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Abstract — We consider the speed of convergence of an
instance of the binary interval consensus, a distributed
and decentralized algorithm for computing the quantized
average value. With binary consensus problem, each node
initially holds one of two states and the goal for each node
is to correctly decide which one of the two states was
initially held by the majority of nodes.

We derive an upper bound on the expected convergence
time that holds for arbitrary connected graphs; it is based
on the location of the eigenvalues of some contact rate ma-
trices. We instantiate our bound for particular networks of
interest, including complete graphs, star-shaped networks,
and Erdos-Rényi random graphs, and in the former two
cases compare with alternative computations. We find that
for all these examples our bound is of the exact order with
respect to the number of nodes and in some cases yields the
exact multiplicative constant. We pinpoint the fact that the
expected convergence time critically depends on the voting
margin defined as the difference between the proportions
of nodes that initially held the majority and the minority
states, respectively. We derive an exact relation between the
expected convergence time and the voting margin, for some
of these graphs, that reveals how the expected convergence
time tends to infinity as the voting margin approaches zero.

Our results provide insights on how the expected con-
vergence time depends on the network topology which can
be used for performance evaluation and network design.
The results are of interest in the context of peer-to-peer
systems; in particular, for sensor networks and distributed
databases.

I. INTRODUCTION

Algorithms for distributed computation in networks have
recently attracted considerable interest because of their wide-
range of applications in a number of contexts such as sensor
networks, distributed databases, and on-line social networks. A
specific algorithmic problem of interest is the so called binary
consensus [1], [2], [3], [4] where, initially, each node in the
network holds one of two states and the goal for each node is
to correctly decide which one of the two states was initially
held by the majority of nodes. This is to be achieved by a
distributed algorithm where each node maintains its state based
on the information exchanged at contacts with other nodes,
where the contacts are restricted by the network topology. It
is desired to reach a final decision by all nodes that is correct
and within a short period of time.

A typical application scenario of the binary consensus
corresponds to a set of agents who want to reach consensus on
whether a given event has occurred based on their individual,
one-off collected, information. Such cooperative decision-
making settings arise in a number of applications such as
environmental monitoring, surveillance and security, and target
tracking [5], as well as voting in distributed systems [6].
Furthermore, it has been noted that one can use multiple binary
consensus instances to solve multivalued consensuses; we refer
to [7], [8] for an account on such algorithms.

In this paper, we consider the interval or quantized con-
sensus, a distributed algorithm for deciding in which one of
k > 2 non-overlapping intervals, the average of the values
held by the nodes resides. We focus on the binary interval
consensus, 1.e. the case k = 2. An attractive feature of the
interval consensus is its accuracy; it was showed in [3] that for
any finite connected graph that describes the network topology,
the interval consensus is guaranteed to converge to the correct
state with probability 1. What was unknown, however, is its
speed of convergence.

In what follows, we provide an upper bound on the ex-
pected convergence time of the binary interval consensus for
arbitrary connected graphs. This provides a unified approach
for estimating the expected convergence time for particular
graphs. The bound is tight in the sense that there exists a
graph, namely the complete graph, for which the bound is
achieved.

We demonstrate how the general upper bound can be in-
stantiated for a range of examples, including complete graphs,
star-shaped networks, and Erdds-Rényi random graphs. The
complete graph and the Erdds-Rényi random graph, where
contacts from each node are drawn uniformly at random across
other nodes, are reasonable approximations of unstructured
and structured peer-to-peer networks. The star-shaped network
captures scenarios where some node is a hub for other nodes;
for example, an information aggregator is a hub node.

Our results provide insights on how the expected conver-
gence time depends on (1) the network structure and (2)
the voting margin, defined as the difference between the
proportion of nodes that initially hold the majority state and the
proportion of nodes that initially hold the minority state. The
network structure plays a role through the spectral properties
of some matrices that dictate the contact rates between the
nodes. We find that the voting margin has a significant effect
on the expected convergence time.

Denoting by « > 1/2 the proportion of nodes that ini-
tially hold the majority state, the voting margin is equal to
a — (1 — a) = 2a — 1. For example, we find that the
expected convergence time for the complete graph on n nodes
is log(n)/(2a — 1) for large n, thus it decays as a power-
law with the voting margin 2o — 1 (see Fig. 1 for an il-
lustration). Therefore, albeit the interval consensus guarantees
convergence to the correct state, the expected convergence time
can assume large values as the voting margin approaches zero.

The contributions of this paper can be summarized in the
following points:

e We provide an upper bound on the expected convergence
time of the binary interval consensus that applies to arbitrary,
connected network topologies. The bound is based on the
location of the eigenvalues of some contact rate matrices.
It provides a unified approach to estimate the convergence
time for particular graphs by either deriving bounds on these
eigenvalues analytically or undertaking efficient numerical
computations.

e We instantiate our upper bound for several particular
network topologies; namely, for complete graphs, stars, and
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Fig. 1. Normalized expected convergence time for the complete graph on n
nodes (for large n) versus the voting margin 2ac—1. The expected convergence
time goes to infinity as the voting margin approaches zero. For example, the
expected convergence time for the voting margin 0.02 (i.e. « = 0.51) is
factor 50 of that for the voting margin near to 1 (i.e. oo = 0.99).

Erdos-Rényi random graphs. For each of these cases, our upper
bound is of the exact order with respect to the number of nodes
n and in some cases yields the exact multiplicative constant.

e Our results provide insights into the convergence time
for a given network topology. In addition, it supplies valuable
clues for the network design problem where the goal is to
optimize the network topology with respect to the convergence
time of the algorithm. For instance, for Erdos-Rényi random
graphs, we found a sufficient condition on the expected
number of neighbours, for each node in the network, to ensure
a bound on the expected convergence time.

e We find that the expected convergence time critically
depends on the voting margin and that it can assume large
values as the voting margin approaches zero. This motivates
future work towards designing speedier consensus algorithms.

A. Related Work

In recent years, there have been a number of papers that
analyzed the effect of the quantization of the values exchanged
between nodes known as quantized consensus [1], wherein
nodes exchange values drawn from a finite set. In [4], the
authors provided bounds on the convergence time in the
context of the averaging algorithm when agents have access
to quantized values of the other agents.

