z ) is zero. This observation can
be used to homogenize the input circuit C. Notice also that
after the homogenization all multiplication gates {Ai} have
the same fanin d. In the rest of the paper we will assume
that the input circuit is homogeneous, i.e. the `ij’s as linear
forms (zero constant term) and all the multiplication gates
have the same fanin d.

When the context requires it, we will drop some of the
parameters in talking about this class of circuits. ΣΠΣ(k)
will denote the set of ΣΠΣ circuits with top fanin k and
ΣΠΣ(k, d) will be the set of ΣΠΣ circuits with top fanin
k and middle (multiplication gate) fanin d. Given such a
circuit, we can naturally associate it with the polynomial
computed by it. We say that C ≡ 0 if the polynomial
computed by C is identically zero. We are now ready to
state our main result which shows that for every fixed k,
there is a deterministic blackbox identity tester for the class



of ΣΠΣ(k, d, n) circuits over the field Q that runs in time
polynomial in n and d.

Theorem 2.1: [Blackbox PIT for ΣΠΣ(k) circuits] There
is a deterministic algorithm that takes as input a triple
(k, d, n) of natural numbers and in time poly(n)·d2O(k·log k)

,
outputs a set P ⊂ Zn with the following properties:

1) Any ΣΠΣ(k, d, n) circuit C with rational coefficients
computes the zero polynomial if and only if C(a) = 0
for every a ∈ P .

2) The number of points in P is poly(n) · d2O(k·log k)
.

3) For every (a1, . . . , an) ∈ P and every i ∈ [n] : |ai| ≤
poly(2n

2 · d) · 22O(k log k)
. In particular, the bit-length

of each point in P is 2O(k log k) ·O(n3 · log d).

Remark.

1) Notice that in the theorem above, the number of points
in P and the bit-lengths of these points are both
independent of the bit-lengths of the constants from
Q used in the circuit. Hence we can allow arbitrary
constants from Q to be used on the edges coming
into addition gates in the circuit. We get this feature
because the two main components of the proof, the
structure theorem (Theorem 2.2) as well as the result
from [16] (Lemma 2.3) are independent of the bit-
lengths of the constants from Q used in the circuit.

2) For every fixed value of k, the algorithm for the
construction of the set P alluded to in the above
theorem can in fact be implemented in TC0. Combined
with the observation that a given depth three circuit
can be evaluated at a given point in TC0, we get
a deterministic P-uniform TC0-algorithm for identity
testing of ΣΠΣ(k, d, n) circuits. Previously no effi-
cient deterministic algorithm, not even a non-blackbox
one, for identity testing of ΣΠΣ(k) was known which
can be implemented in TC0. We do not stress the
constant depth computability because it is not the main
point of our result. But the ability to do identity testing
using small depth uniform circuits can potentially be
useful at other places, such as in the context of the
question [23]: Is BipartiteMatching ∈ NC ?

3) For concreteness, we only state our results over Q
but our theorem is valid over any field that can be
embedded into the real numbers, in particular for any
totally real extension of Q. Over such fields, the same
set of points as constructed above suffices for identity
testing.

4) As noted in the introduction, a blackbox identity test-
ing algorithm for any class of circuits can in general
be used to construct explicit polynomials that are hard
to compute by the corresponding class of circuits. It
is known that ΣΠΣ circuits with bounded top fanin
cannot compute all polynomials - no matter how large

their size. In particular such circuits cannot compute
the determinant and the elementary symmetric polyno-
mials. No Unbounded top-fanin ΣΠΣ circuits, if they
are large enough, can compute all polynomials. The
best known lowerbound for the size of a general ΣΠΣ
circuit is quadratic, due to Shpilka and Wigderson
[27].

After introducing the requisite terminology, we state the two
main ingredients leading to this theorem - our proof of a
conjecture by Dvir and Shpilka and a construction of rank
preserving subspaces by Karnin and Shpilka.

2.1. Notions related to a ΣΠΣ circuit

Let C =
∑
i∈[k]Ai =

∑
i∈[k]

∏
j∈[d] `ij be a ΣΠΣ circuit.

We give the following definitions:
minimal: We say that C is minimal if no strict nonempty
subset of its constituent ΠΣ polynomials {A1, . . . , Ak}
sums to zero.
simple: We say that C is simple if the gcd of its constituent
ΠΣ polynomials, gcd(A1, A2, . . . , Ak) equals one. The sim-
plification of a ΣΠΣ-circuit C, denoted Sim(C), is the ΣΠΣ
circuit obtained by dividing each term by the gcd of all the
terms. i.e.,

Sim(C) def=
∑
i∈[k]

Ai(X)
g(X)

, where g(X) = gcd(A1, . . . , Ak)

rank: Identifying each linear form ` =
∑
i∈[k] ai ·Xi with

the vector (a1, . . . , an) ∈ Rn, we define the rank of C to
be the dimension of the vector space spanned by the set
{`ij | i ∈ [k], j ∈ [d]}.
pairwise-rank: For a ΣΠΣ(k) circuit C =

∑
i∈[k]Ai,

we define the pairwise-rank of C to be
min1≤i<j≤k{rank(Sim(Ai + Aj))}, where Ai + Aj
is the subcircuit of C containing just the two multiplication
gates Ai and Aj . If C has only one multiplication gate, we
say the pairwise-rank of C is ∞.

