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Abstract— We study the performance of hop-limited
broadcasting of a message in dynamic graphs where links
between nodes switch between active and inactive states.
We analyze the performance with respect to the completion
time, defined as the time for the message to reach a
given portion of nodes, and the communication complexity,
defined as the number of message forwarding per node.
We analyze two natural flooding algorithms. First is a
lazy algorithm where the message can be forwarded by a
node only if it was first received by this node through
a path shorter than the hop limit count. Second is a
more complex protocol where each node forwards the
message at a given time, if it could have been received
by this node through a path shorter than the hop limit
count. We derive exact asymptotics for the completion time
and the communication complexity for large network size
which reveal the effect of the hop limit count. Perhaps
surprisingly, we find that both flooding algorithms perform
near optimum and that the simpler (lazy) algorithm is only
slightly worse than the other, more complicated algorithm.

The results provide insights into performance of net-
worked systems that use hop limits, for example, in
the contexts of peer-to-peer systems and mobile ad-hoc
networks.

I. INTRODUCTION

We consider information dissemination over dynamic
graphs where edges between nodes are randomly activated
over time, and where two nodes communicate only when the
edge connecting these nodes is active. These problems arise
in many networking contexts, including peer-to-peer systems
where by design, node neighborhood sets are dynamic, and
delay-tolerant wireless mobile networks where connectivity
between nodes changes over time due to mobility and finite
radio communication range.

We are interested in analyzing gossip-like spreading al-
gorithms to broadcast a message initially held by a set of
sources to all other nodes (or to a significant proportion of
nodes) in the network. More precisely, we investigate flooding
algorithms where each contact between two nodes can be
exploited to disseminate the message. The only constraint
imposed on the algorithms is the message time-to-live (TTL):
the message received by a node cannot have been transmitted
more than a fixed number, say k, times. Another way of
expressing this constraint is to say that a message held by a
node is attached an age that corresponds to the number of hops
of the path through which this message was received. Then
when two nodes are in contact, messages with age strictly
smaller than k only can be transmitted. This constraint is
natural and limiting the hop count of messages is a standard
approach for flooding algorithms used in networking. For
example, in wireless mobile networks, this approach has
been proposed to improve the performance of information
dissemination: allowing nodes to receive the message not
only via direct contacts with sources but also through one
relay node (2-hop flooding scheme) significantly enhances

the system performance in terms of delay and capacity [11],
[21]. In general, the hop count limit is commonly used to
limit the scope of broadcasting to deal with the broadcast
storm problem [25], or to reduce the protocol complexity [24],
[6] and has been used in many protocol designs, e.g. [23],
[14], [9], [12], and even supported through standardization [8].
Surprisingly, flooding algorithms with limited hop count have
not been analyzed theoretically. In this paper, we characterize
the performance of such algorithms in terms of completion
time (the time it takes for a given proportion of nodes to
receive the message), and also evaluate their communication
costs (e.g. the number of message transmissions made by a
node before completion).

Two natural algorithms for hop limited flooding are studied.
Our first algorithm is simply referred to as k-hop limited
flooding. Under this algorithm when two nodes, say A and
B are in contact: (i) if one node only, e.g. A, holds a copy
of the message of age j < k, then A forwards the message
to B, and the age of the message held by B is set to j + 1;
(ii) if both nodes hold a copy of message of respective ages
i and j (less than k) at A and B, then these ages are
updated to min(i, j + 1) and min(j, i + 1), respectively. Our
second algorithm, referred to as lazy k-hop limited flooding,
is similar to the first algorithm except that updating the ages
of messages held at nodes as described in (ii) above is not
allowed. This means that the age of the message held by
a node remains unchanged after the node first receives the
message, and that this age corresponds to the length of the
path through which the message was first received. Notice that
the latter algorithm is more parsimonious as every node that
became informed through a path of length k never forwards
the message to other nodes. Lazy k-hop limited flooding is
simpler to implement than k-hop limited flooding, as nodes
that received the message do not need to update the age of
their copy of the message.

Our analysis concerns dynamic graphs where for a set of
n nodes, every edge connecting a pair of nodes is active
at instances of a Poisson process of rate 1/(n − 1). This
class of dynamic graphs has been considered in previous
work [3], [16], [1], [4], [5], [19], and is a continuous-time
analog of discrete-time dynamic graphs defined as a sequence
of independent and identically distributed Erdos-Renyi random
graphs. The use of these dynamic graphs where each pair of
nodes is eventually in contact is natural as a model of some
mobile ad-hoc networks, but also, more generally, to model
peer-to-peer systems with so-called topology independence
property [10].

Summary of our Contributions. We study the performance of
hop limited flooding algorithms in the general case where the
initial proportion of nodes holding a copy of the message and
the targeted final proportion of informed nodes are arbitrary.
But here for illustrative purposes, we summarize our results
only when a single copy of the message is initially present
in the network, and when all nodes should finally get the
message.
• We derive tight asymptotic estimates of the completion
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time t̄n,k of the k-hop limited flooding and the lazy k-hop
limited flooding algorithms as the size of the network n grows
large. Specifically, we show that for k-hop flooding,1

t̄n,k
n→∞∼ (k!n)1/k · log1/k(n)

while for lazy k-hop flooding,

t̄n,k
n→∞∼ (k!n)1/k · log(n1/k).

These show that for every fixed hop-count limit k > 0,
both algorithms yield optimum completion time up to a
polylogarithmic factor as the completion time of any k-hop
limited flooding scheme under our communication model is
Ω((k!n)1/k).2 The above results recover the coupon collector
result as a special case for k = 1; for general values of k,
note that the scaling for lazy k-hop flooding is like with the
coupon collector but with n1/k coupons.
• For every fixed hop count k > 0, the competitive ratio

of the completion time under k-hop flooding and lazy k-hop
flooding is polylogarithmic, specifically 1

k log1−1/k(n), which
is at most O

(
log(n)

log(log(n))

)
. Hence although the lazy k-hop

limited flooding algorithm is simpler and more parsimonious,
it yields similar completion time as the k-hop limited flooding
algorithm.
• The communication costs of sources satisfy: for k-hop

limited flooding,

c̄n,k
n→∞∼ (k!n)1/k ·

Γ
(

1
k

)
k

and for lazy k-hop limited flooding,

c̄n,k
n→∞∼ (k!n)1/k.

• Lazy k-hop limited flooding exhibits similar communi-
cation costs as k-hop limited flooding, as the corresponding
competitive ratio is k/Γ(1/k) whatever the network size n is.
This ratio is equal to 2/

√
π ≈ 1.15 for k = 2 and decreases

to 1 with k, for k ≥ 2.
• The above scalings are obtained by considering ordinary

differential equation (ODE) systems that are rigorous limits
of our stochastic systems as the network size grows large. We
obtained more refined results by direct stochastic analysis for
the special cases of one- and two-hop flooding. These results
not only conform to the above asymptotics but for lazy k-hop
flooding we were also able to characterize the variance and
concentration results for the completion time.
• Our simulation results suggest that the derived asymptotes

are good approximations already for small values of network
size n.

Outline of the Paper. In Section II we discuss related work.
Section III presents the algorithms and network model in more
detail. In Section IV, we derive the deterministic ODE systems

1Hereinafter, for two sequences an and bn, we write an
n→∞∼ bn meaning

that an/bn goes to 1 as n grows large.
2More precisely, assume that all nodes are always in contact, but that in

each time unit, a node can transmit the message to at most one node, and
impose the k-hop limit, then any dissemination scheme has a completion time
Ω((k!n)1/k).

characterizing the limiting behavior of the stochastic systems
as the network size grows large. Section V-A contains main
results for k-hop flooding (Theorem 2 and Theorem 3) while
Section V-B contains main results for lazy k-hop flooding
(Theorem 4 and Theorem 5 along with concentration results).
In Section VI, we derive estimates of communication costs for
k-hop limited flooding (Theorem 7) and lazy k-hop limited
flooding (Theorem 8). Section VII presents some numerical
experiments to illustrate our analytical results. Finally, in
Section VIII we conclude. We deferred proofs of all our results
to Appendix.

II. RELATED WORK

Broadcast and gossip problems have had a central role in the
context of networked and distributed systems and have been
studied under various assumptions; e.g. see [13] and references
therein for a survey of the results on the broadcast and gossip
over static graphs. Specific results include lower bounds such
as dlog2(n)e for the broadcast time for any connected graph
of n vertices and upper bounds for specific graphs. Epidemic-
style algorithms for broadcast or gossip problems have been
considered under various names such as rumor or gossip
spreading with early works including [7], [20], [15]. Epidemic-
style algorithms provide a lightweight and robust approach
for information dissemination with optimum-order completion
time. Our work is different from this line of work in that we
consider gossip spreading over limited hop paths. The case of
limited hop paths is of interest in practice in the context of
peer-to-peer systems and mobile ad-hoc networks, which we
discussed in Section I.

Our work is closely related to the recent line of work on
distributed computation over dynamic graphs [16], [1], [4],
[5], [19]. In [1], [4], a class of parsimonious flooding is
studied where each node upon receiving the message attempts
to forward it for a limited number of time slots. Therein,
the dynamic graph is over discrete time where each edge is
activated according to a two-state Markov chain. The authors
characterize the completion time in terms of the parameters
of the edge-activation process and characterize the required
number of slots for the message to reach all nodes almost
surely. This line of work does not impose a limit on the number
of hops through which a message can reach a node and is thus
different from ours. Note also that in our setting every node
is guaranteed to receive the message in a finite time.