In our case, we assume that each node holds an initial value
which is either 0 or 1 and the aim is to reach an actual
consensus consistent with the initial majority observation.
Similar to the approach in [3], nodes are allowed to update
their states to one of two additional intermediate states denoted
by eg and e;. In [3], the authors proved that the addition of
these states guarantees the convergence of the algorithm to the
correct consensus. They however fell short from providing any
analysis of the convergence time.

A related dynamics is the voter model whereby each agent
adopts the opinion of a randomly chosen neighbour. The
voter model has been studied in the context of various graph
topologies [9], [10], [11], [12] and it is has been proved

that the probability of incorrect consensus (one that is not
consistent with the initial majority) is constant bounded away
from zero [13]. In [2], the authors proposed and studied the
binary consensus with a ternary state maintained and signaled
by the nodes. This algorithm fails to converge to the correct
consensus with a positive probability. [2] established results
for complete graphs showing that (1) the probability of failing
to reach the correct consensus is decreasing exponentially with
the number of nodes n, with the rate that is decreasing with
the voting margin; (2) provided that the convergence is to the
correct consensus, the convergence time is log(n), independent
of the voting margin 2« — 1.

For the complete graph, we find that the binary interval
consensus with two intermediate states has the expected con-
vergence time log(n)/(2a.— 1). We note that the convergence
time of the ternary protocol [2] is faster by a factor 1/(2a.—1),
provided that it converges to the correct consensus (which fails
to be the case with probability exponentially decaying with the
number of nodes n).

Finally, we would like to mention that our work relates to
cascading behaviours in on-line social networks [14]. In par-
ticular, the viral marketing problem whereby an initial idea or
behaviour, held by a a portion of the population, “percolates”
through the network yielding wide adoption across the whole
population [15].

B. Outline of the Paper

In Section II we present the binary interval consensus
algorithm, which is the primary focus of this paper, and
introduce some basic notation. Section III contains our upper
bound on the expected convergence time that applies to
arbitrary connected graphs (Thereom III.1) together with the
proof of this result. Section IV provides results for particular
graphs that we consider. The results are further discussed and
compared with related work in Section V. We conclude in
Section VI.

We deferred some of the proofs to Appendix.

II. ALGORITHM AND NOTATION

For the binary interval consensus algorithm, each node is
in one of four states: 0, ey, e1, and 1. The states satisfy the
following order 0 < ey < e; < 1. At each contact of a
pair of nodes, their respective states x and y (without loss of
generality) ordered such that x < y, are updated according to
the following mapping (x,y) — (2’,y’) defined by

(0760) — (60,0)
(0761) - (6070)
(0,1) — (e1,e0)
(6(), 61) - (617 60)
(607 1) - (1761)
(617 1) - (1761)
(s,s) — (s,8), for s =0,¢eq,€1,1.

We assume that the nodes correspond to the vertices of
a connected undirected graph G = (V,E) where V =



{1,...,n} corresponds to the set of vertices and F to the
set of edges.

We admit the standard asynchronous communication model
[2], [16] where any pair of nodes (%, j) interacts at instances
of a Poisson process with rate ¢; ;. We suppose that ¢; ; =
qji #£0 if (Z,]) € E.

The number of nodes in state 0 and the number of nodes
in state 1 are decremented by 1 following the interaction of
a node in state 0 and a node in state 1, and are otherwise
unchanged. Note that the mapping is such that the output states
2',y’ satisfy 2’ > 13/ whenever the input states are such that
x < y. In particular, this is achieved by swapping the states
at encounters of the type (0,eg), (eg,e1), (e1,1). For finite
connected graphs, this ensures the existence of encounters in
the network such that any state 0 held by a node can get
in contact with a state 1 held by some other node through
swapping in finite time.

In what follows, we denote by S;(t) the set of nodes in state
i = 0,eq,e1,1, at time ¢, and we use the abbreviate notation
|15i| =15:(0)], i =0,1.

For a € (1/2,1], let |Sp| = an and |S1| = (1 — a)n be the
number of node initially in state 0 and state 1, respectively. By
the properties of the algorithm described above, the number of
nodes in the initial minority state 1 becomes equal to zero and
the number of nodes in the initial majority state 0 becomes
equal to |Sp| — |Si| in finite time. Once there are no more
nodes in the initial minority state 1, the number of nodes in
state e; decreases at encounters with nodes in state 0. This
guarantees the convergence of the system to a set of states
in which all nodes are either in state ey or state O; this is a
correct consensus, indicating O as the initial majority.

III. A BOUND ON THE EXPECTED CONVERGENCE TIME
FOR ARBITRARY GRAPHS

In this section, we provide an upper bound on the expected
convergence time. The bound is in terms of the eigenvalues of
a family of matrices Qg that depend on the transition matrix
Q.
Let S be a non-empty subset of V, the set of vertices, of
size smaller than n. We consider the matrix (Jg defined by,
fori,7 €V,

_Zlgv qi,l, 1=7
Qi i¢ S, jFi (H
0, i€ S,j i

QS(Z7]) =

Our first result provides a general bound on the eigenvalues
of the matrices Qg that depends on the graph G and the
parameter .. As it will appear later in this section, this result
is crucial for our analysis based on tracking the number of
nodes holding the wrong state, i.e. either 1 or e;.

Lemma IIL.1. For any finite graph G, there exists §(G, o) > 0
such that, for any non-empty subset of vertices S with |S| < n,
if X is an eigenvalue of the the matrix Qg defined in (1), then
it satisfies

A< =6(G,a) <0.

Proof is in Appendix A.

We now state our main result which provides an upper
bound for the duration of the two phases of the process and
yields a general bound for the time to convergence in terms
of the parameter §(G, o) defined in Lemma IIL.1.

Theorem III.1. Let T be the smallest time at which all the
nodes in state 1 are depleted. Then,

1
E(T) < ——(logn+1).
( 1>_5(G,O&)( g )
Moreover, letting T be the time for all the nodes in state e
to be depleted, starting from an initial state with no nodes in
state 1, we have

1
BT = Saa

(logn +1).

In particular, if T be the smallest time at which none of the
nodes is in either state ey or state 1, then

E(T) < (logn +1).

2
0(G, )

The process evolves in two phases with rather similar
dynamics as it will appear below. Starting from a majority
of nodes in state 0 and the rest in state 1, the first phase ends
when all nodes in state 1 disappear after interacting with nodes
in state 1. This is followed by a second phase that ends when
all nodes in state e; disappear under the pressure of nodes in
state 0.