2.2. The Dvir–Shpilka conjecture and the main Structural
Result

Very roughly, the conjecture of Dvir and Shpilka [9] asserts
that for every k, there is a constant c(k) such that if a
depth three circuit C with top fanin k computes the zero
polynomial then the rank of C is at most c(k) (independent
of the degree d of the intermediate polynomials computed
at the different multiplication gates). As a step towards the
conjecture, a poly(2k

2 · log d) upper bound on the rank was
obtained by Dvir and Shpilka [9]. This was subsequently
improved by Saxena and Seshadri [24] to (poly(k) · log d).
Over finite fields, this conjecture was disproved by Kayal and
Saxena [19] but the situation over fields of characteristic zero



remained unclear. The conjecture soon revealed its funda-
mental nature - the weaker polylogarithmic upper bound was
used by Karnin and Shpilka[16] to give a quasipolynomial
time deterministic blackbox identity test for ΣΠΣ circuits
with bounded top fanin. It was also used by Shpilka [26] and
by Karnin and Shpilka [17] to give a quasipolynomial time
algorithm for reconstruction of ΣΠΣ circuits. In this paper,
we prove the conjecture of Dvir and Shpilka over the field
R of real numbers, and therefore also over all subfields of R
such as Q, the field of rational numbers. We then combine
this result with ideas from [16] to get an efficient algorithm
for blackbox identity testing of ΣΠΣ-circuits with bounded
top-fanin.

Theorem 2.2: [Structure Theorem: Rank bound for
ΣΠΣ(k) circuits] For every k, there exists a constant c(k)
(where c(k) ≤ 3k((k + 1)!)2 = 2O(k·log k) ) such that
every ΣΠΣ(k) circuit C with coefficients in R that is
simple, minimal, and computes the zero polynomial has
rank(C) ≤ c(k).

Remark.

1) Dvir and Shpilka conjectured that c(k) is in fact a
polynomially increasing function of k. We are able to
only prove the weaker poly(2k·log k) upper bound on
c(k). The best previously known bound was (poly(k)·
log d) [24] (note the dependence on d).

2) Our proof techniques also enable us to prove the
structure theorem above (and hence blackbox identity
testing) for the case k = 3 over complex numbers and
over prime fields of very large characteristic. For more
discussion about these results and why our proof does
not go through for larger values of k over these fields,
see Appendix A.

2.3. From the Rank Bound to Identity Testing

We give below the construction of Karnin and Shpilka [16]
which used ideas from an earlier work of Gabizon and Raz
[12] to show how the rank bound of Theorem 2.2 translates
into the blackbox identity testing algorithm of Theorem 2.1.

Lemma 2.3: [Translating rank bounds into a blackbox
identity test.] [16] Let F be a field and R(k, d) be an
integer such that every minimal and simple ΣΠΣ(k, d, n)
circuit over F computing the zero polynomial has rank at
most R(k, d). For α ∈ F let Aα be the n× R(k, d) matrix
for which (Aα)i,j = αi(j+1). Let bα

def= (α, α2, . . . , αn).
Let S, T be subsets of F such that |S| = n ·

((
kd
2

)
+ 2k

)
·(

R(k,d)+2
2

)
+1 and |T | = d+1. Let P ⊂ Fn be the following

set of points.

P def=
{
Aα · x + bα : α ∈ S and x ∈ TR(k,d)

}
.

Then for every ΣΠΣ(k, d, n) circuit C, C is identically zero
if and only if C(a) = 0 for all a ∈ P.

This lemma can be applied to our situation as follows.

Proof of Theorem 2.1 We set F = Q and using Theorem
2.2, we get that R(k, d) = c(k) = 2O(k·log k) is independent
of d. We choose S to be {1, 2, . . . ,m} where

m = n ·
((

kd

2

)
+ 2k

)
·
(
c(k) + 2

2

)
+ 1

and T to be {1, 2, . . . , d + 1}. We apply the above lemma
to these choices of F, R(k, d), S and T . We thus get a set P
which satisfies property (1). The number of points in P is
|S| · |T | so that |P | = poly(n) · d2O(k log k)

. Thus P satisfies
property (2). Every coordinate of a point in P is the dot prod-
uct of two vectors of length R(k, d) = c(k) whose entries
have bit-length 2O(k log k) ·O(n2 · log d). This means that the
bit-length of each point in P is 2O(k log k) ·O(n3 ·log d). This
proves property (3). Clearly, this set P is very explicit - in
fact it is so explicit that for every fixed k, P can be computed
in the complexity class P-uniform TC0. This completes the
proof of the theorem.