Another related work is [3] that considered the diameter of
dynamic graphs in discrete and continuous time where the
latter corresponds to the dynamic graph considered in the
present paper. Again, this work does not impose a limit on
the number of hops through which the message can reach a
node. Furthermore, the work is also different with respect to
the metric considered. [3] considers the expected number of
paths between a pair of nodes over a time interval, whereas
to evaluate e.g. the completion time, we need to characterize
the probability that a path exists between a pair of nodes.
Yet another example of related work is [2] where the authors
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analyze the delay of gossiping algorithms in dynamic graphs,
but again for algorithms without any hop-count limit.

Finally, it is noteworthy that the problem that we study
could also be seen as a generalization of the coupon collector
problem [17][Section 3.6] and [18]. For example, the dynamics
of our 1-hop limited flooding is equivalent to that of standard
coupon collector problem.

III. MODEL AND ALGORITHMS

We consider the problem of disseminating a message to
nodes that communicate through a random dynamic graph
with a fixed number n of nodes. Each edge in the graph is
activated at random times and is attached a weight representing
the intensity of its activation process. Activation processes of
edges are stochastically independent. We restrict our attention
to the case where edges are activated according to a Poisson
process of intensity 1/(n−1). For example, this holds if each
node is equipped with a Poisson clock ticking at rate 1/2, and
when its clock ticks, it makes contact with a node uniformly
chosen at random. Alternatively, this is an assumption that may
well approximate, in mobile networks, an underlying process
of inter-contact times between nodes in practice (see, e.g., [3]).

Two nodes may exchange the message only when the
corresponding edge is activated. We say that a node is informed
if it holds a copy of the message, and uninformed otherwise.
Initially, only one node or a small proportion of nodes is in-
formed. We are interested in designing decentralized broadcast
algorithms that inform all nodes as fast as possible and with
as few transmissions as possible. To assess the performance
of broadcast algorithms, we use several metrics. First we are
interested in the completion time defined as the time it takes for
a given proportion of nodes to be informed. Then we consider
the communication cost defined as the total number of message
transmissions per node before completion, and in particular,
the maximum number of message transmissions per node until
completion.

For example, if one node only, the source, is initially
informed, and if other nodes can get the message through
direct contact with the source, then we recover the classical
coupon collector model. The average completion time then
scales as n log(n) when n grows large and the maximum per
node communication cost is of course equal to n − 1. On
the other hand, if every contact between two nodes are used
to transmit the message (no hop count limit), the completion
time is Θ(log(n)) and the maximum communication cost per
node is Θ(log(n)).

We aim at analyzing broadcast algorithms for which the
maximum number of transmissions per node is limited. In
[1], the authors propose to limit transmissions by imposing
that a node stops retransmitting the message after a fixed
amount of time k. With this constraint, the dissemination
does not always complete. However, if k is large enough, it
then completes almost surely, and the completion time can be
characterized. In this paper, we analyze algorithms that use the
so-called age or TTL (Time-To-Live) of the message held at
a given node to limit the intensity of the message spreading.

By definition, the age of the message held at a node is the
number of times the message has been transmitted to reach
this node. More precisely, we consider algorithms for which
the age of messages is bounded by k ≥ 1. These algorithms
are guaranteed to complete for all k.

k-hop limited flooding. When two nodes are in contact: (i) if
one node only has the message and its age is j < k, then the
message is transmitted to the other node, and the age of this
new message copy is j+1; (ii) if both nodes have the message
with ages i and j respectively, if i < j, the message age at
the node with age j is updated to i+ 1.

Lazy k-hop limited flooding. When two nodes are in contact:
if one node only has the message and its age is j < k, then
the message is transmitted to the other node, and the age of
this new message copy is j+1. Note that under this algorithm,
the age of message held by a node corresponds to the number
of hops of a path through which the message could first reach
this node.

Note that the 1-hop limited flooding algorithm and its lazy
version coincide and actually correspond to the coupon col-
lector model. Next we define the metrics used to assess the
performance of the algorithms depending on parameter k.

Completion times. Let 1/an be the initial proportion of in-
formed nodes, and assume that the objective of our algorithms
is to reduce as fast as possible the proportion of uninformed
nodes from 1− 1/an to at most (1− 1/an)/bn. Typically, we
will be interested in the case where a single node is informed
an = n, and where all nodes are ultimately informed3

bn = n. We denote by tn,k the (deterministic) time it takes
for the k-hop limited flooding algorithm (or its lazy version)
to reach this proportion on average. We also introduce Tn,k
as the (random) time it takes for the algorithm to reach this
proportion. As we shall see later on, we believe that the system
dynamics obeys a concentration principle, in the sense that
almost surely limn→∞ Tn,k/tn,k = 1, which we confirm for
special cases k = 1 and k = 2 by comparison with analysis
of underlying stochastic processes.

Communication cost. The communication cost is defined as the
maximum number of message forwarding per node required
until completion, i.e., from time 0 to tn,k.

IV. SYSTEM DYNAMICS AND ASYMPTOTICS

Let us denote by Qi(t) the number of nodes holding a copy
of the message with age at most i at time t. Then, under both
k-hop limited flooding and lazy k-hop limited flooding algo-
rithms, (Q(t) = (Q0(t), . . . , Qk(t)), t ≥ 0) is a continuous-
time Markov process. Next we give the transition rates of
this Markov process under the two proposed algorithms. In

3Actually, if bn = n, the target proportion of informed node is roughly
equal to 1 − 1/n, so only one node remains uninformed. It can be easily
shown that the time it takes to inform the last node is always negligible
compared to the time it takes to get a proportion of uninformed nodes equal
to (1 − 1/an)/bn.
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what follows, for all u ≤ v, we denote by eu,v the (k + 1)-
dimensional binary vector whose coordinates are all equal to
0 except for coordinates u, u+ 1, . . . , v.

k-hop limited flooding. The transition Q → Q + ei,j−1, for
1 ≤ i < j ≤ k, occurs when an edge between a node
holding a copy of the message with age j and a node with
a copy with age i − 1 is activated. This happens at rate
(Qi−1 − Qi−2)(Qj − Qj−1)/(n − 1). Similarly, a transition
Q→ Q+ ei,k is triggered by contacts of a node that does not
hold the message with a node holding a copy with age i− 1.
These contacts occur at rate (Qi−1−Qi−2)(n−Qk)/(n−1).
The transition rates of the Markov process are then (using the
convention Q−1 = 0):

Q→
{
Q+ ei,j−1 : (Qi−1 −Qi−2)

Qj−Qj−1

n 11≤i<j≤k
Q+ ei,k : (Qi−1 −Qi−2)n−Qk

n .

Note that as a consequence, for all i = 1, . . . , k, Qi evolves
as

Qi → Qi + 1 : Qi−1
n−Qi
n

.

In an interval of time of duration dt, the expected drift of the
proportion of nodes holding a copy of the message with age
less than or equal i is then Qi−1

n (1− Qi

n )dt. Assume now that
we scale the system so as the proportion of nodes holding the
packet initially converges when the system size grows large
(n → ∞). We then expect that when the system size grows,
by virtue of the law of large numbers, the proportion of nodes
holding a message with age less than or equal i evolves as:

d

dt
qi(t) = qi−1(t)(1− qi(t)), for i = 1, . . . , k, (1)

where for all t, q0(t) = limn→∞Q0(0)/n (this limit exists
by assumption). We provide a theoretical justification of (1)
in Theorem 1.

Lazy k-hop limited flooding. Under this algorithm, the system
state changes only at contacts between a node holding a copy
of the message with age less than k, and an uninformed node.
The transition rates are in this case:

Q→ Q+ ei,k : (Qi−1 −Qi−2)
n−Qk
n

.

It is not difficult to check that for all i = 1, . . . , k,

Qi → Qi + 1 : Qi−1
n−Qk
n

.

Finally, as the system size grows large, the proportion of nodes
holding a message with age of at most i evolves as:

d

dt
qi(t) = qi−1(t)(1− qk(t)), for i = 1, . . . , k, (2)

where again for all t, q0(t) = limn→∞Q0(0)/n

The asymptotic system evolution when the system size
grows large can be formally justified using Kurtz’s theorem
(e.g. [22]). Specifically, we have:

Theorem 1: Fix a finite time horizon T . Assume that
Q(0)/n tends to q(0) almost surely as n→∞. We have:

lim
n→∞

sup
t∈[0,T ]

∥∥∥Q(t)

n
− q(t)

∥∥∥ = 0, almost surely, (3)

where under the k-hop limited algorithm (resp. its lazy ver-
sion), q(·) is the unique solution of (1) (resp. (2)) with initial
condition q(0) and with q0(t) = q0(0) for all t.

