Optimal Channel Choice for Collaborative Ad-Hoc Dissemination

Liang Hu Jean-Yves Le Boudec Milan Vojnovié
Tech. University of Denmark EPFL Microsoft Research
2800 Kgs. Lyngby CH 1015 Lausanne 7 JJ Thomson Avenue
Denmark Switzerland CB3 0FB Cambridge, UK
lhua@fotonik.dtu.dk jean- milanv@microsoft.com
yves.leboudec@epfl.ch
July 2009

Technical Report
MSR-TR-2009-26

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com



Abstract — Collaborative ad-hoc dissemination of
information has been proposed as an efficient means
to disseminate information among devices in a wire-
less ad-hoc network. Devices help in forwarding the
information channels to the entire network, by dis-
seminating the channels they subscribe to, plus oth-
ers. We consider the case where devices have a lim-
ited amount of storage that they are willing to de-
vote to the public good, and thus have to decide
which channels they are willing to help disseminate.
We are interested in finding channel selection strate-
gies which optimize the dissemination time across
the channels. We first consider a simple model un-
der the random mixing assumption; we show that
channel dissemination time can be characterized in
terms of the number of nodes that forward this chan-
nel. Then we show that maximizing a social welfare
is equivalent to an assignment problem, whose solu-
tion can be obtained by a centralized greedy algo-
rithm. We show empirical evidence, based on Zune
data, that there is a substantial difference between
the utility of the optimal assignment and heuristics
that were used in the past. We also show that the
optimal assignment can be approximated in a dis-
tributed way by a Metropolis-Hastings sampling al-
gorithm. We also give a variant that accounts for
battery level. This leads to a practical channel se-
lection and re-selection algorithm that can be im-
plemented without any central control.

1. INTRODUCTION

Several applications relying on opportunistic data trans-
fers between devices have been proposed recently. In [1],
the authors propose a wireless ad-hoc podcasting system,
where, in addition to downloading content onto devices while
docked to a desktop computer, the content is exchanged be-
tween devices while users are on the go. They propose sev-
eral heuristics for content exchange between devices based
on the inferred preference of the user owning a device and
that of encountered devices. Another related system is Car-
Torrent [2], a BitTorrent-style content dissemination system
designed to exploit the wireless broadcast nature, where the
authors propose various solicitation strategies.

We call channel an abstraction for various information
feeds that generate content recurrently over time. For exam-
ple, a podcast feed is a channel as well as a profile page of an
online social network application (e.g. Facebook or Twitter).
While many such services can well be provisioned at mobile
devices by accessing the cloud, it is still of interest to speed
up information dissemination by augmenting it with device-
to-device information transfer. Efficient multi-channel infor-
mation dissemination through infrastructure and multi-hop
wireless transfer would well support various mobile content
sharing applications, e.g. Serendipity [?], in particular, in
environments where access to the cloud is intermittent, ei-
ther because of the lack of connectivity or access cost (e.g
during roaming).

We are interested in scenarios where nodes are willing to
devote some amount of their resources to help content dis-
semination. Now the number of information channels can
be very large compared to user’s interest; for example in the
Zune dataset there are 8000+ podcast channels and each
user subscribes to 6 channels on average [4, ?]. In such a

setting, we propose to limit the amount of resource that a
node devotes to the dissemination of channels other than
the ones it subscribes to. This is motivated by the cost for
a user in terms of bandwidth usage during meetings, energy
consumption, and perhaps also storage. We thus assume
that each user device has to decide which channels to help
disseminate, in addition to the subscribed ones. We consider
a setting where users are cooperative in optimizing the con-
tent dissemination, an assumption that underlies the prior
work [1]. The cooperation could be induced through various
mechanisms like in any other peer-to-peer service. One im-
plicit incentive is indirect reciprocity where users expect that
other users would help disseminate the channels subscribed
by this user, so the user may well be willing to reciprocate.

We are interested in finding channel selection strategies
which optimize channel dissemination times with respect to
a system welfare objective. The key assumption that fa-
cilitates our framework is a relation between the channel
dissemination time and the fraction of the nodes that for-
ward a given channel. Such a relation can be obtained by
modeling or empirical analysis, examples of which we show
in this paper. However, it is noteworthy that in this pa-
per, we do not advocate any specific function to describe
the relation between the dissemination time and the frac-
tion of the forwarding nodes—a thorough analysis of this is
left for future work. We cast the problem in the frame-
work of system welfare optimization where the objective is
to optimize an aggregate of the utility functions associated
with individual channels. We show that for a broad class of
utility functions, optimizing the system welfare is equivalent
to an assignment problem whose solution can be obtained
by a centralized greedy algorithm [3]. We provide empiri-
cal evidence, based on real-world data about subscriptions
of Zune [4, ?] users to podcasts, that there is a substantial
difference between optimal system welfare assignment and
some heuristics that were used in the past.