�

The rest of this article is devoted to a proof of Theorem 2.2.

3. ORGANIZATION

The rest of this paper is organized as follows. In Section 4,
we give an overview of the techniques that we use in the
proof of Theorem 2.2. In Section 5, we give the proof of
Theorem 2.2 while deferring the proof of a key lemma used
in the proof to the full version [18]. We give a sketch of the
proof of this lemma and its connection to the Sylvester–
Gallai Theorem and a related hyperplane decomposition
lemma in Section 6. The proof of the main technical (key)
lemma, which we call the fanin reduction lemma and the
proof of the hyperplane decomposition lemma which is
used therein are in the full version [18]. We conclude with
a discussion of open problems in Section 7. Finally, in
Appendix A, we discuss some of the conjectures formulated
in the conclusion.

4. OVERVIEW OF PROOF OF RANK BOUND

In this section we give an overview of the proof of the
structure theorem (Theorem 2.2). The proof proceeds by
induction on the number of multiplication gates in the
circuit. As induction hypothesis, we assume that any simple,
minimal ΣΠΣ circuit with fewer than k multiplication gates
that is identically 0 cannot have high rank. Now if possible,
let C =

∑k
i=1Ai =

∑k
i=1

∏
`ij be a simple and minimal

circuit in n variables that has high rank, and such that C ≡ 0.



We will obtain a contradiction. For the sake of simplicity,
we assume that each linear form `ij that appears in a gate
of the circuit C, appears there with multiplicity one only.
In [18], when we give the full argument, we remove this
assumption.

Looking at the circuit modulo a linear form. We will be
looking at the circuit modulo an appropriately chosen linear
form. If ` = a1 ·X1 + · · · + an ·Xn is a linear form with
a1 6= 0, then the image of a circuit C modulo ` is defined
to be circuit obtained by replacing X1 by − 1

a1
· (a2 ·X2 +

. . .+ an ·Xn) in C. i.e.

C′ = C (mod `)
def= C(− 1

a1
(a2X2 + . . .+ anXn), X2, . . . , Xn).

(see [18] for a more accurate definition that avoids the
degenerate case when a1 = 0.) Observe that if Ai is a ΠΣ
polynomial of rank r and ` is a linear form, then either
Ai equals zero modulo ` (i.e. ` divides Ai) or the rank
of Ai drops by at most one to r − 1. Now if we pick a
linear form ` which occurs in one of the constituent ΠΣ
polynomials, say in A1, then A1 equals zero modulo ` so
that the resulting circuit C′ = C (mod `) would have at
most k− 1 multiplication gates, each surviving gate having
rank at most one less than what it had previously. Notice
that if C computes the zero polynomial then so does the
circuit C′. If this circuit C′ was both simple and minimal
we would be immediately done by the induction hypothesis.

However, in general it may not be possible to ensure C′

is simple and minimal, and hence we use an intermediate
notion, pairwise-rank, that very effectively captures and
deals with the issues of simplicity and minimality. We first
show that (1) any simple and minimal circuit computing
the zero polynomial that has high rank must also have high
pairwise rank. We then show that (2) no circuit with high
pairwise rank can compute the zero polynomial.

Step (1) is the easier of the two steps. We show that
if the circuit C has low pairwise-rank, then by setting
some of the variables of the circuit to random values, we
can obtain a new circuit that is still simple, minimal, has
high rank, computes the zero polynomial, but has fewer
multiplication gates (see Lemma 5.3). This contradicts the
induction hypothesis.

Step (2) again uses the induction hypothesis. One of the key
lemmas used here, which we refer to as the fanin reduction
lemma, roughly asserts that if C is a simple circuit with
high pairwise rank, then there exists a linear form ` in C
such that if we go modulo `, we get a circuit C′ that still
has high pairwise rank, but with fewer multiplication gates.
Also, if C ≡ 0, then C′ ≡ 0. From C′, we then show how
to extract a subcircuit that is simple, minimal, computes the
zero polynomial and has high rank. This will contradict the

induction hypothesis. The bulk of the work goes into proving
the fanin reduction lemma, Lemma 5.5. The vital ingredient
in the proof of Lemma 5.5 is a theorem from incidence
geometry called the high-dimensional Sylvester–Gallai The-
orem. Before we state the Sylvester–Gallai Theorem, we first
translate our problem into geometrical language.