In the following, we use the deterministic asymptotic system
behavior to derive estimates of the completion time of the
proposed algorithms. More precisely, we use the following
heuristic estimate of tn,k:

tn,k
n→∞∼ t̄n,k = inf

{
t ≥ 0 : qk(t) = 1− 1− 1/an

bn

}
(4)

where q(·) is the unique solution of (1) (or (2) depending
on the algorithm considered) with initial condition q(0) =
(1/an, 1/an, . . . , 1/an), and with q0(t) = 1/an for all t ≥ 0.
There are two difficulties in proving (4) theoretically. First
as we shall see, the completion time grows large when n →
∞, whereas Kurtz’s concentration result is valid over finite
time horizons only, and hence does not provide a sufficient
justification. Then, note that if the initial condition Q(0)/n
tends to 0 as n→∞, in this case, when applying Theorem 1,
we would conclude that the system does not evolve at all, i.e.,
qi(t) = 0 for all i ≥ 1. In this paper, we do not explain how to
circumvent these problems. Instead we provide direct proofs
of (4) for the specific cases k = 1 and k = 2 that yield exactly
the same asymptote as n grows large as that of t̄n,k.

To conclude this section, we present a simple lower bound
on the performance of both k-hop limited flooding algorithm
and its lazy version, assuming that (4) holds. Observe that for
both algorithms:

d

dt
qi(t) ≤ qi−1(t), for i = 1, . . . , k.

We deduce that for all i = 1, . . . , k, and all time t:
qi(t) ≤ q̄i(t) where q̄(·) is the solution of the following
system of ordinary differential equations d

dt q̄i(t) = q̄i−1(t),
for i = 1, . . . , k, and q̄0(t) = q0(t) for every t ≥ 0. We then
have:

qi(t) ≤ q̄i(t) =
1

an

i∑
j=0

tj

j!
. (5)

Using this with (4) yields the following lower bound.
Lemma 1: Assume that limn→∞ an = ∞. Then, under

both k-hop limited flooding and lazy k-hop limited flooding
algorithms we have:

t̄n,k ≥ (k!an)1/k ·
(

1− 1

bn

) 1
k

(1− o(1)). (6)

Note that the bound derived in the above lemma does not
depend on bn provided that bn →∞ as n→∞, which indi-
cates that it can be very crude. Essentially, as we prove later
on, the bound captures only the time it takes for the system to
evolve from a state with a negligible proportion an of informed
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nodes to a state where a strictly positive proportion α < 1 of
nodes are informed. As we shall demonstrate, starting from a
fixed proportion α > 0 of informed nodes, the time it takes for
the system to approach a proportion 1/bn of informed nodes
grows large when n→∞.

V. COMPLETION TIME

A. Completion Time under k-hop Limited Flooding

In this section, we first provide asymptotic estimates of the
completion time under the k-hop limited flooding algorithm
using the approximation (4). Then we validate the approxima-
tion through a direct stochastic system analysis in the specific
cases where k = 1 and k = 2.

Completion time asymptotics. To evaluate the completion time,
we use the approximation t̄n,k, defined in (4). First notice that
in view of (1), we have: for all i = 1, . . . , k,

qi(t) = 1−
(

1− 1

an

)
exp

(
−
∫ t

0

qi−1(s)ds

)
. (7)

Let us define ri(t) =
∫ t

0
qi(s)ds. Notice that ri(t) can be

interpreted as the number of connection attempts by a node
that received the message through at most i hops over the time
interval [0, t]. From (7), we deduce that r0(t) = t/an and that
ri(t), for i = 1, . . . , k, is recursively defined by:

ri(t) = t−
(

1− 1

an

)∫ t

0

e−ri−1(s)ds. (8)

To derive tight estimates of t̄n,k, we work with ri’s instead of
directly working with qi’s. The completion time t̄n,k satisfies
qk(t̄n,k) = 1− (1− 1

an
) 1
bn

, and hence:

rk−1(t̄n,k) = log(bn). (9)

Theorem 2: Assume that either an or bn are increasing
sequences. Then, the completion time t̄n,k under k-hop limited
flooding satisfies

t̄n,k ≥ (k!an)1/k · log1/k(bn) · (1− o(1)).

Furthermore, if an and bn are such that log(bn) = o((k!/kk ·
an)1/(k−1)), then

t̄n,k ≤ (k!an)1/k · log1/k(bn) · (1 + o(1)).

Note that if bn is bounded, the completion time scales as
C · a1/k

n as n → ∞ for a constant C > 0 which validates
the observation made in the previous section that the lower
bound derived in Lemma 1 essentially captures the time for
message to reach a fixed strictly positive proportion α < 1 of
nodes. Theorem 2 implies that when bn grows to infinity, the
completion time is much larger than this crude initial bound.

Note that when k = 1, if an = bn = n, the completion time
scales as n log(n) which is expected since the system evolves
as that in the coupon collector model. This observation also
shows that for k = 1, the approximation (4) holds, i.e., tn,1 =
t̄n,1. Further remark that plugging k = log(n) in (k!an)1/k ·
log1/k(bn), we conclude that the completion time scales as

C · log(n) for a constant C > 0 (if an = bn = n), and the
algorithm becomes optimal in terms of completion time (up
to a multiplicative constant).

Stochastic analysis. We present a direct stochastic analysis
for special cases of one- and two-hop limited flooding. This
enables us to compare with the general result of Theorem 2
which was derived using the limit ODE system.

a) One-hop flooding: The case of one-hop limited flood-
ing is special in that it boils down to exactly the same
dynamics under both k-hop limited flooding and lazy k-
hop limited flooding. Moreover, this case is rather simple
and amenable for detailed analysis. We will note that this
case is intimately related to the well known coupon collector
problem [17].

Recall that initially n/an nodes are informed and the
remaining n(1 − 1/an) of the nodes are uniformed. Let I
and U denote the respective sets of initially informed and
uninformed nodes, thus |I| = n/an and |U | = n(1 − 1/an).
Let Xu,v be the first time when node u ∈ U and node v ∈ I
are in contact. Notice that Xu,v are independent and identically
distributed random variables whose distribution is exponential
with mean n− 1. Every node u ∈ U becomes informed at the
first contact with a node from the set I , therefore, this occurs at
the time Xu = min{Xu,v : v ∈ I}. It is easy to note that Xu

are independent and identically distributed random variables
whose distribution is exponential with mean an(n−1)/n. The
expected number of non-informed nodes at time t is given by
IE(
∑
u∈U 1Xu>t) = n(1 − 1/an) exp(− n

(n−1)an
t), for every

t ≥ 0. It follows that for the completion time tn,1 we have

n

(
1− 1

an

)
e−

n
(n−1)an

tn,1 = n

(
1− 1

an

)
1

bn
.

Hence,

tn,1 = an log(bn) ·
(

1− 1

n

)
which yields exactly the same asymptotic as given in Theo-
rem 2 for k = 1.

Note that for the case of single initially informed node,
the dynamics is essentially that of the coupon collector;
the source node samples other nodes uniformly at random
with replacement and the time it takes to contact all nodes
is equivalent to sampling each node at least once. In this
case, we recover the scaling n log(n) of the coupon collector
problem. The case with more than one initially informed node
is slightly different as now each initially uninformed node has
to be sampled at least once by any of the initially informed
nodes. Nevertheless, the above simple analysis reveals that
the dynamics is essentially the same as for the case of a
single initially informed node with the only difference that the
evolution is speeded up proportional to the number of sources
n/an.

b) Two-hop flooding: Theorem 2 identifies the asymp-
totically dominant term of the completion time, provided that
the approximation (4) holds. In the following, we provide a
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justification of this approximation for the special case k = 2
via a direct analysis of the stochastic system.

Theorem 3: Suppose that, initially, the message is held by
one node, hence an = n. Then we have:

tn,2
n→∞∼

√
2n log(bn).

In particular, if the completion time tn,2 is defined as the time
at which the expected number of uninformed nodes is 1 (i.e.
bn = n), we have tn,2

n→∞∼
√

2n log(n).
The proof available in Appendix exploits the fact that

every fixed initially uninformed node can become informed by
receiving the message from the source through the set of edge-
disjoint paths consisting of the single hop path connecting the
source and the destination node and two hop paths passing
through distinct relay nodes.

B. Completion Time under Lazy k-hop Limited Flooding

We now turn our attention to the lazy k-hop limited flooding
algorithm. Again, we first provide asymptotic estimates of
its completion time for any arbitrary k assuming that the
approximation (4) holds, and then present a direct stochastic
system analysis for the special case k = 2.

Completion time asymptotics. Assume that the approximation
(4) holds so that t̄n,k is an estimate of the completion time.
We show that:

Theorem 4: Assume that an is an increasing sequence.
Then, the completion time t̄n,k, for the lazy k-hop limited
flooding satisfies

t̄n,k = (k!an)1/k · [log(b1/kn ) + Ck] +O(1)

where

Ck =
1

k

(
log(k) +

∫ 1

0

∑k−2
j=0 (k − 1− j)xj∑k−1

j=0 x
j

dx

)
.

The constant Ck is equal to log(2) for k = 2 and diminishes
to zero with k, for k ≥ 2. Indeed, for every fixed k ≥ 1, the
result implies t̄n,k

n→∞∼ (k!an)1/k · log(b
1/k
n ), provided that

bn is an increasing sequence.

Stochastic analysis and concentration results. We consider the
case of lazy two-hop limited flooding by direct stochastic
analysis. Specifically, we consider the time to inform all nodes,
Tn,2, and provide lower and upper bounds for the expected
value IE(Tn,2). This will show that the asymptotically domi-
nant term is exactly that of Theorem 4, for k = 2. We then
provide an asymptotically tight estimate for the variance and
a concentration result for the random completion time Tn,2.