We take the initial condition an nodes in state 0 and (1 —
a)n nodes in state 1 with o > 1/2. The first phase ends when
there are no more nodes in state 1, being all moved to the
intermediate states eg and ey (depletion of nodes in state 1).
It is not difficult to note that, at the end of this phase, there
are exactly (2a¢ — 1)n nodes in state 0 and 2(1 — a)n nodes
in either state ey or state ej.

The second phase ends when there are no more nodes in
state e, being all moved to the states e (depletion of nodes in
state ey). It is not difficult to note that, at the end of this phase,
there are exactly (2 — 1)n nodes in state 0 and 2(1 — a)n
nodes in state eg.

In the remainder of this section, we prove Theorem III.1;
the reader who is more interested in the applications of the
result may skip to Section IV with no loss of continuity.

Phase 1: Depletion of nodes in state 1. We describe the
dynamics of the first phase through the following indicator
functions: Let ¢ € V, we define Z;(t) be the indicator that
node ¢ is in state 0 at time ¢ and A;(¢) be the indicator that
node ¢ is in state 1 at time ¢. The indicator for being in either
state eq or state e; at time ¢ is encoded by A;(t) = Z;(t) = 0.

For t > 0, let A(t) = (Ai(t))icv and Z(t) = (Z;(t))icv.

The above dynamics reduces to the transitions of the Markov
process (Z, A) given by



(Z —e;,A—ej) atrate gq;;Z;A;
(Z,A) = (Z—ei+ej,A) atrate ¢;;Z;(1—A; —Zj)
(Z7A—€Z'+€j> at rate qi’in(l—A]‘ —Zj)

where e; is the n-dimensional vector with all entries equal to
0 except the i-th entry which is set to 1.
From this, as () is symmetric, we have

d

FEMA®) = - > aiB(A() Z5(1)
jev
=B (A1) (1= A1) — Z;(1)))
jev
+ > i B (A () (1= Ai(t) — Zi(1))
jev

or, equivalently,

d
ZEMA®) = - (Z qi,z> E(Ai(1))
lev
3 B (401 - Zi(1) -
jev
Let us now consider the behaviour of the set Sy(t) of nodes
in state 0, i.e. So(t) = {¢ € V : Z;(t) = 1}. From the
above dynamics, we see that there are intervals [ty,tx+1)
during which the set Syp(¢) does not evolve (the instants
ti are stopping times). Consider such interval during which
So(t) =5 fort e [tk,tk-i-l)- We have, for t € [tk, tk+1)

(%mmﬁ»::—<;@0EM&w) )
+9 2jev @iiEe (4;(1) .  i¢ S
0, 1€ 85

where IE;, is the expectation conditional on {Sy(¢) = Si}. In
matrix form this gives

d
7 Er(A)) = Qs Ew(A®)),
where (g, is given by (1).
Solving the above differential equation for ¢ € [tg,tr41)s
we have

Ej(A(1) = €95 WL (A(ty)) -

Using the strong Markov property [17], it is not difficult to
see that,
E(A(t) = B [ A4(0)]

where
k—1

A(t) = Qs (t—te) + ) Qs (tier — ).

1=0
Phase 2: Depletion of nodes in state e¢;. To describe the

dynamics of the second phase, we introduce, for ¢ € V', B;(t)
be the indicator that node 7 is in state e; at time ¢. The indicator
for being in state eq at time ¢ is encoded by B;(t) = Z;(t) = 0.

For t > 0, let B(t) = (B;(t))icv. Then the dynamics in
this phase reduces to the transitions of the Markov process
(Z, B) given by

(Z —e; +ej,B—¢j) 4,;ZiB;
(Z,B) = (Z—ei+e;,B) 0 %i(1 = B; — Z;)
(Z,B—ez—f—ej) ql’sz(l—Bj —ZJ)
From this, we have
d
ZEBi(1) = — (Y au | BBi()
lev
+ 3 B (B (1)1~ Zi(1) |
jeEV

Similar to the first phase, we see that there are intervals
[t} tr1) during which the set So(t) does not evolve (the
instants ¢}, are stopping times). Consider such interval during
which Sy(t) = S}, for t € [t}, 1} ;). As in the first phase for
t € [t} t}41), we have

E(B(1) = B [¥ O B(t)]

where

k—1
N(t) = Qg (t — 1)) + Z Qs;(ti1 — 1)-

=0

Note that ¢, = T} is the instant at which phase 2 starts (phase
1 ends).

Duration of a phase. In both phases the process of interest
is of the form

EY(®) = E [e)‘(t)Y(O)}
k—1
A(t) = QS;C (t - tk) + Z QSL (tl-l—l - tl);
=0
where 0 =ty <t < --- <ty <t < tpy. First, we have
[TEY ())]]2
< E[[[Ovol]]
< E[||l20) 1v)l.]
r k—1
< B |[Je@e Y T He@s t | [ (0)]2
L =0
< e EINE (Y (0)]]2) < Vn et

since Y is an n-dimensional vector with entries in {0,1} and
where ||.|| denotes the matrix norm associated to the Euclidean
norm ||.||2.



Moreover, by Cauchy-Schwartz,

D EX) < (B 0)]l2 (11
eV
< nef(s(G,Oé)t .

Therefore, we have

P(Y(t)#£0) < > E(Yi(t)
eV
< ;676(G,o¢)t )

Let Ty be the time at which Y (¢) hits 0 = (0,...,0)7. It
corresponds to 77 for the process A(t) and T» for the process
B(t). Then

IE(T()) = ‘/OOOIP(TO > t)dt

/oo P(Y (t) # 0)dt
0

log(n)

> 75(G,o¢)tdt
< n e
(S(G, Oé) /;?g(l))
_log(n) +1
(G, a)

IV. APPLICATION TO PARTICULAR GRAPHS

In this section, we instantiate the bounds of Theorem III.1
for particular networks of interest, including complete graphs,
star-shaped networks, and Erdos-Rényi random graphs. In the
former two cases, we compare with alternative computations
as well as simulation results, and provide simulation results
for the Erdos-Rényi random graphs. We find that for all these
examples our bound is of the exact order with respect to the
number of nodes.

For the complete graph, it yields the exact multiplicative
constant and we show that our bound is tight by deriving
concentration results.