4.1. A correspondence between ΣΠΣ(k, d, n) circuits and
k-colored points in Rn

We identify the linear forms appearing in C with colored
points in Rn. A linear form ` = a1 · X1 + · · · + an · Xn

corresponds to the point P` = (1, a2
a1
, . . . , an

a1
) ∈ Rn (see

[18] for a more accurate definition of this correspondence
which avoids the degenerate case when a1 = 0). If the linear
form ` ∈ Ai then we assign the color i to the point P`. Since
a linear form could appear in multiple gates, in general a
point could have many colors (see [18] for details). Our
choice of the mapping of linear forms to points satisfies the
property that 3 linear forms are linearly dependent iff they
map to collinear points. 6 For two points P 6= Q ∈ Rn we
will denote by λ(P,Q) the line joining P and Q. For a point
P and a color i we will denote by LPi the pencil of lines
{λ(P,Q) : Q has color i}.7

Translating the search for a suitable linear form into
the search for a suitable point. Let the set of all points
in the image of the set of linear forms in C be S. For a
color i ∈ [k], we will denote by Si the set of points of color
i. Now fix a linear form ` that occurs in C and consider
two multiplication gates, say A1 and A2 occurring in C
which do not contain `. Consider the set S1∆S2 which
is the symmetric difference of the two sets of points of
color 1 and 2 respectively (see [18] for a more accurate
definition which takes care of degenerate cases when a
linear forms occurs in a gate with a higher multiplicity).
Then the dimension of the space spanned by points in
S1∆S2 corresponds to the rank of the simplification of the
circuit A1 + A2. Now consider the two pencils of lines
LP`

1 and LP`
2 . Notice that LP`

1

⋂
LP`

2 is again a pencil of
lines through P`. Now gcd(A1 (mod `), A2 (mod `)) is
nontrivial ( 6= 1) if and only if there exists a line common to
these two pencils, i.e. LP`

1

⋂
LP`

2 6= φ. In fact the degree of
gcd(A1 (mod `), A2 (mod `)) is exactly the number of lines
in the pencil LP`

1

⋂
LP`

2 . Now let us consider the symmetric
difference LP`

1 ∆LP`
2 which is again another pencil of lines

through P`. The requirement that C modulo ` has high
pairwise rank, i.e. for all pairs of gates A1, A2 that do not
contain `, the simplification of A1 (mod `) + A2 (mod `)
should have high rank, then exactly translates into the
requirement that the lines in this pencil LP`

1 ∆LP`
2 should

span a high dimensional space.

6A set of points in Rn are said to be collinear if the points span a one
dimensional affine space.

7A pencil of lines is just a set of lines through a common point.



Applying the Sylvester–Gallai Theorem. At this point it
is not a priori clear as to why there should exist even a
single line in the pencil LP`

1 ∆LP`
2 . In fact if we fix the

point P` then such an assertion is easily seen to be false.
We show that there indeed exists a linear form `, and the
corresponding point P` such that for every pair of colors
i and j (P` has color neither i nor j), the lines in the
pencil LP`

i ∆LP`
j span a space of large enough dimension.

The proof of this fact forms the main substance of the proof
of our fanin reduction lemma, Lemma 5.5. In order to prove
this result, we crucially use the Sylvester–Gallai Theorem, a
result from incidence geometry. The basic Sylvester–Gallai
Theorem roughly states that if S is a finite set of points in
Rn that are not all collinear, then there exists a line passing
through exactly 2 points of S. This kind of statement is
already in the spirit of what we want to show. We use a
high dimensional version of the Sylvester–Gallai Theorem
along with some colorful combinatorics to obtain our final
result8.

5. THE RANK BOUND

In this section we the circuit rank bound, Theorem 2.2.
The main technical result that we use is Lemma 5.5 (which
we call the fanin reduction lemma). A sketch of the proof
of the fanin reduction lemma is given in Section 6, and
the full proof given in [18]. We first state some lemmas
and definitions related to circuit transformations that will be
useful in the proof of Theorem 2.2. We then state the fanin
reduction lemma (Lemma 5.5) and show how to combine
the results on circuit transformations and the fanin reduction
lemma to give a proof of Theorem 2.2.

Remark For the rest of this paper, all ΣΠΣ circuits will
have coefficients in R.

5.1. Circuit Transformations

In this section we discuss some operations on circuits that
will be useful in the proof of the rank bound (Theorem 2.2).

Lemma 5.1: [Invariance of circuit properties under in-
vertible linear transformations of the variables.] Let
π : Rn → Rn be an invertible linear transformation. Let
C =

∑
i∈[k]Ai =

∑
i∈[k]

∏
j∈d `ij be a ΣΠΣ circuit, and

let π(C) be the circuit
∑
i∈[k] π(Ai) =

∑
i∈[k]

∏
j∈d π(`ij),

where for a linear form ` = a · X, π(`) = π(a) · X.
Then, π(C) is simple ⇐⇒ C is simple, π(C) is minimal

8Dvir and Shpilka [9] even observed that a certain colorful analog of
the Sylvester–Gallai Theorem would imply the rank bound for the special
case of k = 3. Such a result had in fact been proved much earlier by
Edelstein and Kelly [10]. Unfortunately, such a direct approach does not
generalize for higher values of k. For more discussion about these results,
see Appendix A.