Theorem 5: The expected completion time satisfies the fol-
lowing

−O(
an
n

log(n)2) ≤ IE(Tn,2)−
√

2an log(
√
n) ≤ O(

√
an).

Therefore, IE(Tn,2)
n→∞∼

√
2an log(

√
n).

The proof of the theorem relies on analysis of an embedded
Markov chain and is available in Appendix. Similar type of

analysis is carried to establish the following bound for the
variance of the completion time Tn,2.

Theorem 6: The variance of the completion time satisfies
the following

lim
n→∞

Var(Tn,2)

an
≤ π2

12
.

Furthermore, the inequality is asymptotically tight provided
that an grows faster than log2(n).

From the last two results we observe that if initially a
single node is informed, i.e. an = n, the expected completion
time scales faster than the standard deviation of Tn,2 for a
logarithmic factor with n. This suggests that Tn,2 concentrates
around the expected value IE(Tn,2) as n grows large. This can
be formally claimed using Chebyshev’s inequality along with
the last two theorems:

Corollary 1: Suppose an = n and let dn be an increasing
sequence of positive numbers. Then, there exists n0 > 0 such
that for every n ≥ n0, we have

IP(|Tn,2 −
√

2n log(
√
n)| ≤

√
ndn +O(

√
n)) ≥ 1− π2

12dn
.

C. Discussion

In this section we compare the completion times for k-hop
limited flooding and lazy k-hop limited flooding. Since lazy k-
hop limited flooding is more parsimonious in that a node that
became informed by receiving the message through a path of k
hops never forwards the message, it is clear that the completion
time of lazy k-hop limited flooding is at least that of k-hop
limited flooding. The following is a corollary of Theorem 2
and Theorem 4.

Corollary 2: For the completion times of the lazy k-hop
limited flooding t̄lazy

n,k and the completion of the k-hop limited
flooding t̄n,k, we have the following competitive ratio

t̄lazy
n,k

t̄n,k

n→∞∼ 1

k
log1− 1

k (bn). (10)

Furthermore, the largest (over values of k) competitive ratio
is O( log(bn)

log(log(bn)) ).
In particular, if the completion time is defined as the time

to reach almost all nodes, we have bn = n and, then, the
competitive ratio is O( log(n)

log(log(n)) ).

Figure 1. The competitive ratio of the completion times under lazy k-hop
limited flooding and k-hop limited flooding.
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Numerical example. In Figure 10, we show the ratio of the
asymptotic completion times for the lazy k-hop limited flood-
ing in Theorem 4 and k-hop limited flooding in Theorem 2.
For given network size n, the ratio achieves a maximum
value and then diminishes to value 1, which is reached at
the diameter of the network of order log(n).

VI. COMMUNICATION COMPLEXITY

In this section we provide estimates of the communication
complexity of the k-hop and lazy k-hop limited flooding
algorithms. More precisely we are interested in quantifying
the cost in terms of number of transmissions a particular
node has to do so as to help the message broadcast (before
the completion time). Ideally, the total transmission cost of
broadcasting the message, should be fairly shared among
nodes. Let us define cn,k(s) as the number of transmissions
of a node able to forward the message from time s until
the completion time. For example, cn,k(0) is the number of
transmissions made by sources. As previously, we use the
deterministic asymptotic system behavior to estimate cn,k(s).
The latter is approximated by:

cn,k(s) =

∫ tn,k

s

(1− qk(t))dt. (11)

In the above expression, 1−qk(t) is the rate at which the node
meets an uniformed node, and hence forwards the message.
Note that in the case of k-hop limited flooding, when two
nodes holding a copy of the message meet, they do not need
to actually transmit the message; they may just update the age
of their copies.

Let us first briefly analyze the extreme cases k = 1 (coupon
collector) and k = ∞ (no hop limit). When k = 1, only
sources can disseminate the message, and we easily obtain:

cn,1(0)
n→∞∼ an

(
1− 1

bn

)
and cn,1(s) = 0, for s > 0.

For k =∞, we obtain:

cn,∞(s)
n→∞∼ log(1 + ane

−s), for s ≥ 0.

Indeed, if exactly one node initially holds the message (i.e.
an = n), then for the latter two cases we have that the
communication cost for the source is order n and order log(n),
respectively.

A. k-hop Limited Flooding

We now evaluate the communication cost under k-hop
limited flooding algorithm, with k > 1. Note that under k-
hop limited flooding, when a node receives the message, the
age of the message held by the node can be either k, or strictly
less than k. In the former case, the node does not forward the
message unless it manages to decrease the age of the message
copy later. In the latter case, the node forwards the message
until the completion time. Let s be an instant where the age
of the message at a node becomes strictly less than k (this
happens either because the node gets a copy of a message with
age less than k− 1, or because the node updates the message

age). In the following theorem, we evaluate the asymptotic (as
n grows large) cost cn,k(s). More precisely, we consider an
increasing sequence of times sn and estimate cn,k(sn).

Theorem 7: Assume that limn→∞ an = ∞ = limn→∞ bn
and that limn→∞ log(bn)/an = 0. Under k-hop limited
flooding, the communication cost for a node from a time sn
when the age of its message is strictly less than k to the
completion time satisfies:
(i) If limn→∞ sn/(k!an)1/k = α <∞,

cn,k(sn) = (k!an)1/k ·
Γ( 1

k , α
k)

k
· (1 + o(1)), (12)

where Γ(x, α) =
∫∞
α
ux−1e−udu is the incomplete Gamma

function.
(ii) If limn→∞ sn/(k!an)1/k =∞ and limn→∞ sn/tn,k = 0,

cn,k(sn) = (k!an)1/k ·
exp

(
− skn
k!an

)
ksk−1
n

· (1 + o(1)). (13)

The above theorem implies that the communication cost of
sources satisfies:

cn,k(0) = (k!an)1/k ·
Γ( 1

k )

k
· (1 + o(1)).

This cost is equal to (k!an)1/k up to a fixed multiplicative
factor Γ(1/k)/k (independent of n). Actually, as illustrated
later in this section, for k > 1, Γ(1/k)/k is an increasing
function of k and is approximately equal to 0.89 for k = 2
and tends to 1 when k grows large.

B. Lazy k-hop Limited Flooding

We now estimate the communication costs under the lazy
k-hop limited flooding algorithm. Under this algorithm, when
a node receives for the first time a copy of the message, it
will forward the message ever after only if the age of the
message is strictly less than k. In the following theorem, we
evaluate the asymptotic (as n grows large) cost cn,k(sn) for
an increasing sequence sn.

Theorem 8: Assume that limn→∞ an = ∞ = limn→∞ bn.
Under lazy k-hop limited flooding, the communication cost
for a node from a time sn when the age of its message is
strictly less than k to the completion time satisfies:
(i) If limn→∞ sn/(k!an)1/k = α <∞,

cn,k(sn) = (k!an)1/k · (1− ψ−1
k (α) + o(1)) (14)

where the function ψk(·) is defined by ψk(x) =
∫ x

0
du/(1 −

uk), for 0 ≤ x < 1.
(ii) If limn→∞ sn/(k!an)1/k =∞ and limn→∞ sn/tn,k = 0,

cn,k(sn) = (k!an)1/k ·Θ
(

exp

(
− ksn

(k!an)1/k

))
. (15)

It should be noted that ψk(0) = 0 = ψ−1
k (0), and hence,

the communication cost of sources satisfies:

cn,k(sn) = (k!an)1/k · (1 + o(1)).
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C. Discussion

We next compare the communication costs under the k-hop
and lazy k-hop limited flooding algorithms. We are interested
in nodes having the largest communication costs, i.e., sources
or nodes that receive the message early (at a time that scales
as o((k!an)1/k)). For these nodes the communication cost is
cn,k(0). From the two previous theorems, we deduce that:

Corollary 3: For the communication costs of sources under
k-hop limited flooding cn,k(0) and under lazy k-hop limited
flooding clazy

n,k (0), we have the following competitive ratio:

clazy
n,k (0)

cn,k(0)

n→∞∼ k

Γ( 1
k )
. (16)

Remark that the above competitive ratio does not depend on
n (which contrasts with the competitive ratio of the asymptotic
completion times). Also notice that Γ(1/k) < k so that
the communication cost of sources under lazy k-hop limited
flooding is, as expected, greater than that under k-hop limited
flooding. It is noteworthy that the competitive ratio decreases
with k from 2/

√
π to 1, over k ≥ 2 (see Figure 2) and

k/Γ(1/k) = 1 + γ/k + O(1/k2) where γ is the Euler-
Mascheroni constant (≈ 0.58).

Overall, the lazy k-hop limited flooding is 2/
√
π-

competitive to k-hop limited flooding and this is achieved for
k = 2. The communication costs under lazy k-hop and k-hop
limited flooding are very close to each other, as their ratio
remains between 1 and 1.15 whatever the maximum number
of hops k and the network size n are!

Figure 2. The competitive ratio of the communication costs for sources under
lazy k-hop limited flooding and k-hop limited flooding.

VII. NUMERICAL RESULTS

In this section we illustrate our analytical results and the
behavior of flooding algorithms on asymptotically large net-
works by numerically solving the limiting ODE systems. We
also compare our asymptotic results with empirical estimates
obtained through simulation of underlying Markov processes;
in particular, we show that our asymptotes for the completion
time become accurate already for small values of n.