We pinpoint the fact that the expected convergence time
critically depends on the voting margin defined as the differ-
ence between the portions of the nodes that initially held the
majority and the minority state, respectively. For the complete
graph and star networks, we derive exact relations between
the expected convergence times and the voting margin that, in
particular, reveals how the expected convergence time tends to
infinity as the voting margin approaches zero.

A. Complete Graphs

In this case, each node i contacts a node j # 4 at instances
of a Poisson process of rate ﬁ, so that the contact rate
of each node is 1 (node initiates contacts at rate 1/2 and is
contacted by other nodes at rate 1/2). Hence, contacts between
any pair of nodes occur at instances of a Poisson process of

1 . 1 . .
rate —, i.e. we have ¢; ; = — for all i # j.

Lemma IV.1. For a complete graph on n nodes,

0(G,a) >2a — 1.

Proof: The matrix Qg is such that
-1, i=j
Qs(i,j) = wrpr 1€ 85 #i
0, 1€ 85, #1.
It is not difficult to see that

(1,...,1,0,...,0)7, where S°=V\ S,
N— N —
Se S

5]

is an eigenvector with eigenvalue —-=7. Since in each of the

two phases |S| > (2« — 1)n, we have % > (20— 1) >

2o — 1 and §(G, a) > 200 — 1. [ |
Combining the last lemma with Theorem III.1, we have

Corollary IV.1. For the complete graph on n nodes, the
expected time in each of the phases i = 1,2 satisfies

1
IE(T;) <
20— 1

(log(n) + 1).

Comparison with direct computation. For complete
graphs, we can pursue a more direct approach to bound the
expected convergence time, which we use for comparison with
the result established using our spectral approach.

Let 7; be the time of the i-th encounter of a node in state
0 and a node in state 1, where ¢ = 1,...,|S7|. Note that for
any time ¢t > T|S,| = Ti, the number of nodes in state 1 is
zero. Note that |So(t)| = |So| — 4 and |S1(t)| = |S1| — 4, for
7 <1< Tip1 and that

(IS0l =i+ 1,[S1] =i+ 1) — (|So| —4,[S1]| —9)

at times 75, i = 1,...,[S1].

It is not difficult to observe that L; = 7,41 — 7; is the min-
imum of (|Sg| —¢)(]|S1| — %) random variables (corresponding
to the (]So| —4)(|S1| —4) edges between nodes in state 0 and
nodes in state 1), each with parameter 1/(n — 1). Thus L; is
an exponential random variable with parameter

S (EA R ()

K2

Li=0,...,18]-1. (3

n—1

Proposition IV.1. The expected value of T} is given by

n—1
B = 15 =7 ¢

k
where Hy, ="/, 1. Moreover,

His,| + Hiso|-15,) — Hiso))

E(Ty) =

o log(n) + O(1).

Proof: Simple summation IE(T7) = Zlilol*l vt [ |

Note that the asymptote in the proposition is exactly
log(n)/6(G,«) with §(G,a) given in Lemma IV.1. Recall
that 7} is the time to deplete nodes in state 1. Using similar
arguments, we can upper bound the expected value of the time
T5 it takes to deplete nodes in state ej.



At time T3, there are |Sp| — |S1| nodes in state 0 and
remaining n — |Sp| 4 |S1| nodes are either in state e( or state
e1. It is easy to to observe that the expected time IE(T3) is
largest if all n — |Sp| + |S1| nodes are in state e;. Note that
T5 is the sum of the exponential random variables L} with
parameter v, given by

;_ (Sol = [S1D)( = |So| + [S1] = 9)
Vi =
n—1
for i =0,...,n— |So| + |S1] — 1. It follows

)

1
E(T) <
(1)< 507
Summing the latter upper bound and that of Proposition IV.1,
we recover the result of Corollary IV.1 which was established
by the spectral method.

log(n) + O(1).

In fact it is not difficult to get concentration results for
T;, ¢+ = 1,2 by analyzing the Laplace transforms of the
random variables W; = T; — - log(n), i = 1,2 (Proof in

(2a—1)
Appendix B).

Proposition IV.2. The random variable W

1
W; =T; —
2

1
—— log(n)

is finite with high probability. And as a consequence,

5o 1 .08(1)

is finite with high probability.

Mean-field approximation for complete graphs. For com-
plete graphs, we can in fact derive closed-form expressions for
the proportions of nodes in each of the states, for asymptot-
ically large networks, i.e. large n. This in turn enables us to
estimate the convergence time for large networks.

For the complete graph of n nodes, X(t) =
(I1So ()], [Seo ()]s 1Se, ()], 1S1(¢)]) is a Markov process
with the following transition rates

(I1S0(B) = 1, 1Seq (1) + 1, [Se, ()] + 1, [S2(8)] — 1)

at rate [So(0l[51(0)
o

(IS0l 1Se0 (D] = 1, 1S, ()] + 1,151(8))
at rate [Sea D51

—1
(‘SO(t)‘7 |Seo (t)| + 1a |S€1 (t)‘ - 1a |Sl(t)|)
[So (t)[|Se, (1)]
n—1 .

at rate
We consider the scaled process
xM() = (567 (0), 83 (1), 58 (1), 577 (1)
1
— (IS0 (&)1, [Se (1)1 [Ses ()], [S1(2)])-

Under the assumption that x(™)(0) — x(0) where x(0) =
(50(0), 8¢, (0), s¢, (0),51(0)) is fixed, by the Kurtz’s conver-
gence theorem [18], we have that x(")(¢) converges to x(t) as

n tends to infinity!, where x(t) = (s0(t), 8¢, (1), S¢, (t), 51(t))
is the solution to the system of ordinary differential equations

d

Eso(t) = —s51(t)so(t) 4
%Sl(t) = —So(t)sl(t> (5)
%Sel (t) = s1(t)(1 = s1(2)) = (s0(t) + s1(t))se, () (6)

with se,(t) =1 — s0(t) — 8¢, (t) — s1(t), t > 0.
The system of equations (4)-(5) admits a closed-form solu-
tion (Proof in Appendix C1).

Lemma IV.2. Let A = s¢(0) — s1(0) > 0. The solution to
(4)-(6) is given by

olt) = 0l0) = @
si) = 5100) 55— i(o)em e 2 ®)
sa(t) = 5e,(0) (SO 0 i(o)emf e o ©)

L 51(0) 50(0)At — 51 (0)(1 + A)(1 — e*“)efm_

(50(0) — s1(0)e=21)2

In Fig. 2, we illustrate the depletion of state e; and state 1
nodes over time by plotting the solution in Lemma IV.2 for
a = 0.55.