⇐⇒ C is minimal, π(C) ≡ 0 ⇐⇒ C ≡ 0, and
rank(π(C)) = rank(C).

The proof of this lemma is immediate from definitions, and
we omit it. We say that two circuits C and C′ are equivalent,
denoted by C ∼ C′, if there exists an invertible linear
transformation π : Rn → Rn such that C = π(C′).

Lemma 5.2: [Schwartz–Zippel Lemma] Let
f(X1, X2, . . . , Xn) be a nonzero n variate polynomial
of degree d over R. Then for (a1, a2, . . . , an) chosen
uniformly at random in [0, 1]n, the probability that
f(a1, a2, . . . , an) = 0 is zero.

Lemma 5.3: [Setting linear forms to random values.] Let
C ≡ 0 be a simple and minimal ΣΠΣ circuit in the n inde-
terminates X1, X2, . . . , Xn. Let rank(C) = r. Let t ∈ [n],
and let α1, α2, . . . , αt be real numbers picked independently
and uniformly from [0, 1]. Let Z be an indeterminate, and
consider the new circuit C′ formed by replacing Xi by αiZ
for all i ∈ [t]. Then with probability 1, C′ is minimal and
rank(Sim(C′)) ≥ r − t.

Definition 5.4: [Setting a linear form to 0: C|`=0] Let C =∑
i∈[k]Ai =

∑
i∈[k]

∏
j∈d `ij be a ΣΠΣ circuit. Let ` be a

linear form appearing in C. Let π : Rn → Rn is any linear
map of rank n − 1 such that kernel(π) = span(`)9. We let
C|`=0 denote the class of circuits obtained by applying such
a transformation π to C, to get a circuit π(C), where π(C)
is the circuit

∑
i∈[k]

∏
j∈d π(`ij), where for a linear form

` = a ·X, π(`) = π(a) ·X. Under such a transformation,
all the constituent ΠΣ polynomials that contain ` get set to
0, and we remove all such gates from the circuit.

It is easy to see that if C1 and C2 are two circuits in C|`=0,
then C1 ∼ C2, and we omit the proof. We abuse notation
by using C′ = C|`=0 to refer to any circuit C′ in the class
C|`=0. Note that if C ≡ 0, then for any circuit C′ in the
class C|`=0, we have C′ ≡ 0.

5.2. The Fanin Reduction Lemma

Lemma 5.5 is the main technical result of our paper that
allows us to apply an induction argument to reason about
the rank of ΣΠΣ circuits computing the zero polynomial.
We show that if a simple circuit C has high pairwise-rank,
then by “setting a linear form to 0”, we can transform it to a
new circuit C′ with fewer multiplication gates that still has
high pairwise-rank. Also, if C ≡ 0, then C′ ≡ 0.

Lemma 5.5: [Fanin Reduction Lemma] Let k,A > 0 be
integers. Let B = 3(A+ 1)k2. Let C be a simple ΣΠΣ(k)
circuit such that pairwise-rank(C) ≥ A, and rank(C) ≥ B.
Then there exists a linear form ` in the circuit C such that
for C′ = C|`=0, pairwise-rank(C′) ≥ A.

9Where for ` = a·X, span(`) denotes the one dimensional vector space
spanned by the vector a



A sketch of the proof of this lemma is given in Section 6
and full proof given in [18]. With these tools in hand, we
are now ready to prove the main theorem of this paper.

5.3. Proof of Theorem 2.2: The Rank Bound

Theorem 2.2 [Rank bound for ΣΠΣ(k) circuits]: Let
c(k) = 3k((k + 1)!)2. Let C be a simple and minimal
ΣΠΣ(k) circuit that computes the zero polynomial. Then
rank(C) ≤ c(k).

The proof proceeds by an induction on k, the number of
multiplication gates in C. We first show that C must have
high pairwise-rank. If it does not have high pairwise-rank,
then we can use Lemma 5.3 to obtain a new circuit that is
still simple and minimal and has high rank, but with fewer
multiplication gates. This would contradict the induction
hypothesis. We then use Lemma 5.5 to find a linear form `
such that the circuit C′ = C|`=0 also has high pairwise-rank,
and is such that C′ ≡ 0, but has fewer multiplication gates.
Any minimal subset of the multiplication gates of C′ that
sums to 0 will give a circuit Cmin that also has high pairwise-
rank, is minimal, and still computes the zero polynomial.
The simplification of Cmin will then be simple, minimal,
have high rank, and will have fewer than k multiplication
gates, contradicting the induction hypothesis.

Proof: We will prove the above theorem by induction
on k.

For k = 1, 2, the result is vacuously true. Let k ≥ 3 and
assume the theorem is true for ΣΠΣ(m) circuits for all m ≤
k − 1.

If possible let

C =
k∑
i=1

Ai =
k∑
i=1

d∏
j=1

`ij

be simple and minimal such that C ≡ 0, and
rank(C) > c(k). Let the indeterminates appearing in C be
X1, X2, . . . , Xn.