A. Asymptotic System Behavior

We illustrate the dynamics of flooding algorithms in large
networks by numerically solving the ode systems identified

in Section III; the example is for parameters set as follows
k = 3, n = 10, 000, an = bn = n. In Figure 3 we show four
distinct charts which we discuss in the following.

First, in Figure 3 (1) we show the fraction of informed nodes
versus time. This indicates that the completion time under
lazy k-hop limited flooding is indeed larger than under k-hop
limited flooding; the lazy k-hop limited flooding progresses
slower in the end phase in comparison with k-hop limited
flooding. The slow down is for a factor of about 3/2 which is
consistent with Corollary 2.

Second, in Figure 3 (2) we show the rate at which nodes turn
into those holding the message of age less than the hop count
limit k; we call this rate the seed arrival rate as these nodes
provide the message to other nodes. On the one hand, for k-
hop limited flooding, the seed arrival rate is equal to the rate
at which nodes that are either uninformed or informed through
a path of length k (thus cannot forward the message) contact
nodes that hold the message of age smaller or equal to k− 2.
Indeed, at time t, the seed arrival rate is (1− qk(t))qk−2(t) +
qk(t)qk−2(t) = qk−2(t). On the other hand, for lazy k-hop
limited flooding, the seed arrival rate is equal to the rate at
which uninformed nodes are in contact with nodes that hold
the message of age smaller or equal to k− 2. Indeed, at time
t, the seed arrival rate is (1− qk(t))qk−2(t). In Figure 3 (2),
we observe that under lazy k-hop limited flooding, the seed
arrival rate peaks at a positive time like under flooding with
no hop limits while it monotonically increases over time for
k-hop limited flooding.

Third, in Figure 3 (3), we show the communication cost
versus time as defined in Section VI. In particular, we note
that the maximum communication cost (for sources) for the
lazy k-hop limited flooding is larger for about 10% relative to
k-hop limited flooding, which is consistent with Corollary 3.

Finally, in Figure 3 (4), we show the density of the
communication costs per node over all nodes that become
informed by the completion time. It is easy to establish that
this density is fn,k(x) = qk−2(s(x))/(1 − qk(s(x))) and
fn,k(x) = qk−2(s(x)), where s(x) = c̄−1

n,k(x), for k-hop
limited flooding and lazy k-hop limited flooding, respectively.
Figure 3 (4) illustrates that indeed there is a higher mass
towards larger costs under lazy k-hop limited flooding. This
is balanced with a smaller mass over small costs (the total
number of message transmissions under both schemes is
equal).

B. Convergence to the Asymptotics

In Figure 4 we compare empirical estimates of the comple-
tion time for k-hop limited flooding for particular values of the
hop count limit k = 3 and k = 4. These empirical estimates
are obtained through simulation of the underlying Markov
process (Section III); we used 50 independent simulation runs
and report the estimated means along with 95% confidence
intervals. We observe that our analytical asymptotes are good
approximations already for n as small as order 10.
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Figure 3. Flooding evolution for k = 3 and n = 10, 000. From left to right: (1) fraction of informed nodes versus time, (2) arrival rate of nodes that hold
message of age less than k versus time, (3) the communication cost versus time, and (4) density of per node communication costs.

Figure 4. Empirical estimates versus analytical results for completion times:
(left) 3-hop and (right) 4-hop limited flooding.

VIII. CONCLUSION

We provided characterizations of the completion time and
the communication complexity for two natural algorithms
for hop-limited message broadcast in dynamic networks. Our
results reveal that an extremely simple (lazy) algorithm for
hop-limited flooding provides near optimum performance that
is only slightly worse than that of a more complex protocol.
These results provide guidelines for designers of hop-limited
systems that arise in various networking contexts, including
peer-to-peer systems and mobile ad-hoc networks.

An interesting direction for future work is to pursue the
same type of analysis for other classes of dynamic graphs.
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IX. APPENDIX

A. Proof of Theorem 2

We first show the lower bound. Using the definition ri(t) =∫ t
0
qi(s)ds and (5), we have

ri(t) ≤
1

an

i+1∑
j=1

tj

j!
, for t ≥ 0 and i = 1, . . . , k. (17)

Combining with (9) we have

log(bn) = rk−1(t̄n,k) ≤ 1

an

k∑
j=1

t̄jn,k
j!

=
t̄kn,k
k!an

(1 + o(1)).

Therefore,

t̄n,k ≥ (k!an)1/k · log1/k(bn) · (1− o(1))

which establishes the lower bound.
The upper bound can be established as follows. From (8),

we have r0(t) = t/an and using the fact e−x ≤ 1 − x + x2

2 ,
for every x ≥ 0, we have for i = 1, . . . , k,

ri(t) ≥
t

an
+

(
1− 1

an

)(∫ t

0

ri−1(s)ds− 1

2

∫ t

0

ri−1(s)2ds

)
.

Since ri(t) is non-decreasing with t for every i, we have for
i = 1, . . . , k,

ri(t) ≥
t

an
+

(
1− 1

an

)(∫ t

0

ri−1(s)ds− 1

2
ri−1(t)2t

)
.

By iterating the last recurrence from i = 1 to i = k−1 and
repeatedly using the bound

∫ t
0
sjri−1(s)2ds ≤ tj+1

j+1 ri−1(t)2

for j ≥ 0, we obtain

rk−1(t) ≥
(

1− 1

an

)k−1

· tk

k!an

+

k−1∑
j=1

(
1− 1

an

)j−1
tj

j!an
− εj(t)

where we define

εj(t) =
1

2

(
1− 1

an

)k−j
tk−j

(k − j)!
rj−1(t)2.

Therefore,

rk−1(t) ≥
(

1− 1

an

)k−1

· tk

k!an
−
k−1∑
j=1

εj(t). (18)

Now, using (17), note

εj(t) ≤ tk−j

(k − j)!
·

(
1

an

j∑
i=1

ti

i!

)2

=
tk

k!an
·
(
k

j

)
·

(
j−1∑
i=0

j!

(j − i)!
1

ti

)
· 1

an

j∑
i=1

ti

i!
.

Hence, for any increasing sequence tn and every j = 1, . . . , k,

εj(tn) ≤ tkn
k!an

·O
(

tk−1
n

(k − 1)!an

)
.

Figure 5. Two-hop limited flooding.

Therefore, from (18),

rk−1(tn) ≥ tkn
k!an

·
[
1− o(1)−O

(
tk−1
n

(k − 1)!an

)]
.

For our sequence t̄n,k we have t̄k−1
n

(k−1)!an
= o(1), and thus

rk−1(t̄n,k) ≥ t̄kn,k

k!an
· (1− o(1)). Combining with (9) we obtain

t̄n,k ≤ (k!an)1/k · log1/k(bn) · (1 + o(1))

which completes the proof.

B. Proof of Theorem 3

We consider a system of n nodes that are elements of the
set V . Let s ∈ V be the source and let us consider an arbitrary
node in V \ {s}, say this node is d. Let Xi(t) be equal to 1 if
node i is informed at time t and is equal to 0, otherwise. We
have

IE(1−Xd(t)) = IP(node d is uninformed at time t)
= IP(Asd(t) ∩ {∩r∈V \{s,d}As,r,d(t)})

where As,d(t) is the event that there is no contact between
source s and destination d in [0, t] and As,r,d(t) is the event
that there exists no path from the source s through the node r
to the destination d in time interval [0, t]. See Figure 5 for an
illustration of edge-disjoint paths connecting the source and
the destination node.

The events As,d(t), As,r,d(t), for r ∈ V \ {s, d}, are
independent and the probabilities of the events As,r,d(t), for
r ∈ V \ {s, d}, are identical, hence

IE(1−Xd(t)) = IP(As,d(t))IP(As,r,d(t))
n−2

where r denotes an arbitrary node in V \ {s, d}.
Since each edge is activated at instances of a Poisson

process with rate 1/(n− 1) we have

IP(As,d(t)) = IP(N(0, t] = 0)

IP(As,r,d(t)) = IP(N(0, t] < 2)

where N(0, t] is a Poisson process of rate 1/(n− 1).
Therefore,

IE(1−Xd(t)) = IP(N(0, t] = 0) · IP(N(0, t] < 2)n−2. (19)
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We have established that

IE(1−Xd(t)) = e−
t

n−1

(
e−

t
n−1 +

t

n− 1
e−

t
n−1

)n−2

=

[
e−

t
n−2

(
1 +

t

n− 1

)]n−2

.

Note that for large tn,2 such that tn,2/n is small, we have

e−
tn,2
n−2

(
1− tn,2

n− 1

)
=

(
1− tn,2

n− 2
+

1

2

(
tn,2
n− 2

)2

+O

((
tn,2
n− 2

)3
))

·
(

1 +
tn,2
n− 2

− tn,2
(n− 1)(n− 2)

)
= 1− 1

2

(
tn,2
n− 2

)2

+O

(
tn,2

(n− 2)2

)
.

Therefore,

IE(1−Xd(tn,2)) ≤ exp

(
−

t2n,2
2(n− 2)

[1−O(1/tn,2)]

)
where the inequality is tight for large n. Therefore, we
obtained

IE(1−Xd(tn,2))
n→∞∼ e−

t2n,2
2n .