Then we consider the problem of defining a practical, dis-
tributed algorithm run by individual nodes to attain a given
system objective. We show that the optimal assignment
can be approximated in a distributed way by a Metropolis-
Hastings sampling algorithm. The algorithm requires knowl-
edge about the fractions of nodes subscribed or forwarding
given channel which can be estimated based on local obser-
vations by each individual node. We also identify a class
of Metropolis-Hastings algorithms that do not require any
estimation. We show simulation results that demonstrate
that our proposed distributed algorithms concentrate near
the optimum system welfare with the rates of convergence
of interest in practice.

Our contributions can be summarized as follows:

e We propose a framework for optimizing the dissemina-
tion of multiple information channels in wireless ad-hoc net-
works. The optimization is with respect to dissemination
times of individual channels subject to the end-user cache
capacity constraints. To the best of our knowledge, this is
the first proposal for optimizing dissemination of multiple in-
formation channels in wireless ad-hoc networks with respect
to a global system objective.

e The framework enables a direct engineering by allow-
ing derivation of the algorithms that decide which channels
are helped by which users so as to optimize a given system
objective.

e The framework also allows a reverse engineering so that



for some given channel selection algorithms deployed by in-
dividual nodes, we can determine which underlying global
system objective is optimized.

e We show that an optimum system assignment of users to
channels for forwarding can be found by a centralized greedy
algorithm for a broad class of system objectives identified in
this paper.

e Using the data about subscriptions of Zune users to
audio podcasts, we demonstrate that there exist scenarios
where for given system objective, significant gains can be at-
tained by the optimum system assignment over some heuris-
tics suggested by previous work [1].

e We show that the optimum system objective can be
well approximated by a distributed algorithm based on the
Metropolis-Hastings sampling run by individual nodes using
only local observations.

e We show how to incorporate in our framework and al-
gorithms the objective to optimize the battery expenditure.

e We present extensive simulation results that provide val-
idation and demonstrate practicality of the proposed algo-
rithms.

The paper is structured as follows. Sec. 2 introduces our
system model and notation. Sec. 3 presents modeling and
empirical analysis about the relation between the channel
dissemination time and the fraction of the nodes that for-
ward the channel. In this section, we also define the system
objective, the utilities associated to channels, and discuss
some of their properties. Sec. 4.1 presents the system wel-
fare problem and the result that the problem can be solved
by a centralized greedy algorithm. Sec. 5 presents results on
the gain of the optimum system welfare based on the Zune
data. Sec. 6 presents our Metropolis-Hastings algorithms.
In Sec. 7 we show simulation results. Finally, related work
is discussed in Sec. 8 and Sec. 9 concludes the paper. We
defer some of our proofs to Appendix.

2. SYSTEM MODEL AND NOTATION

We consider a system of N wireless nodes, or users, par-
ticipating in the ad-hoc dissemination of J channels. We
denote with I/ and J the sets of user and channels, respec-
tively. Every node, say, u has a list S(u) of subscribed chan-
nels. In the context of this study, we assume that S(u) is
fixed for every u. In contrast, every node maintains a vari-
able list of helped channels, i.e. channels that this node keeps
in its public cache in order to facilitate their dissemination.

When two nodes meet, they update their cache contents.
More precisely, if nodes u and «' meet, u gets from u’ the
content that is newer at u’ for the channels that u either sub-
scribes to or helps, and vice-versa. We do not account for
the overhead of establishing contacts and negotiating con-
tent updates. We assume that when nodes meet the contact
duration is large enough for all useful contents to be ex-
changed, i.e. we assume that the bottlenecks in the system
performance are the disconnection times and cache content.
In addition, we assume that, once in a while, a node gets
direct contact to the Internet and downloads fresh content
for the subscribed or helped channels.

At any given point in time, we call = the global system
configuration, defined by

Zu,; = 1 & node u subscribes to or helps channel j.

Let H(u,z) be the set of channels helped by node u when
the configuration is z and let F'(u, z) be the set of forwarded

channels, i.e.
F(u,z) = H(u,z) US(u), u €U.