We have the following characterization of the convergence
time.

Theorem IV.1. Assume (s0(0),51(0)) = (o, 1 — «) with o €
(1/2,1]. We have
Seq (8) + 81(t) ~ (200 — 1)%%7(2“71”, large t.

Moreover, the time t, ,, for se, (t)+s1(t) to reach 1/n satisfies

~

log(n), large n. (10)

toz,n

20— 1

Proof is available in Appendix C. From (8) and (9) it is not
difficult to note that for large ¢,

]__
S, (1)~ (204—1)70%642&*1%

1—
s1(t) ~ (2a— I)Je_(Qa_l)t.
a

Hence, the time for both s.,(t) and s1(t) to reach 1/n is
asymptotically (10) which is equal to the bound obtained by
the spectral method (Theorem III.1).

B. Star-Shaped Networks
Consider the star network consisting of a hub and n — 1
leaves, each of which is attached only to the hub. More

"More precisely, for any finite 7 > 0, SUPs¢[0,7] |x(™) (t) — x(t)| — 0
with probability 1 as n tends to infinity.



Fig. 2. Depletion of state e; and state 1 nodes for large complete graphs.

precisely, we assume that the hub corresponds to node 1 and
Qi=qi1=5,i#1and ¢ ; =0,4,j # 1.

Fig. 3. A star-shaped network.

Lemma IV.3. For a star network of n nodes, we have

n? —42a—1)n
2(n—1) '

n —

(G, a) =

The above lemma yields the following corollary.

Corollary IV.2. For the star network with n > 2 nodes, the
expected duration of phase © = 1,2 satisfies

IE(T;) <

] .
5 1" og(n)

Comparison with a direct computation. For the star-
shaped network, we can compute exactly the expected time
to deplete the nodes in state 1. Recall that 77 is the smallest
time at which the number of nodes in state 1 is equal to zero.

Lemma IV4. For the star-shaped network with n nodes, the
expected time to deplete nodes in state 1 satisfies

1
(200 —1)(3 — 2a)

E(Ty) = nlog(n) + O(n). (11)

Notice that the dominant term in Lemma IV.4 is smaller than
the upper bound in Corollary IV.2 by a factor 1/(3 — 2a).

Proof of the lemma is given in Appendix D3. It is based
on computing the expected times between depletions of nodes

in state 1 and then summing up these expected times. Upon
depletion of a node in state 1, the hub is in either state ey or
state e;. Since the hub switches to state 0 or 1 with the same
rates starting from withereg or ey, it is irrelevant whether the
hub is in state ey or e; and thus the two states can be lumped
into one. A similar analysis could be pursued for phase 2 to
estimate the expected time until depletion of the nodes in state
e;. However, upon depletion of a node in state e;, the hub is
in either state 0 or state ey and now the expected time until
depletion of a node in state e; does depend on whether the hub
is in state 0 or eg, which makes analysis more complicated.
For this reasons, we do not provide analytical estimates for
the expected duration of phase 2 but resort to simulations.
Simulations. We compare our asymptotic results with sim-
ulations in Fig. 4. The results in Fig. 4-left demonstrate
tightness of the asymptote for the expected duration of phase 1
(Lemma IV.4). Fig. 4-right confirms that [2/(2a — 1)]nlog(n)
is indeed an upper bound on the expected convergence time.

C. Erdos-Rényi Random Graphs
This case corresponds to

1
(]z,g - %—X:,]
where 0 < p, < 1 and X;; is an ii.d. sequence of
Bernoulli random variables with mean p,,, the normalization
with 1/(np,,) ensures that for each node, the mean contact
rate is equal to 1, where

~—

log(n
DPn =C¢C .
n

It is well known that, for ¢ > 1, the underlying graph
defined by the sequence of random variables X; ; is connected
with high probability. In what follows, our results are satisfied
under the condition ¢ > TQA > 1.

Lemma IV.5. For an Erdos-Rényi random graph with n nodes

and for c(2a0 — 1) > 2, we have
1
) (i) @2

1 1
<
5(G,OJ) B (Qa — 1)h71 (C 2
with high probability, where h='(-) is the inverse function of
h(z) = zlog(z) + 1 — .

(2a—1)

Proof is in Appendix E.
The above lemma and Theorem III.1 imply the following
corollary.

Corollary IV.3. Under c(2a— 1) > 2, for phase i = 1,2, we

have,
B(T) < Ll +0(1), (13)
(20— 1At <c(2 1))
for large n.

Remark IV.1. In the case when the mean degree of a node
is large, we recover the bound on the convergence time for a
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Fig. 5. Function h~1(x).

complete graph. To see this, note that the function h=(z) is
decreasing on [0,1] with h=1(0) = 1 and h=*(1) = 0 (see
Figure 5). In the case when the mean degree of a node is large,
c(2a —1) > 2, and we have h=(2/(c(2a — 1))) = 1. In this
regime, the right-hand side in (13) is approximately equal to
522 log(n) which coincides with the bound for a complete
graph of n nodes.

Simulations. We compare the bound of Corollary IV.3
with estimates obtained by simulations in Fig. 6. The results
confirm that Corollary IV.3 indeed provides a bound. The
results also indicate that the bound is not tight which is due
to the bound on the eigenvalues that we use in our proof
(Appendix E); tighter results may be obtained by using a
tighter bound on the eigenvalues.

V. DISCUSSION

In this section, we discuss the convergence speed of the
above binary interval consensus, based on the results estab-
lished in Section IV-A, and compare with the previously-
proposed ternary protocol [2] for the case of the complete
graph.

In Section IV, we established that for the complete graph on
n nodes, the convergence time of the binary interval consensus
is log(n)/(2a — 1), for large n. This is in contrast to the con-
vergence time of the ternary protocol which is given by log(n),
and is independent of the voting margin 2« — 1, provided that
the convergence is to the correct consensus. The convergence
to the incorrect consensus occurs with probability p. that
is asymptotically 2~ (allz)n ] for large n, (Corollary 1 [2]),
where D(al|%) is the Kullback-Lieber divergence between
two Bernoulli distributions with means « and %, respectively.
Therefore, the ternary protocol converges faster than the binary
interval consensus by the factor 1/(2« — 1), with probability

1 — pe.