Hence, defining tn,2 such that IE(1 − X1(tn,2)) = (1 −
1/n)/bn, we have

tn,2
n→∞∼

√
2n log (bn)

which establishes the asserted result.

Remark The above analysis can be straightforwardly ex-
tended to more general case of 1 ≤ m < n sources. For
this more general case, similar analysis would be pursued as
for Eq. (19), by considering instead

IE(1−Xd(t))

= e−
m

n−1 t

(
m

n− 1

∫ t

0

e−
m

n−1 sIP(N(0, t− s] = 0)ds

+e−
m

n−1 t
)n−2

.

C. Proof of Theorem 4
We consider the system under k-hop limited flooding that

evolves according to (2). Let us define u(t), for t ≥ 0, by
u(0) = 0 and

d

dt
u(t) = 1− q̃k(u(t)), for t ≥ 0,

where q̃i(u(t)) := qi(t), for 0 ≤ i ≤ k. u(t) can be interpreted
as the fraction of uploads made by a source node over the time
interval [0, t].

From (2), d
du q̃i(u) = q̃i−1(u), for i = 1, 2, . . . , k, whose

solution for the initial value q̃i(0) = 1/an, for 1 ≤ i ≤ k, is
given by

q̃i(u) =
1

an

i∑
j=0

uj

j!
, for i = 0, 1, . . . , k.

It follows that u(t) satisfies u(0) = 0 and

d

dt
u(t) = 1− 1

an

k∑
j=0

u(t)j

j!
, for t ≥ 0. (20)

Let un,k be the value of u(t) for time t equal to the completion
time t̄n,k, i.e. un,k is such that

1− q̃k(un,k) =

(
1− 1

an

)
1

bn
.

It is of convenience to define vn,k = un,k/(k!an)1/k and let
pk(x) be the k-th order polynomial pk(x) = 1− q̃k((k!an)1/k ·
x), i.e.

pk(x) = 1− 1

an

k∑
j=0

(k!an)j/k

j!
xj .

We then have that vn,k is given by

pk(vn,k) =

(
1− 1

an

)
1

bn
. (21)

From (20), the completion time tn,k is given by

t̄n,k = (k!an)1/k ·
∫ vn,k

0

1

pk(x)
dx. (22)

In the remainder of the proof we use the last identity to
estimate t̄n,k. We will show that the second factor in (22) is
asymptotically a function of the gap between the point v̄n,k at
which the integrand goes to infinity and the point vn,k.

The value v̄n,k is a unique null-point of the polynomial
pk(x) in the interval [0,∞) and is of multiplicity 1. Indeed,
since pk(x) is decreasing over [0,∞), we have p(vn,k) > 0
and pk(v̄n,k) = 0, hence, vn,k < v̄n,k. It is not difficult to
observe that vn,k = 1− o(1) and v̄n,k = 1− o(1) that we will
use later in the proof.

We will next show that the following holds

t̄n,k = (k!an)1/k · 1
k

[
log

(
v̄n,k

v̄n,k − vn,k

)
+ C ′k

]
+O(1) (23)

where

C ′k =

∫ 1

0

∑k−2
j=0 (k − 1− j)xj∑k−1

j=0 x
j

dx.

Eq. (23) will follow from (22) once we establish that∫ vn,k

0

1

pk(x)
dx

=
1

k
·
[
log

(
v̄n,k

v̄n,k − vn,k

)
+ C ′k

]
+O(1/(k!an)1/k).

In order to show the latter, we use the partial fraction
decomposition to note that there exist polynomials fk−1(x) =∑k−1
j=0 cjx

j and gk−2(x) =
∑k−2
j=0 djx

j and An such that

pk(x) = (v̄n,k − x)fk−1(x)

and
1

pk(x)
=

An
v̄n,k − x

+
gk−2(x)

fk−1(x)
.
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We next evaluate∫ vn,k

0

1

pk(x)
dx

=

∫ vn,k

0

An
v̄n,k − x

dx+

∫ vn,k

0

gk−2(x)

fk−1(x)
dx

= An log

(
v̄n,k

v̄n,k − vn,k

)
+

∫ vn,k

0

gk−2(x)

fk−1(x)
dx.

By straightforward calculus, it can be obtained

cj =
1− 1

an

∑j
i=0

(k!an)i/k

i! v̄in,k

v̄j+1
n,k

, for 1 ≤ j ≤ k − 1, (24)

dj = An

k−1∑
i=j+1

civ̄
i−j
n,k , for 0 ≤ j ≤ k − 2

and
An =

1∑k−1
j=0 cj v̄

j
n,k

. (25)

From (25) and (24),

An =
v̄n,k

k − 1
an

∑k−1
j=0

∑j
i=0

(k!an)i/k

i! v̄in,k

.

Note that

1

an

k−1∑
j=0

j∑
i=0

(k!an)i/k

i!
v̄in,k

=
k

(k!an)1/k

(
1 +O(1/(k!an)1/k)

)
.

Hence
An =

1

k

(
1 +O(1/(k!an)1/k)

)
.

Furthermore, observe that for every 0 ≤ x ≤ vn,k,

gk−2(x)

fk−1(x)
=

1

k

∑k−2
j=0 (k − 1− j)xj∑k−1

j=0 x
j

+O(1/(k!an)1/k)

hence, ∫ vn,k

0

gk−2(x)

fk−1(x)
dx =

1

k
· C ′k +O(1/(k!an)1/k).

So far, we showed that (23) holds. It remains only to
estimate the gap v̄n,k − vn,k.

Bounding the gap v̄n,k − vn,k. In (23), we showed that
the asymptotically dominant term of the completion time tn,k
is a product of (k!an)1/k and a function of the gap v̄n,k−vn,k
which we estimate in the following.

Lemma 2: The gap v̄n,k − vn,k satisfies

v̄n,k − vn,k =
1

kbn
(1 + o(1)).

Proof: We first show the lower bound. Since pk(x) is a
concave decreasing function on [0,∞) we have(

1− 1

an

)
1

bn
= pk(vn,k)−pk(v̄n,k) ≤ −p′k(v̄n,k)(v̄n,k−vn,k)

Figure 6. Bounding pk(x).

See Figure 6 for an illustration.
Combined with

−p′k(v̄n,k) =
(k!an)1/k

an

k−1∑
j=1

(k!an)j/k

j!
v̄kn,k

= k(1 + o(1))

we have

v̄n,k − vn,k ≥
1

kbn
(1− o(1)).

We next show the upper bound as follows(
1− 1

an

)
1

bn
= pk(vn,k)− pk(v̄n,k)

=
1

an

k∑
j=1

(k!an)j/k

j!
[v̄jn,k − v

j
n,k]

≥ 1

an

k∑
j=2

(k!an)j/k

j!
[jvjn,k · (v̄n,k − vn,k)]

≥ kvkn,k · (v̄n,k − vn,k)

where the first inequality is by convexity of xj , for every j =
1, . . . , k. Since vn,k = 1− o(1), we have

v̄n,k − vn,k ≤
1

kbn
(1 + o(1)).

Finally, using the last lemma with (23) we establish

t̄n,k = (k!an)1/k

[
log(b1/kn ) +

log(k) + C ′k
k

]
+O(1)

which completes the proof.

D. Comparison with Exact Solution for Lazy 2-hop

For the case k = 2 one can exactly solve the integral in
(22) which yields the following solution:

t̄n,2 =
√

2an ·
1

2
√

1− 1
2an

·

· log

 1− 1
an

+ vn,2

(√
1− 1

2an

)
1− 1

an
− vn,2

(√
1− 1

2an
+ 1√

2an

)
 .
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Recall that vn,k is given by p2(vn,2) = (1 − 1/an)/bn
which amounts to solving a quadratic equation whose positive
solution yields

vn,2 =

√
1− 1

bn
− 1

2an
+

1

anbn
− 1√

2an
.

It is easy to derive

t̄n,2
n→∞∼

√
2an log(

√
4bn)

which indeed conforms to our general result in Theorem 4.
See Figure 7 for an example with an = bn = n.

Figure 7. Asymptotic versus exact completion time for k = 2.

E. Proof of Theorem 5

We consider the system with 1 ≤ m < n initially informed
nodes. Note that m = n/an is a sequence of n but for
simplicity of notation, in the following, we omit the subscript
n and simply write m.

We consider the system evolution over phases s =
0, 1, . . . , n − m − 1 where phase s corresponds to the time
interval over which there are n − m − s uninformed nodes.
The number of uninformed nodes is non-increasing over time
and it decrements by 1 at a contact of a uninformed node and
an informed node. Let 0 = T0 < T1 < · · · < Tn−m−1 denote
instances such that [Ts, Ts+1) is the interval of phase s. A new
phase is initiated if either (1) an uninformed node contacts a
source node or (2) an uniformed node contacts a node that
became informed by an earlier contact to a source node.

Let Ys denote the number of nodes that became informed
by a contact to a source node at some time 0 < t ≤ Ts. It
is not difficult to observe that Ys is a discrete-time Markov
chain satisfying the following: Y0 = 0 and

Ys+1 = Ys +Xs, for s = 0, . . . , n−m− 1, (26)

where Xs is a Bernoulli random variable, conditional on the
value Ys, with mean

IP(Xs = 1|Ys) = 1− IP(Xs = 0|Ys) =
m

m+ Ys
.