We assume that every node u has a maximum cache capacity
C, to simplify we count it in the number of channels. We
assume that' C,, > |S(u)|, i.e. every node can store all the
subscribed channels. The configuration is thus constrained
by

|F(u,z)| < Cy forall u € Y.

The problem is then to find a configuration = that satisfies
these constraints and maximizes some appropriate perfor-
mance objective, defined in the next section. Further, we
want to find a method to approximate the optimal configu-
ration in a fully distributed way which we do in Sec. 6.

We use the following notation:

s; = proportion of nodes that subscribe to channel j
fi(x) = proportion of users that forward channel j
1
= N > Tug
ueU

Without loss of generality and unless indicated otherwise, we
assume that channels are labeled in nonincreasing order with
respect to their subscripti(ln popularity, i.e. s1 > --- > s.
Also §= (s1,...,85) and f = (f1,..., fs).

3. DISSEMINATION TIME AND UTILITY

To get a better handle on the performance objective we
first use an epidemic style analysis, using ordinary differen-
tial equations.

3.1 Model-Based Dissemination Time

Consider a channel j and set the time origin to the time
at which the most recent version was created by the source.
We assume the configuration x is fixed and omit it from the
notation in this section. Let o;(t) be the proportion of j-
subscribers that have received the most recent piece at time
t, and let ¢;(t) be the proportion of j-forwarders that have
received the most recent piece at time ¢.

The dynamics of the system can be described by the sys-
tem of ordinary differential equations:

Loitt) = OutnsO)s—os) ()
Loit) = Qutnss)i-a) @)

where A; is the contact rate between a node and an infras-
tructure able to deliver channel j, and 7 is the contact rate
between nodes. These equations correspond to the “ random
node mixing” assumption and are asymptotically valid when
N is large. It follows that doj;/do; = (s; — 0;)/(fi — ¢5),
hence

_ [i05(0) = 5;6;(0) | s; —0;(0)
fi = #;(0) fi —;(0)

We can solve Eq. (2) explicitly. Note that

o;(t) + ¢;(0).  (3)

1 1 ( L1 ) @
A+ne)(f=¢) A+ \A+nd  f—9
| A| denotes the cardinality of a finite set A.




from which we get

6s(t) = = (4 (A + 165 (0) (A + fm) ) |

N 195 0) T (S5 — 65(0))e P
By Eq. (3) we obtain
(N 4 1¢;(0))(1 — e~ (5 T23)t)
A+ 19;(0) + n(f; — ¢;(0))e=(Fi+r)t”

Dissemination Time

()

Suppose that at time Tp a piece is issued by the source. Let
T1 be the time at which a proportion « of the subscribers
have received this or a more recent piece. We call t; =
Ti1 — Ty the dissemination time and take it as metric for
channel j.

We compute ¢; as follows. First note, from Eq. (5):

(Aj + 165 (0)(1 — Kj)

e_(nfj+)‘])tj —_
nfiK; + i+ ¢;(0)n(1 — K;)

where
o a;(0)
o s
KJ - 1— Uj(o)
sj
It follows
L U (i = 65(0)nK; + Aj +16;(0) (©)

TN+ S (A +19;(0)(1 — K;)

ProroSITION 3.1. The dissemination time t; is a mono-
tonic nonincreasing, strictly convex function of f;.

Proof is in Appendix A.

Of particular interest is the small injection rate regime,
where the dissemination is dominated by epidemic content.
In this case, we have

0;(0) << s
b
$;(0) << f;

and Eq.(6) becomes

1 a nf;
i~ — ([In——4+In—=).
b nfj(nl—a+n)\j) @

3.2 Empirical Dissemination Time

We consider the dissemination time evaluated from real
mobility traces. In particular, we consider (CAM) a data
trace of human mobility in the area of Cambridge, UK [5]
and (SF-TAXI) a data trace of the routes of taxis in the area
of San Francisco [6]. The CAM dataset contains information
about the contacts between 36 human-carried, Bluetooth-
equipped devices over slightly more than 10 days. SF-TAXI
contains GPS coordinates for each of about 500 taxis over a
month period. For the latter trace, we define a contact be-
tween two nodes if the distance between two nodes is smaller
or equal to 500 meters [7].