Case 1: pairwise-rank(C) < c(k)− c(k − 1). Hence there
exist i, j ∈ [k] such that i 6= j and rank(Sim(Ai + Aj)) <
c(k) − c(k − 1). Let Ai + Aj = gcd(Ai, Aj) · Sim(Ai +
Aj). Without loss of generality, by Lemma 5.1 (equivalence
up to linear transformations), let span((Sim(Ai + Aj))10

be spanned by X1, X2, . . . , Xt, where t = rank(Sim(Ai +
Aj)). For each i ∈ [t], let αi be a uniformly random real
number in [0, 1]. For i ∈ [t], set Xi = αiZ. By Lemma 5.3,
with probability 1 we get a (homogeneous) circuit C′ such
that C′ ≡ 0, it has at most k−1 gates (since after the random
substitution, both Ai and Aj will have the same set of linear
forms up to scalar multiples, and they can be merged into

10For C =
∑

i∈[k]

∏
j∈[d] `ij , we let span(C) = span({`ij | i ∈

[k], j ∈ [d]})

a single gate), is still minimal, and its gcd has rank at most
1. Also, since t < c(k) − c(k − 1) we get that rank of
Sim(C′) is strictly greater than c(k− 1). Hence Sim(C′) is
simple, minimal, computes the zero polynomial, has at most
k− 1 multiplication gates, and has rank strictly greater than
c(k − 1), contradicting the induction hypothesis.

Case 2: pairwise-rank(C) ≥ c(k)− c(k− 1). Hence for all
i, j ∈ [k] such that i 6= j, rank(Sim(Ai + Aj)) ≥ c(k) −
c(k− 1) > c(k)/2 > c(k− 1) + 1. Notice that by choice of
the function c, c(k) ≥ 3k2((c(k−1)+1)+1). By Lemma 5.5
(With A = c(k− 1) + 1 and B = c(k)), there exists a linear
form ` in C such that for C′ = C|`=0, pairwise-rank(C′) ≥
c(k − 1) + 1.

Now, since the gates containing ` got set to 0, the number
of gates in C′ is at most k − 1. Also, pairwise-rank(C′) ≥
c(k− 1) + 1 implies that for all subsets S ⊆ [k] such that S
indexes at least two nonzero gates of C, rank(Sim(C′|S)) ≥
c(k−1) + 1 (where C′|S is the subcircuit of C′ obtained by
restricting to only those multiplication gates of C′ that are
indexed by S). We know that

∑
i∈[k]A

′
i = 0 (where at least

one of the A′i is set to 0). Now take the smallest nonempty
such set S for which

∑
i∈S A

′
i = 0. Then,

∑
i∈S A

′
i is a

minimal circuit such that its simple part has rank at least
c(k − 1) + 1. This contradicts the induction hypothesis.

Thus we conclude that rank(C) ≤ c(k).

6. THE SYLVESTER–GALLAI THEOREM AND THE FANIN
REDUCTION LEMMA

In this section we will sketch a proof of the fanin reduction
lemma (Lemma 5.5) and highlight the main ingredients
in the proof. The full proof is given in [18]. Our proof
of the fanin reduction lemma first translates the problem
from a question about circuits to a question purely about
the incidence properties of colored points in Rn. The main
tools that we use in analyzing the points is the Sylvester–
Gallai Theorem, and a related hyperplane decomposition
theorem. Before we state these results, we first introduce
some terminology that we will use.

Affine spaces and hyperplanes. We say that H ⊆ Rn is an
affine space if it is a translation of a linear space. In other
words, there exists a linear vector space H ′ ⊆ Rn and a
vector v ∈ Rn such that H = v +H ′ = {v + u | u ∈ H ′}.
The dimension dim(H) of the affine space is the dimension
of the corresponding linear space dim(H ′). We will be using
the term hyperplane interchangeably with affine space. In
this terminology, a point is a hyperplane of dimension 0, a
line is a hyperplane of dimension 1 etc. For a set S ⊆ Rn of
points, the affine span of S, denoted affine-span(S), is the
intersection of all the affine spaces containing S. Note that
the affine span of a set is also an affine space. Also note the



difference between this notion of affine-span and the notion
of vector space span11.

The Sylvester–Gallai Theorem (see the survey by Borwein
and Moser [7] for details) asserts the following:

Theorem 6.1: [Sylvester–Gallai] Let S be a finite set of
points spanning an affine space V ⊆ Rn such that
dim(V ) ≥ 2. Then there exists a line L ⊆ V such that
|L ∩ S| = 2.

We state below the high dimensional Sylvester–Gallai The-
orem. It was first proved in a slightly different form by
Hansen [14]. The version below is a slightly refined ver-
sion of Hansen’s result, and was obtained by Bonnice and
Edelstein [6, Theorem 2.1].