Recall that a new phase begins at a contact of an informed
node with either a source node or a node that became informed
at an earlier contact with a source. Hence, the duration of phase
s, denoted with τs = Ts+1 − Ts is a random variable, which

conditional on value Ys, is a minimum of (n−m−s)(m+Ys)
exponential random variables each with mean n− 1.

Indeed, we have

Tn,2 =

n−m−1∑
s=0

τs

where given Ys τs is an exponential random variable with
mean (n−1)/[(n−m−s)(m+Ys)]. In particular, the expected
completion time is given by

IE(Tn,2) = (n− 1)

n−m−1∑
s=0

1

n−m− s
IE

(
1

m+ Ys

)
. (27)

Notice that for the expected completion time, it suffices to
know the expected value of a function where the expectation is
with respect to the distribution of Ys, for s = 1, 2, . . . , n−m−
1. In the remainder of the proof, we estimate IE(1/(m+Ys)).
tion time, it suffices to know the expected value of a function
where the expectation is with respect to the distribution of Ys,
for s = 1, 2, . . . , n−m−1. In the remainder of the proof, we
estimate IE(1/(m+ Ys)).

An auxiliary lemma. We note a number of properties about
the random variable Ys that are used later in the proof, in the
following lemma.

Lemma 3: The random variable Ys satisfies

m+ IE(Ys) ≥
√

2ms+m2 + 1, for s > 0 (28)
m+ IE(Ys) ≤

√
2ms+m+ 1 +Hs (29)

Var(Ys) ≤
√

2ms+m2 + 1−m− 1 (30)

IE

(
1

m+ Ys

)
≤ 1

m+ IE(Ys)
+

1

2ms
. (31)

where Hs =
∑s
i=1

1
i .

Proof: We first show (28), then (30) and then 29. Eq. (31)
follows as a by-product of (29).

Proof of inequality (28). From (26), Y0 = 0, Y1 = 1, and
for s = 1, . . . , n−m− 1,

IE(Ys+1) = IE(Ys) + IE

(
m

m+ Ys

)
.

Let zs := IE(Ys)+m. Note, by Jensen’s inequality, IE(m/(m+
Ys)) ≥ m/(m+ IE(Ys)) = m/zs. Therefore,

zs+1 ≥ zs +
m

zs
, s = 0, 1 . . . , n−m− 1.

Notice that this is equivalent to zs+1 ≥ f(zs) where f(x) =
x+m/x is an increasing function for x >

√
m. Since z0 = m

and zs is non-decreasing, we zs ≥ zs, for s = 0, . . . , n−m−1,
where

zs+1 = zs +
m

zs
.

Now, let z(s) be given by z(1) = m + 1 and dz(s)/ds =
m/z(s), for 1 ≤ s ≤ t. The latter differential system has
the solution z(t) =

√
2mt+m2 + 1. It is easy to check that

zs ≥ zs ≥ z(s) for every s = 1, 2, . . . , n−m− 1, and hence,
the result follows.
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Proof of inequality (29). We first note the following
identity, satisfied by the first and the second moment of Ys.

Claim 1: For s = 0, . . . , n−m− 1,

IE(Y 2
s ) = 2ms− (2m− 1)IE(Ys).

Proof: From (26), for s = 0, . . . , n−m− 1,

Y 2
s+1 = Y 2

s + 2YsXs +X2
s = Y 2

s + 2YsXs +Xs.

Taking expectations on both sides, we have

IE(Y 2
s+1)− IE(Y 2

s ) = 2mIE

(
Ys

m+ Ys

)
+mIE

(
1

m+ Ys

)
= 2m−m(2m− 1)IE

(
1

m+ Ys

)
= 2m− (2m− 1)(IE(Ys+1)− IE(Ys)).

Summing over s = 1, . . . , t− 1, we have

IE(Y 2
t )− 1 = 2m(t− 1)− (2m− 1)(IE(Yt)− 1)

= 2mt− (2m− 1)IE(Yt)− 1

from which the claim follows.
By the claim,

Var(Ys) = IE(Y 2
s )− IE(Ys)

2

= 2ms− (2m− 1)IE(Ys)− IE(Ys)
2.

Combining with (29), we obtain (30).
Proof of inequality (29). By limited Taylor development

of the function 1/(m+ x) around IE(Ys), we obtain

IE

(
1

m+ Ys

)
− 1

m+ IE(Ys)

≤ 1

(m+ IE(Ys))3
IE((Ys − IE(Ys))

2). (32)

From the latter fact combined with (28) and (30), we
establish (31).

Now, from (26) and (31), we have

IE(Ys+1) ≤ IE(Ys) +
m

m+ IE(Ys)
+

1

2s
.

Let zt = m+ IE(Yt) to rewrite the last inequality as

zs+1 ≤ zs +
m

zs
+

1

2s
.

By (28), zs ≥
√

2ms. Hence,

zs+1 − zs ≤
√
m

2

1√
s

+
1

2s
.

Summing both sides over s = 1 to s = t− 1, we have

zt − z1 ≤
√
m

2

t−1∑
s=1

1√
s

+
1

2

t−1∑
s=1

1

s

≤
√
m

2

(
1 +

∫ t

1

ds√
s

)
+

1

2
Ht

= −
√
m

2
+
√

2mt+
1

2
Ht

Since z1 = m+ 1, the inequality (29) follows.
Upper bound. We next upper bound the expected comple-

tion time. From (27), we havetion time. From (27), we have

IE(Tn,2) = An +Bn

where

An = (n− 1)

n−m−1∑
s=0

1

n−m− s
1

m+ IE(Ys)

Bn = (n− 1)

n−m−1∑
s=0

1

n−m− s
·

·
[
IE

(
1

m+ Ys

)
− 1

m+ IE(Ys)

]
.

We proceed by upper bounding the terms An and Bn. Using
(28), we can write

An ≤ n− 1

m(n−m)
+
n− 1√

2m

n−m−1∑
s=1

1

n−m− s
1√
s

=
n− 1

m(n−m)
+

n− 1

2
√

2m(n−m)
·

·
n−m−1∑
s=1

1

(
√
n−m−

√
s)
√
s

+
1

(
√
n−m+

√
s)
√
s
.

By elementary analysis, we have

n−m−1∑
s=1

1

(
√
n−m−

√
s)
√
s

=
1√

n−m

n−m−1∑
s=1

1√
s

+
1√

n−m−
√
s

≤ 1√
n−m

(
1 +

∫ n−m−1

1

ds√
s

+
1√

n−m−
√
n−m− 1

+

∫ n−m−1

1

ds√
n−m−

√
s

)
=

1√
n−m

(
1 +

1√
n−m−

√
n−m− 1

)
+2 log

√
n−m− 1√

n−m−
√
n−m− 1

and
n−m−1∑
s=1

1

(
√
n−m+

√
s)
√
s

≤ 1√
n−m+ 1

+

∫ n−m−1

1

ds

(
√
n−m+

√
s)
√
s

=
1√

n−m+ 1
+ 2 log

√
n−m+

√
n−m− 1√

n−m+ 1
.
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Putting the pieces together, we obtain

An ≤ n− 1

m(n−m)

+
n− 1√

2m(n−m)
log

(
1 +

√
1 + 1

n−m

)(
1− 1√

n−m

)
(

1−
√

1− 1
n−m

)(
1 + 1√

n−m

)
+

n− 1

2
√

2m(n−m)

[
1√

n−m
·

·
(

1 +
1√

n−m−
√
n−m− 1

)
+

1√
n−m+ 1

]
.

From the last inequality, it is not difficult to observe that

An ≤
√

2an log(
√
n) + Θ(

√
an). (33)

We next upper bound the term Bn. Using (31), we have

Bn ≤ n− 1

m(n−m)
+
n− 1

2m

n−m−1∑
s=1

1

(n−m− s)s

=
n− 1

m(n−m)
+

n− 1

m(n−m)
Hn−m−1

where Hi =
∑i
j=1 1/j. From the last inequality, we observe

Bn ≤
an log(n)

n
+O(1). (34)

From (33) and (34), we have

IE(Tn,2) ≤
√

2an log(
√
n) + Θ(

√
an) (35)

which establishes the upper bound.
Lower bound. From (27) and Jensen’s inequality

IE(Tn,2) ≥ (n− 1)

n−m−1∑
s=0

1

n−m− s
1

zs

where zs = m+ IE(Ys).
Note

(n− 1)

n−m−1∑
s=0

1

n−m− s
1

zs

≥ n− 1√
2m

n−m−1∑
s=1

1

n−m− s
1√
s

1

1 +
m+1+ 1

2Hs√
2ms

≥ n− 1√
2m

n−m−1∑
s=1

1

n−m− s
1√
s

(
1−

m+ 1 + 1
2Hs√

2ms

)
where the fist inequality follows from (29), the second inequal-
ity follows by the fact 1/(1 + x) ≥ 1− x, for x ≥ 0.