We infer the dissemination times by conducting the fol-
lowing experiment. For given data trace (either CAM or SF-
TAXI), we fix a portion of nodes and then pick uniformly at
random the given portion of nodes from the set of all nodes
and designate them as forwarders. We then inject a message
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Figure 1: Dissemination time versus the fraction of
forwarding nodes in CAM data. Each mark shows
the median value of the dissemination time obtained
by taking each node as a source and repeating for
10 random selections of the forwarding nodes.
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Figure 2: Same as in Fig. 1 but for SF-TAXI data.

to one of the forwarders at an instance of time and then pass
through the trace forward in time, recording the instances
at which a forwarder first received the message by encoun-
tering a forwarder that already received the message. For
the CAM data, we repeat the experiment for each source
and 10 random samples of the set of forwarders. Finally, for
each given portion of the forwarding nodes, we compute the
median dissemination time.

Fig. 1 and Fig. 2 show the empirical dissemination time
versus the portion of the forwarding nodes for CAM and
SF-TAXI traces, respectively. In both cases, they confirm
that the dissemination time is well fitted by a curve that
exhibits diminishing returns with increasing the number of
forwarders.

3.3 Utility Function

We assume that for each channel j there is an underly-
ing utility function U, (t;) that specifies the satisfaction of a
subscriber with the channel j given that the dissemination
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Figure 3: Utility of the dissemination time. (Left)
A concave decreasing utility with respect to the dis-
semination time capturing the increasing rate of the
user’s unhappiness. (Right) Finite utility for dis-
semination time up to some time t; and —oo for
larger values.

time is ¢;. It is natural to assume Uj;(¢;) is a nonincreasing
function of t;. We will discuss later in this section some
additional conditions for a channel utility function.

We denote with V;(f;) = U;(t;(f;)) the utility function
for channel j with respect to the fraction of the users who
forward channel j. It is natural to assume that V;(f;) is a
monotonic nondecreasing function of f;. This indeed follows
if both U;(t;) and t;(f;) are noincreasing functions which are
rather natural assumptions.

It remains to discuss what the system welfare utility is, i.e.
when considering all channels together. We admit standard
definition that the system welfare is a weighted sum of the
utilities over all channels, i.e. for given positive weights @ =
(wlv' .- 7wJ)7

V() =Y wVi(f).
JjeT
Two special cases may be of interest, which correspond to
different fairness objectives. The former is channel centric,
in that it considers each channel as one entity, regardless
of the number of subscribers. This utility is obtained by
setting all the weights w; to 1, hence we have

Ver(f) =Y Vi(£) (8)
JjeT
where Vj is a per-channel metric, for example as in Eq.(6) or
Eq.(7). The latter is user centric and has the weights such
that w; is proportional to the proportion of j-subscribers,
s;, hence we consider

Vus(f) = Vi) 9)
jeTJ
with Vj as before.
In Sec. 6 we will show that this utility framework can
easily be extended to battery saving.

Sufficient Conditions for a Concave Utility

We discuss a set of sufficient conditions that ensure the util-
ity V;(f;) is a concave function of f;. This class of utility
functions will be of interest in Section 4.1.

PROPOSITION 3.2. Suppose (C1) U;(t;) is a nonincreas-
ing, concave function of t; and (C2) t;(f;) is a convex func-
tion of fj. Then, V;(f;) is a concave function of f;.

ProoF. By simple differential calculus,
Vi (£:) Uj (t3)t5(f3)
/ 2 /
V() Uj'(t5) (£5(f3))” + Us(3)t5 (f3)-

From the last equation, (C1) Uj(t;) < 0, U (¢;) < 0, and
(C2) t}(f;) > 0, it follows Vj'(f;) < 0, ie. Vj(f;) is a
concave function of f;. [

Condition (C1) says that the utility function U;(t;) cap-
tures the increasing dissatisfaction of a subscriber of channel
j with the dissemination time ¢;. See Figure 3-left for an il-
lustration. Such a utility function could be seen as a smooth
version of a step function (see Figure 3-right) where the util-
ity is finite up to some time and then becomes —oo for larger
dissemination times. This captures scenarios where a sub-
scriber values the information only if received within some
time.

Condition (C2) says that the dissemination time ¢;(f;)
exhibits diminishing returns with increasing the portion of
forwarders f;. We have already demonstrated cases in Sec-
tion 3.1 and Section 3.2 that support this assumption.