Theorem 6.2: [Generalized Sylvester–Gallai for high di-
mensions] ([14], [6]) Let S be a finite set of points span-
ning an affine space V ⊆ Rn such that dim(V ) ≥ 2t.
Then, there exists a t dimensional hyperplane H such that
|H ∩ S| = t+ 1, and such that H is spanned by the points
of S. i.e affine-span(H ∩ S) = H .

Using the above result, we obtain the following ‘decomposi-
tion’ theorem. A similar decomposition procedure was car-
ried out by Edelstein and Kelly [10] (to obtain a Sylvester–
Gallai kind of theorem for colored points), and by Bonnice
and Edelstein [6]. We defer the proof of the hyperplane
decomposition lemma (Lemma 6.3) to [18].

Lemma 6.3: [Hyperplane decomposition] Let V be an
m dimensional affine space over R. Let S ⊂ V be a
finite set, such that affine-span(S) = V . Let Score ⊆ S,
and let Hcore = affine-span(Score) be an affine space
of dimension mcore. Then for some r ≥ m−mcore

2 , there
exist hyperplanes H1, H2, . . . ,Hr ⊂ V , such that letting
H = affine-span({Hi | i ∈ [r]}), we have the following
properties.

1) For all i ∈ [r], Hcore ⊆ Hi and dim(Hi) = mcore +1.
2) dim(H) = mcore + r. In particular, if R ⊆ [r] is such

that for each i ∈ R, Pi is a point in Hi \Hcore, then
dim(affine-span({Pi | i ∈ R})) = |R| − 1.

3) For all i ∈ [r], (Hi \Hcore) ∩ S 6= φ.
4) For every point P ∈ S ∩H , there exists i ∈ [r] such

that P ∈ Hi. Note that it is not necessary that every
point in S lies on one of the Hi’s but every point of
S inside H certainly does lie on at least one of the
Hi’s.

We present below a very informal outline of the proof of the
fanin reduction lemma (Lemma 5.5) to demonstrate how the
hyperplane decomposition lemma is used in its proof. For
the full details of the proof, see [18].

11Informally, as sets, the vector space span of a set of points/vectors S
would equal the affine span of S ∪ {0}, where {0} denotes the origin (or
zero vector).

Outline of proof of the fanin reduction lemma: Lemma
5.5: In Section 4.1 we saw how to map the linear forms
appearing in the circuit C to colored points in Rn. We will
assume the terminology used in Section 4.1. Recall that we
want to show that there exists a linear form ` in C and
the corresponding point P` such that for all pairs of colors
i and j such that ` does not occur in Ai and Aj , the set
of lines in the pencil LP`

i ∆LP`
j span a high dimensional

space. We will use the hyperplane decomposition lemma to
accomplish this. Let the set of points S corresponding to
linear forms in C span the affine space V . We choose a
(relatively low dimensional) subspace Hcore ⊆ V such that
for every pair of colors i and j, the symmetric difference of
the points of those colors, Si∆Sj , contained within Hcore

spans a high dimensional subspace. We apply the hyperplane
decomposition theorem to V and Hcore to get a large
collection of hyperplanes H1, H2, . . . ,Hr each containing
Hcore and satisfying the properties listed in Lemma 6.3. Let
H = affine-span(H1, H2, . . . ,Hr). Observe that property
(2) implies that if Pi and Pj are two points of S in Hi\Hcore

and Hj \Hcore respectively, then the line through them does
not contain any other point of S. This will be a very useful
property. For a pair of colors i, j, let (Si∆Sj)H denote the
set of points in Si∆Sj that lie in H \Hcore. We say a pair of
colors (i, j) is over-split if a large subset of the hyperplanes
{Hi} contain an element of (Si∆Sj)H . Otherwise we say
the pair is under-split. Since for each pair of under-split
colors (i, j) the set (Si∆Sj)H occurs in few hyperplanes,
and since the total number of hyperplanes is large, the
pigeon-hole principle implies that there exists a hyperplane
H∗ that does not contain any member of (Si∆Sj)H for any
under-split pair of colors {i, j}. By property (3), there exists
a point P` contained in H∗ \Hcore. Let the corresponding
linear form be `. We will show that for all pairs of colors i
and j such that ` does not occur in Ai and Aj , the set of lines
in the pencil LP`

i ∆LP`
j span a high dimensional space. From

now on we will only mention pairs of colors corresponding
to multiplication gates in the circuit that do not contain `.
Now for any pair of colors {i, j}, since a line through P` and
any point in (Si∆Sj)H\H∗ does not contain any other point
of S (by property (3)), the set of such lines is contained in
the pencil LP`

i ∆LP`
j . If the pair of colors is over-split, then

this pencil will span a high dimensional space, and hence
this pair of colors will not create any worry. If the pair of
colors (i, j) is under-split, then recall that H∗ \Hcore does
not contain any element of (Si∆Sj)H . Now consider the
intersection of (Si∆Sj) with Hcore and call it (Si∆Sj)core.
Recall that by the choice of Hcore, (Si∆Sj)core spans a
high dimensional space. Also, any line through P` and a
point of (Si∆Sj)core lies entirely within H∗ and does not
contain any other point of Hcore. Since there are no points
of Si∆Sj in H∗ \ Hcore, hence any such line is a line
in the pencil LP`

i ∆LP`
j . Since (Si∆Sj)core spans a high



dimensional space, so does the pencil LP`
i ∆LP`

j . Hence
under-split pairs of colors do not create a problem either,
and we are done.