In view of the last above inequality, we have

IE(Tn,2) ≥ An −Bn
where

An =
n− 1√

2m

n−m−1∑
s=1

1

n−m− s
1√
s

Bn =
n− 1

2m

n−m−1∑
s=1

1

(n−m− s)s
(m+ 1 +

1

2
Hs).

By similar arguments as for the upper bound, it can be
showed that

An ≥
n− 1√

2m(n−m)
log

(
1− 1√

n−m

)(
1 +

√
1− 1

n−m

)
(

1 + 1√
n−m

)(
1−

√
1− 1

n−m

) .
Using the facts

1− 1√
n−m

1 + 1√
n−m

≥
(

1− 1√
n−m

)2

and

1 +
√

1− 1
n−m

1−
√

1− 1
n−m

≥ 1

1−
√

1− 1
n−m

≥ n−m

we obtain

An ≥
√

2

m

n− 1√
n−m

(
log
√
n−m+ log

(
1− 1√

n−m

))
.

It is now easy to observe

An ≥
√

2an log
√
n+O(

√
an/n).

Furthermore,

Bn ≤ n− 1

2m

(
m+ 1 +

1

2
Hn−m−1

) n−m−1∑
s=1

1

(n−m− s)s

=
n− 1

m(n−m)

(
m+ 1 +

1

2
Hn−m−1

)
Hn−m−1

Hence, it can be observed that

Bn ≤ O(
an
n

log(n)2).

The asserted lower bound follows.

F. Proof of Theorem 6

Since conditional on Y0, Y2, . . . , Yn−m−1, the completion
time Tn,k is a sum of independent random variables whose
respective distributions are exponential with means (n −
1)/[(n+m− s)(m+ Ys)], s = 0, . . . , n−m− 1, we have

Var(Tn,2) = (n−1)2
n−m−1∑
s=0

1

(n−m− s)2
IE

(
1

(m+ Ys)2

)
.

Let us define An and Bn such that

An = (n− 1)2
n−m−1∑
s=0

1

(n−m− s)2

1

(m+ IE(Ys))2

Bn = (n− 1)2
n−m−1∑
s=0

1

(n−m− s)2

[
IE

(
1

(m+ Ys)2

)
− 1

(m+ IE(Ys))2

]
and then

Var(Tn,2) = An +Bn. (36)
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Upper bound. We first upper bound the term An. By the
facts IP(Y0 = 0) = 1 and m + IE(Ys) ≥

√
2ms, where the

latter is from (28), we have

An ≤
(

n− 1

m(n−m)

)2

+
(n− 1)2

2m

n−m−1∑
s=1

1

(n−m− s)2s
.

By elementary calculus,

1

(n−m− s)2s

=
1

(n−m)2

(
1

s
+

1

n−m− s
+

n−m
(n−m− s)2

)
.

Hence,

(n−1)2

2m

∑n−m−1
s=1

1
(n−m−s)2s

= 1
2m

(
n−1
n−m

)2 (
2Hn−m−1 + (n−m)

∑n−m−1
s=1

1
s2

)
= π2

12 an + Θ(an log(n)
n )

(37)
and, therefore,

lim
n→∞

An
an
≤ lim
n→∞

n−m−1∑
s=1

1

s2
=
π2

12
.

We next consider the term Bn. By limited Taylor develop-
ment of the function 1/(m+ x)2 around IE(Ys) we have

IE

(
1

(m+ Ys)2

)
− 1

(m+ IE(Ys))2

≤ 3

(m+ IE(Ys))4
IE((Ys − IE(Ys))

2)

≤ 3

(2m)3/2

1

s3/2

where the last inequality follows from (30) and (28). It follows

Bn ≤
3(n− 1)2

(2m)3/2

n−m−1∑
s=1

1

(n−m− s)2s3/2
. (38)

Noting that

1

(n−m− s)2s3/2
=

1

(n−m)2

1

s3/2

+
1

(n−m)2

1

(n−m− s)
√
s

+
1

(n−m)

1

(n−m− s)2
√
s

we have

Bn ≤ 3

(2m)3/2

{(
n− 1

n−m

)2

·

·

[
n−m−1∑
s=1

1

s3/2
+

n−m−1∑
s=1

1

(n−m− s)
√
s

]

+
(n− 1)2

n−m

n−m−1∑
s=1

1

(n−m− s)2
√
s

}
.

It is not difficult to check that
n−m−1∑
s=1

1

s3/2
= O(1)

n−m−1∑
s=1

1

(n−m− s)
√
s

= O(
√

(n−m) log(n−m))

(n− 1)2

n−m

n−m−1∑
s=1

1

(n−m− s)2
√
s

= O(
√

(n−m) log(n−m)).

It thus follows

Bn ≤ O(
an
√
an log(n)

n
). (39)

We have established that

Var(Tn,2) ≤ π2

12
an + o(an).

Lower bound. From (36) and Jensen’s inequality, we have
Var(Tn,2) ≥ An, and thus it suffices to lower bound the term
An. Using (29),

An ≥ (n− 1)2

2m

n−m−1∑
s=1

1

(n−m− s)2s
·

· 1(
1 + (m+ 1 +Hs)/

√
2ms

)2
≥ (n− 1)2

2m

n−m−1∑
s=1

1

(n−m− s)2s

(
1− 2

m+ 1 +Hs√
2ms

)

≥ (n− 1)2

2m

n−m−1∑
s=1

1

(n−m− s)2s

− (n− 1)2

√
2m3/2

(m+ 1 +Hn−m−1) ·

·
n−m−1∑
s=1

1

(n−m− s)2s3/2

=
π2

12
an + Θ(

an log(n)

n
)

− (n− 1)2

√
2m3/2

(m+ 1 +Hn−m−1) ·

·
n−m−1∑
s=1

1

(n−m− s)2s3/2

where the equality is by (37). By similar arguments as in
obtaining (39) from (38), we have

(n− 1)2

√
2m3/2

(m+ 1 +Hn−m−1)

n−m−1∑
s=1

1

(n−m− s)2s3/2

= an
log(n)
√
an

(1 + o(1)).

It follows that Var(Tn,2)/an ≥ π2

12 −
log(n)√
an

(1 + o(1)), which
completes the proof.
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G. Proof of Theorem 7

We use here the notations introduced in the proof of
Theorem 2. We have:

cn,k(sn) =

∫ tn,k

sn

(1− qk(u))du

=

(
1− 1

an

)∫ tn,k

sn

exp(−rk−1(u))du.

We deduce from the inequalities on rk−1(t) derived in the
proof of Theorem 2 that, if log(bn) = o(an),

cn,k(sn) =

(
1− 1

an

)
(k!an)1/k

∫ tn,k/(k!an)1/k

sn/(k!an)1/k
exp(−uk)du

· (1 + o(1)). (40)

(i) Assume that limn→∞ sn/(k!an)1/k = α <∞. From (40),
we deduce that

cn,k(sn) = (k!an)1/k

∫ ∞
α

exp(−uk)du · (1 + o(1)).

Then (12) follows from the fact:∫ ∞
α

exp(−uk)du =
1

k

∫ ∞
αk

v
1
k−1e−vdv

=
1

k
Γ

(
1

k
, αk
)
.

Now in view of the assumptions made in (ii), (13) follows
from (40) and the fact that for x large:∫ ∞

x

exp(−uk)du =
e−x

k

kxk−1
(1 + o(1)).

H. Proof of Theorem 8

We use here the notation introduced in the proof of Theorem
4. In addition, we introduce v(t) = u(t)/(k!an)1/k and vn =
v(sn). Let us first prove (14). We have:

sn
(k!an)1/k

=

∫ vn

0

1

pk(x)
dx

≥
∫ vn

0

1

1− xk
dx = ψk(vn).

Hence
vn ≤ ψ−1

k

(
sn

(k!an)1/k

)
.

Now

cn,k(sn) = (k!an)1/k(vn,k − vn)

≥ (k!an)1/k

(
vn,k − ψ−1

k

(
sn

(k!an)1/k

))
.

Moreover, we have
sn

(k!an)1/k
≤
∫ vn

0

1

1− dn − xk
dx

=
1

(1− dn)1−1/k

∫ vn/(1−dn)1/k

0

dx

1− xk

≤ 1

(1− dn)1−1/k
ψk(vn/(1− dn)1/k),

where

dn =
1

an

k−1∑
j=0

(k!an)j/k

j!
.

Hence

vn ≥ (1− dn)1/kψ−1
k

(
sn(1− dn)1−1/k

(k!an)1/k

)
,

and

cn,k(sn) ≥ (k!an)1/k (vn,k−

−(1− dn)1/kψ−1
k

(
sn(1− dn)1−1/k

(k!an)1/k

))
.

Now since vn,k → 1 and dn → 0 as n → ∞, if
limn→∞ sn/(k!an)1/k = α,

cn,k(sn) = (k!an)1/k(1− ψ−1
k (α) + o(1)).

We now turn our attention to (15). As in the proof of
Theorem 4, we can show that

sn = (k!an)1/k · 1

k

[
log

(
vn,k

vn,k − vn

)
+ C ′k

]
+O(1).

We deduce that

vn = vn,k

(
1− exp

(
− ksn

(k!an)1/k
+O(1)

))
.

Now

cn,k(sn) =(k!an)1/k [vn,k − vn,k

+vn,k exp

(
− ksn

(k!an)1/k
+O(1)

)]
.

Remark that as shown previously, vn,k−vn,k = 1
kbn

(1+o(1)).
Also remark that since limn→∞ sn/tn,k = 0,

1

bn
= o

(
exp

(
− ksn

(k!an)1/k

))
.

We then conclude that

cn,k(sn) = (k!an)1/k · exp

(
− ksn

(k!an)1/k
+O(1)

)
.