4. SYSTEM WELFARE PROBLEM
4.1 The Greedy Algorithm

We pose a system welfare problem where the objective is
to optimize the aggregate utility of channel dissemination
times subject to the end-user capacity constraints. Solving
the system welfare problem amounts to finding an assign-
ment of users to channels that solves the following problem:

SYSTEM
maximize

J 1 N
> uts (5 o)

over  ,; € {0,1}

J
Z Lu,j S Cu
j=1

Tuj =1, (u,5): € S(u).

subject to

Defining the system welfare utility as a sum of individual
utilities is rather standard in the microeconomics framework
of the resource allocation and was successfully applied, for
example, in the contexts of wireline Internet [8] and wire-
less networks [9]. Note that in SYSTEM, w; are positive
constants that can be arbitrarily fixed. In particular, it is
of interest to set w; proportional the portion of users sub-
scribed to channel j (i.e. s;). In this case, the utility V;(:)
can be interpreted as the utility for channel j for a typical
j-subscriber.

We rephrase SYSTEM as an optimization over the num-
ber of helper users per channel. Consider H = (Hi,...,Hy)
where Hj is the number of helper users for channel j. Let
us define v(A) for A C 7, by

v(A) =) min <Z Liea\s(uy Cu — S(u)|> . (10)

ueU JjEA
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Figure 4: Feasible assignment of users to channels
as a max-flow problem. U is the set of users and J is
the set of channels. s is a source node connected to
a user u with an edge of capacity C, —|S(u)|. There is
an edge of capacity 1 between any user v and channel
j if and only if user u is not subscribed to channel j,

i.e. 7€ T\ S).

Let P(v) be the polyhedron defined by?
P(v) ={z €Ny : x(A) <v(A), AC T}

We consider the following problem.

SYSTEM-H

J
1
imi RV Y H.
maximize ]Ezlw] V; (53 + N J)

—

over H € P(v).

PROPOSITION 4.1. The optimal value of the solution of
SYSTEM is equal to that of SYSTEM-H.

PRrOOF. By the definition of § and ﬁ, the objective func-
tions of SYSTEM and SYSTEM-H are the same.

(1) We now claim that the constraints of SYSTEM imply
the constraints of SYSTEM-H. To this end, for any set A C
J,let H(A) =3, 4 Hj. Notethat H(A) =3 1/ icaTu
can be interpreted as a flow into the set A in the following
graph. Let G’ = (V’, E') with the set of vertices V' defined
by V! =U U J U{s} U {t} where s and ¢ are interpreted
as a source and a terminal vertex, respectively. The set of
edges E' is defined as follows. The source s is connected to
a node u with an edge of capacity c(s,u) = Cy — |S(u)]. A
user u and a channel j are connected by an edge of capacity
c(u,j) = 1 if and only if the user u is not subscribed to
channel j, ie. 7 € J\ S(u). Finally, each vertex j € A is
connected to the vertex ¢ with an edge of sufficiently large
capacity (]A||J| suffices). See Fig. 4 for an illustration.

By the max-flow-min-cut theorem [10, Theorem 8.6], the
max value of an s-t flow equals the minimum capacity of an
s-t cut. Graph G’ is a collection of edge-disjoint trees and
thus finding an s-t min-cut amounts to deciding for each
user u whether to cut an edge between the vertices s and u
or all the edges between the vertex u and vertices j € A (if
there exist any). In the former case, the capacity of the cut
is Cu — |S(u)| while in the latter case it is 3°; 4 Lies\s(u)-

*We use the notation z(A) = 3

jeij'

It follows that the max-flow is given by v(A) in (10). The
announced claim is thus proven. It follows that the optimum
of SYSTEM is < that of SYSTEM-H.

(2) Conversely, let H* be a point that achieves the opti-
mum of SYSTEM-H. It exists since P(v) is finite. Consider
the graph G’ derived from Figure 4 where we define the
capacity of the edges (j,t) by setting c(j,t) = H;. Follow-
ing [11] (Proof of Lemma 4.1, p.103, text after Eq. (4.4),
({s}ul U J,{t}) is a min cut separating s and ¢, equal to
min(v(J), H*(J)) = H*(J) where H*(J) = >, ; Hj by
definition.

The maximal flow s-¢ in this graph is thus H*(J). By
the Integral Flow Theorem ([10], Corollary 8.7) there exists
an integer flow on this graph such that the flow through j-t
is H;. It follows that there exists a solution z* to the con-
straints of SYSTEM such that ) ., =7, ; = Ns;+H;, thus
the optimum of SYSTEM is > that of SYSTEM-H. [

We denote with A;V (54 H/N) the increment of the ag-
gregate utility function by assigning a user to channel j, i.e.

A;V(3+ H/N)
= V(54 (H +e¢;)/N)—V(5+ H/N)
wj [Vi(s; + (Hj +1)/N) — Vj(s; + H; /N)]

where e; is a vector of dimension | 7| with all the coordinates
equal to 0 but the jth coordinate equal to 1.