For any fixed voting margin o € (1/2,1] and accuracy
parameter 6 > 0, we have that p. < ¢ and the convergence
time is log(n), for a sufficiently large network of size n.
Furthermore, even for a given network size n, the accuracy
can be improved by repeatedly running the ternary protocol
as follows: run k rounds of the ternary protocol; for each
such round, the nodes record their decision; after k rounds
have been completed, each node takes as the final decision the
majority over the k£ decisions made by this node. The repeated
ternary protocol fails to converge to the correct consensus
if it fails to converge for at least g rounds. Whenever an
incorrect final decision is made by a node, the following event
holds { X > g} where X is a binomial random variable with

parameters k and 2~ (ell2)n_ 1t is not difficult to show that
P (X > k) < 9~ 5(D(al|§)n-2)
5=

Suppose D(«l[3) > 2, then it suffices to take ks rounds so
that the probability of error is at most 4 where

ks = [logwlz w
D(all3) —2
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indicates log(n)/(2a. — 1); the bars indicate 95%-confidence estimates obtained by simulations.

If the following holds

1 D(aH%)n—Q

d0>92 27 2a-1

then the expected convergence time of the repeated ternary
protocol is smaller than that of the binary interval consensus.

The above discussion suggests for future work to consider
alternative algorithms for the consensus problem that are faster
than the binary interval consensus under some accuracy guar-
antees. We should note that the above discussion is restricted
to complete graphs and that, indeed, an appealing property of
the binary interval consensus is that it guarantees convergence
in finite time with probability 1.

VI. CONCLUSION

We established an upper bound on the expected convergence
time of the binary interval consensus that can be applied to
arbitrary, connected network topologies. The bound captures
the effect of the network topology and the voting margin of
the initial state held by the nodes. We showed that for a range
of particular network topologies, the bound yields the exact
order with respect to the number of the nodes and in some
cases yields the exact asymptote. The results indicate that the
convergence time of the binary interval consensus can assume
large values as the voting margin approaches zero.

Future work could consider the expected convergence time
using our spectral method and other approaches for other par-
ticular network topologies, e.g. cycle and path. An interesting
direction for future work is to investigate the design of faster
algorithms, possibly trading accuracy for speed.
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APPENDIX

A. Proof of Lemma IIl.1

Let S be a non-empty subset of V' of size zn, x €
(0,1). First it is clear from the form of the matrix Qg that
_ZZGV g1, © € S are eigenvalues of (Jg. Moreover the



remaining eigenvalues correspond to eigenvectors of the form
(\x,_/,O,...,O)T.

Se S

Let A such eigenvalue of Qs and x the corresponding
eigenvector such that |[z|[3 = >,y 27 = > ,cqc2? = 1.
Then, as () is symmetric, it is readily seen that

2
A= =Y aigE Y g
i€Se jeV i,jESe
2
= =D > i — Y gz —w)
icSe jes ijESe
1
_ 2 2
= -> 47~ 5 R RICOEE
i€Se jes i,jES®

It is therefore clear that A < 0 with A = 0 if

DO g+ % > gijlwi—2)*=0

i€Sejes i,jES®

Let W C S¢ such that for ¢ € W, x; # 0 and S°\ W
its complement in S€, i.e. the subset of S such that for i €
S\W, x; = 0. As ; is an eigenvector then W is non empty.
If A =0 then

Z ZQi,szz"' Z Qi,j$?+% Z gij(zi—x;)> =0

iEW jES iEW,jE€S\W i,jEW

The above implies that there are no links between S and W,
and that there are no links between W and S¢\W , i.e. W is an
isolated component which is impossible since ) corresponds
to a connected graph. Hence by contradiction A\ < 0.

It is clear that for any S, (Js has negative eigenvalues. For
n finite, there is a finite number of subsets S. Therefore there
exists a (G, ) > 0 such that for any non-empty subset of S
of of size zn, x € (0, 1) the corresponding matrix Qg is such
that
0>—0(G,a) > A\,

where A is an eigenvalue of Q)g.

B. Concentration results

Note that
(IS0l =i+ 1,[S1] =i+ 1) — (|So| —4,[S1| —4)

at times 7, i =1,...,|S1].

It is not difficult to observe that L; = 7,1 — 7; is the min-

imum of (|Sg| —¢)(]S1| — ¢) random variables (corresponding

to the (]So| —4)(|S1| — %) edges between nodes in state 0 and

nodes in state 1), each with parameter 2/(n — 1). Thus L; is

an exponential random variable with parameter
(IS0l = )(I1S1] =)

P = ’.:0,...75 _1
5. — i |51

(14)

10

The Laplace-Stieltjes transform of L; equals

E() = 97:%
.
ey
- <”<|so|9—(2><|§1)|—i>> |
Hence
S1|-1 -1
B 1_IT ()

Letting W7 = T — (27171) log(n), due to the independence of

the L; (Markov strong property), it follows that

e [S1]-1 0(71 — 1) -1
6—9W1 = np@Ea-1 :
IE (W) =0 1}) (1 M EEDIEN —i)>

= (2ac — 1)n. First note that, for

Recall that |Sy| — |S1]
i=0,...,|51| -1,
1 1
(1S0] = 9) (51| =) 2a=1)n((1 - a)n —1)

For n large,we have

Sl f(n—1)
11 (H(ISO—Z)(ISlI—Z))
[S1]-1 o(n —1)
h 1}) (1+(2a—1)n((1—a)n—z))x
|S1]—1

O(n—1) i f(n—1)
14 ———m— 1— ————
( + (2c — 1)m> 4 H ( (200 — 1)ni
i= i=(2a—1)n+1
" O(n —1) ) o < On—1) \ "
= H 1+ —= H 14 ——m—
. ( (2a — 1)ni = (1o adnl (2a — 1)ni
ﬁ <1 _ fn-1) )
i=(2a—1)n+1 (20 = 1)ni
From now on we assume that 6§ is positive constant. Using

the above approximation together with elementary calculus
arguments, we can show that, for n large

E (e < K(a,Q)H (1+ m)_ )

where K («,6) is a positive constant that may depend on «
and 6.