7. CONCLUSION

Our paper invites further work in several directions.

1) Proving high-dimensional Sylvester–Gallai Theo-
rem over the field of complex numbers. Such a
theorem would extend our results on the rank bound
and identity testing to the complex numbers. We con-
jecture the following analogue of Lemma 6.2 over the
field C of complex numbers: There exists a constant
c ≥ 2 such that if S is a finite set of points spanning
an affine space V ⊆ Cn with dim(V ) ≥ c · t then
there exists a t dimensional hyperplane H ⊆ V such
that |H ∩ S| = t+ 1 and H is spanned by the points
of S. i.e affine-span(H ∩ S) = H .

2) Conjecture for Sylvester–Gallai over finite fields.
Such a theorem would extend our results on the rank
bound and identity testing to large finite fields. We
conjecture that the following version of Sylvester–
Gallai is true over finite fields: There exists a constant
c ≥ 2 such that if p is a prime and S is a subset of
points in the 3-dimensional projective space P3(Fp)
and p > |S|c, then there exists a pair of points in S
such that the line through this pair of points contains
no other point from S.

3) Devising a blackbox identity testing algorithm over
finite fields. As shown in [19], even the weaker form
of the conjecture of Dvir and Shpilka is false over
finite fields. Perhaps there is some other neat classifi-
cation of the structure of depth three arithmetic circuits
computing the zero polynomial over finite fields. We
challenge the interested reader to devise a blackbox
identity testing algorithm for ΣΠΣ(k) circuits over
finite fields.

4) Resolving the stronger Dvir–Shpilka conjecture
over fields of characteristic zero. Prove or disprove
that the rank c(k) in Theorem 2.2 can be improved to
a polynomially growing function of the top fanin k.

See Appendix A for a discussion on how the first two
conjectures will affect our understanding of identity testing.
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APPENDIX

The following theorem was proved by Edelstein and
Kelly [10].

Theorem A.1: Let A,B and C be 3 nonempty finite subsets
of points in Rn such that affine-span(A ∪ B ∪ C) has
dimension at least 4 and A ∩B ∩C = φ. Then there exists
a line intersecting exactly 2 of the sets A,B,C.

The proof is a clever application of the Sylvester–Gallai
Theorem, and uses a special case of the hyperplane decom-
position theorem (see the full version [18] for a proof). By
the correspondence of linear forms appearing in the circuit
with colored points in Rn, this almost immediately gives a
rank bound for simple and minimal ΣΠΣ(3) circuits that
compute the zero polynomial. For the case of k = 3, the
connection of the structure theorem to Sylvester–Gallai type
theorems was even observed in [9]. However, this approach
to proving the rank bound does not directly generalize and
additional ideas are needed for k > 3.

Rank bound over other fields. Our proof the rank
bound, Theorem 2.2, uses high-dimensional versions of the
Sylvester–Gallai theorem. If the high dimensional Sylvester–
Gallai theorem held over C or over any other field, then

using the techniques of our paper, they would translate to
rank bounds for ΣΠΣ(k) circuits over the corresponding
field. For k = 3, it suffices just to prove a Sylvester–
Gallai theorem for lines and fortunately this is known over C
[20], [11]. The result by Edelstein and Kelly [10] essentially
carries over for this case with a dimension bound of 5 instead
of 4, and hence we get a rank bound for ΣΠΣ(3) of 6 circuits
over complex numbers. Furthermore proving a rank bound
over complex numbers implies a rank bound over finite fields
of characteristic significantly larger than the degree of the
circuit.

In particular, the conjectures given in the conclusion would
have the following implications.

Sylvester–Gallai over complex numbers, Conjecture (1):
It will give a deterministic blackbox identity testing al-
gorithm for ΣΠΣ(k) circuits (k fixed) over all fields of
characteristic zero.

Sylvester–Gallai over large finite fields, Conjecture (2): It
will give a deterministic blackbox identity testing algorithm
for ΣΠΣ(3, d, n) circuits over fields of characteristic p >
poly(d).

Furthermore, using a standard argument involving the
Hilbert Nullstellensatz, it can be shown that Conjecture (1)
implies high-dimensional Sylvester–Gallai over finite fields
of characteristic p > 22O(d2)

. Proving conjecture (2) will
perhaps require a fundamentally new proof of the Sylvester–
Gallai theorem which somehow manages to avoid the well-
ordered property of the real field.