Let ¢, be a sequence that tends to —oo when n goes to
+o00. Then by the Chernoff bound we have



PW; <€) < e E(e )
< Klad)|(I'(1+ ———
< Ko (1 (14 5o
where we used Euler’s formula T'(1 4+ 2) = 2I(z) =

limy, oo n* [T (1+ %)_1. We conclude by noting that the
last expression goes to 0 when n goes to oco.

A similar argument, based on the derivation of an upper
bound for IE (¢?V1), enables us to show that IP(W; > ¢,)
goes to 0 when n goes to oo, for a sequence ¢, that tends to
400 when n goes to +o00.

A similar argument, based on the fact that 75 is a sum of
exponential random variables L) with parameter -y, given by

o = (10| = [S1[)(n — |So| 4 |S1] — @)
n—1

7 I

for i =0,...,n— |So| +|S1| — 1, enables to derive concen-
tration result for W.

The concentration result for the convergence time 7' is a
direct consequence of the above concentration results.

C. Mean-field Approximation for Complete Graphs

1) Proof of Lemma IV.2: From (4)-(5), note that so(¢) and
s1(t) evolve independently of s.,(t) and s, (t). Furthermore,
d

%(so(t) —s51(t)) =0, forallt>0.

Hence,

so(t) —s1(t) = A, forallt>0 (15)

where A is defined in the statement of the lemma.
Plugging in (4), we obtain
d
solt) = (A = solt)so(t)
The solution to this differential equation is (7). Combining

with (15) we obtain (8). Note that (6) is a linear differential
equation with time inhomogeneous parameters, i.e.

d

ZpSer (t) +alt)se, () = b(?) (16)
where

a(t) = so(t)+s1(t)

b(t) s1(t)(1 — s1(t)).

From (7) and (8), it follows

50(0) 4 51(0)e~A¢

50(0) — s1(0)e—At

0) —s1(0)(1 +A)e At

o (0)2200) = 51(0)(1+ A)e
(50(0) = s1(0)e~4t)?

It is well known that the solution to the linear differential
equation (16) is

—At

t
Seq () = 8¢, (0)e™ Jg a(s)ds —I—/ b(s)e™ JSa@ydzgs (17)
0

11

By integration we have

i

0 )) .\ 0(1)) o exp (— /Ota(S)ds) = (50(0) — i(o)eAt>2e—At_ (18)
1

Using the latter identity we have
—At

t s)e— [ a@)de g _ €
e 45 = o0 = sy 2 )

where

(19)

1(t)

/0 b(s)(50(0) — 51(0)(1 + A)e=A%)2eAs g

sl(O)A/O [50(0) — 51(0)(1 + A)e2%]ds

At
81(0)/ [50(0) — 51(0)(1 + A)e™?]dx
0
51(0)[s0(0)At — 51(0)(1 + A)(1 — e~2Y)].
Combined with (19), (18), and (17), we obtain (9).

2) Proof of Theorem IV.I: Under the assumptions of the
theorem, (s9(0), S¢,(0), Se, (0),51(0)) = (,0,0,1—c). From
(9) we obtain

(20 — 1)t — 2(1 — a)(1 — e~ (a—1t)

S, (1) = a(1—a) (0= (1 = a)e-Ca-D)2 e~ (a1t

From (8) and (9) note that for large ¢,

]__
S, (t) ~ (204*1)7‘%6*(2“*1%

11—«

s1(t) ~ (2a—1)76—<20—1>t.

The first statement of the theorem follows from the latter
two asymptotics. The second statement of the theorem follows
from the first by noting that for large n,

1 1
log(n) _ — 10 (5es (fan) + 51 (fan)) ~ 20— 1.

toz,n a,n

Finally, we conclude this section with a remark.

Remark A.l. For the complete graph, the dynamics X(t)
is fully described by the following two-dimensional Markov
process Y = (|Se,|,|S1]). Indeed, from the above transition
rates we have |So(t)| — |S1(t)| = |S0(0)| — |S1(0)|, for all
t > 0. We also have |Se,(t)| = n—|So(t)| = |Se, (t)| —|S1(t)
t > 0. From this it follows that

S0 ()] 150(0)] = [S1(0)] + |51 (2)1,

Seo ()] = 1= (150(0)] = [51(0)]) = [Se, (B)] = [S1(2)]-
The Markov process Y has the following transition rates
<|S@1 |7 |Sl‘) -

(ISe, [+ L [S1] = 1)
(ISe, |+ 1, 1511)
(ISe, | = 1, 1511)

>

‘Sl|(‘SO(O)‘_‘§1(O)‘+‘81|)

1811 (n—1S0(0)[+151 (0)|—|Se, |—|S11)
—1

ENEIOIREAGIEEAY

n—1




D. Star-shaped Networks

1) Proof of Lemma IV.3: We need to distinguish two cases
depending on the hub being in S or not

Case 1: if the hub is in S then the unique eigenvalue of Qg
: 1
1S —n_i-

Case 2: if the hub (without loss of generality we can assume
that it is node 1) is not in S then A is an eigenvalue of Qg

with eigenvector z = (_x ,0,...,0)7, then it must satisfy
N~ ——

Se S
A Ly
T, = — _— i
! o n—1 x
i€Se\{1}
ZT; T .
\x; = — , S\ {1}.
. n—1+n—1 v e \{}

which implies

1
Az = —x1+ o1 Z Ti,
ieSe\{1}
1 = (n—=1DA+ 1)z, i € S\ {1}.
Hence

m=DA+D(n=DA+1)—|S14+1=0
Let k£ = |S5°| in our setting k& < 2(1 — a)n. We have

(n—12 2 +nn—1)A+n—k=0
n+vn2—4n+4k

Then the only solutions for A are — 5(n=1) . Hence
/2 —
\ o< n n? —4n + 4k

- 2(n—1)

< n—+/n%—4n+8(1 —a)n

- 2(n—1)

_ n—/n?+4(1-2a)n

N 2(n —1) '

. n—/n?—4(2a—1)n

Therefore, in any case, §(G, ) = #.

2) Proof of Corollary IV.2: We have for n > 1,

n—/n?>—42a—1)n
2G,0) = 2(n — 1)

20 — 1

n—1

where the inequality is tight for large n. The assertion of
the corollary follows by combining the last inequality with
Theorem III.1 and making use of the fact (n—1)(logn+1) <
nlogn, for n > 2.

3) Proof of Lemma IV4: Let H(t) denote the state of
the hub at time t. The system state evolves according to
the Markov process (H (t), |So(t)[, |S1()], |Seq (£)], [Sey (£)])-
We are interested in the hitting time of a state for
which |S;| = 0. To this end, it suffices to consider
(H(2), 1So(t)], [S1(2)], 1S ()]) where S.(t) = S., ())US., (£).
We say that the system is in phase ¢ at time ¢ if the number

12

of state 1 nodes that has already been depleted is equal to
i, ie. |So(t)] = |S0(0)] — i, |S1(t)] = |51(0)] — 4, and
|Se(t)] = [Se(0)] + 2i.

For the sake of clarity we define an additional state e* for
the hub that corresponds to it reaching the state e following
an interaction consisting of the hub at state 0 (resp. 1) and a
leaf at state 1 (resp. 0). This corresponds to the start of a new
phase following the depletion of both a node in state 0 and a
node in state 1.

It is not difficult to observe that the mean time spent in
phase ¢ is equal to the mean hitting time of the state e*, starting
from the state e for a discrete-time Markov chain whose state
indicates the state of the hub. The transition probabilities of
this Markov chain are given by

f;:ll, r=ey=e
nfr_ol’ x:e,yzo
o, r=ey=1
W 2=0,y=0
p(x,y) = nzjla r=0,y=e
e, x=0y=c¢"
‘/’;1:11, r=1ly=1
e, r=ly=e
S, r=ly=e”

where g = |So(0)| — @, e = [Sey (0)] + |Se, (0)] + 24, 1 =
|S1(0)| — i. We assume that, initially, all the nodes are in
either state 0 or state 1, i.e. |Se,(0)| = |Se, (0)] = 0. Note
that xg + x1 + . = n.

Let m(4) be the mean hitting time of state e*, starting from
state s, for s = 0,1, e. Note that m. (%) is the mean time spent
in phase 4, fori = 1,...,|51(0)| —1. By the first-step analysis,
we have

‘T()fl Te

mo(i) = ——mo(i) + ——me(i) +1
—1
me(i) = oo+ T m (i) + ——mi (i) + 1
. Te . T, — 1 .
my(i) = mme(z) + nl, 1 mq(i) + 1.

The last system of equations can be rewritten as

xeme(i) +n—1 (20)
xomo (i) + xymy (i) +n—1 (21)
(22)

(n —xo)mo(i) =
(n—xe)me(i) =

(n—x1)m1(i) = zeme(i)+n—1.

From (20) and (22) we have
(n —xzo)m1 (i) = (n — x1)mo(i).
Plugging in (21), we obtain

(n—xe)(n—x1)me(i)
= [zo(n—z1) + z1(n — x0)]mo (i) + (n — 1)(n — x1).



Plugging (20) in the last equation, we have

[(n—x0)(n—x)(n —x1) — ToZe(n — 21)

—zex1(n — g)]me(7)

= (n—1[n—2x0)(n—21)+z0(n — 1) + 21(n — 20)].

From this, it follows

n2 — ToT1

me(i) =(n—1)———.

() =( xox1(n + o)

Since zo = an — i, z, = 2i, and £1; = (1 — @)n — i, we have
n?(n—1)

(an—)((1—a)n—4)(n+2i) n+2i

n—1

me(i) =

Notice
1
(an —9)((1 — a)n —1)

B (2ai1)n ((1 —al)n—z' - oml—i>

and
_
(an —i)(n + 2i)
1 1 2
= -+ .
(I1+2a)n \an—1i  n+2i
and

1
(1 —a)n —1i)(n+ 24)

1 1 2
(3 —2a)n ((1—a)n—i+n+21l)'
Putting the pieces together,
n—1 1
200 —1)(3—2a) (1 —a)n —1i
n—1 1
C2a—1)(1+2a)an—i
l—4da(l—a)n-—-1
3+4da(l—a)n+2i

me(i) =

It follows
(1—a)n—1
Z me (i)
i=1
n—1
(2a —1)(3 — 2q) Ha-an-
n—1

— Hyn—1— H,
(20& — 1)(1 n QCY) [ an—1 (20471)71]

1—4a(l - a) “%‘1 n—1
3+4a(l-a) = n+2
where, recall, H;, = Ele 2.
From the last above math display, it is readily observed that
(1-a)n—1 1

> me(i) = o DG ) nlog(n) + O(n). (23)

i=1
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Since the mean time spent in phase 0 is of the order 1,> by
(23) we establish that (11) holds.

E. Proof of Lemma IV.5
Note that

A =

=3 i - % > iz — )’

iese jes i,jese

< —min E i
- i€Se |\ 4 g
jES

We establish the following inequality,
Pe = P

< 20— a)nexp <—<2a ~ npuh (2;i 1>>

where h(z) = zlog(z) + 1 — =z, > 0.
To see this, note that for 6 > 0,

pe = P U Z(Ji,j<$n
i€Se | jeS
< |SC|]P Zqi’j < Ty
=
s
< |S°'|eewnm(ef$xi,j)‘ |

15|
— |Sc|601n (1 + Pn (eiﬁ _ 1)) .

Now, since |S°| < 2(1—a)n and |S| > (2a—1)n, it follows

(2a—1)n

pe < 2(1 — a)nebon (1 + pn (e_% - 1))
Furthermore, since log(1 + ) < z, for z > 0, we have

2]
0z, +(2a—1); n( " mpn —1
pe§2(1—a)ne$ (o tnen (e )

The right-hand side is minimized for

Ty
0 = —np, log (2a 1) .

Hence, p. < pl,, where

P, =2(1—a)nexp <_(2a — Dnpuh (Q(szi 1)) .

Requiring p], < 1 is equivalent to

T 2log(n) + log(2(1 — ))
" (ga_1> z |

(2a — 1)npy,
We have thus established that for

>\ § —In

2The mean time spent in phase 0 is (n—1)/|S1(0)| and (n —1)/|S0(0)],
conditional on that the initial state of the hub is O or 1, respectively.



to hold with high probability, it suffices that

(31) 2 s (1 o)+ @

Since h(z) < 1, for x € [0, 1], for (24) to hold it is is easy
to observe that it necessary that c¢(2a — 1) > 2.

Finally, we show that Eq. (12) holds. This follows by noting
that (24) amounts to

T, > (2a — 1)} (8(2;_1)> +0 (bgl(”)> .
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