Algorithm 1 Centralized GREEDY Algorithm for Alloca-
tion of Helped Channels.
1: H=0
2: while 1 do .
: Find I € J such that H 4+ e; € P(v)

and A;V (54 H/N) > A;V(5+ H/N) for all j € J
such that H +e; € P(v)

end if
Hr— H;+1

3
4
5
6:
T if there exists no such I then break
8.
9:
10: end while

THEOREM 4.1. Assume that for each j € J, V;(x) is a
concave function of x. Then, a solution of SYSTEM is
obtained by GREEDY.

PrROOF. Under the assumption that Vj(z) is a concave
function with respect to = we have that V;(s; + ) is a con-
cave function with respect to z. Showing in addition that
P(v) is a submodular polyhedron, we verify the assumptions
of Corollary 1 in Feedergruen and Groenevelt [3] from which
the asserted result follows.

A polyhedron P(v) is submodular if and only if v(-) is a
submodular function, i.e.

v(AUB) +v(ANB) <v(A)+v(B), A BCJ. (11)

But this follows from the fact that v() is the characteristic
function of the graph in Figure 4 and [11, Lemma 3.2]. []

The interested reader is referred to Appendix B where we
consider a relaxed version of SYSTEM which allows pro-
viding some characterization of the solution to this relaxed
version.



4.2 Particular Channel Selection Strategies

In this section, we introduce three particular channel se-
lection strategies. Under the assumption of random mixing,
the first two strategies correspond to uniform and most so-
licited strategies in [1]. The third strategy is new and arises
from the Metropolis sampling in Sec. 6.

4.2.1 Uniform

Under the uniform channel selection, each user u picks
a subset of C,, — |S(u)| channels by sampling uniformly at
random without replacement from the set of channels that
user u is not subscribed to, i.e. from the set of channels
TN\ S(u).

The uniform channel selection biases to forwarding less
popular channels. This is quite intuitive as by the chan-
nel selection process the users select channels to which they
are not subscribed to. The interested reader is referred to
[?] where more discussion is provided along with making a
connection to an underlying system welfare problem of the
uniform channel selection.

4.2.2 Top Popular

Under this scheme, each user u picks channels from the
set of channels J \ S(u) without replacement in decreasing
order of the channel subscription popularity and random tie
break until C, — |S(u)| channels are picked or there are no
channels left. This is a greedy scheme that favours popular
channels. We consider this scheme in numerical evaluations
in Sec. 5.

4.2.3 Pick from Neighbour

‘We consider channel selection strategies under which each
user u upon encountering another user u’ picks a candidate
channel from the user v’ and then based on some decision
process decides whether to replace a channel to which user
u currently helps with the candidate channel. The decision
process is assumed to be local, independent of the current
assignment of users to channels, which makes these strate-
gies of quite practical interest.

We will construct one such a scheme, in Sec. 6, based on
the Metropolis-Hastings sampling. We will see that such a
scheme is associated with a system welfare problem with the
following objective function:

VPFN(J?) = Z VjPFN(fj)

FISVA
with
VjPFN(fj) _ (Otj + C’)fj + Dfjln f; (12)

where C and D are system constants and a; > 0 is a con-
stant for channel j, which expresses its relative importance
(the higher the a;, the more important the channel j).
The function V;7*N(f;) in Eq. (12) is a monotonic non-
decreasing function of f;. Note, however, that V;"*N(f;) is
a conver function of f;. It is thus not concave and hence
does not validate the condition discussed in Sec. 3.3, which
ensures optimality of the greedy assignment in Sec. 4.1.
Proof is in Appendix C.

S. SYSTEM OPTIMUM VS. HEURISTICS

In this section, we demonstrate:
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Figure 5: Channel subscription popularity from the
Zune podcasts data. (Top) Fraction of the subscrip-
tions per channel. (Bottom) Fraction of the sub-
scriptions covered by a set of most popular channels.

A system optimal assignment of channels can
yield significantly larger system welfare than some
heuristics suggested by prior work.

In particular, we compare with the Uniform and Top Popu-
lar assignments defined in the preceding section.

We use the subscription assignments of users to channels
that we derive from the subscriptions of the users of Zune
to audio podcasts. This dataset consists of 8,000+ distinct
podcast feeds and more than a million of users. The data
provides us with complete information about subscriptions
of users to podcasts. In Fig. 5-top, we show the fraction of
subscriptions covered by individual channels. This metric
corresponds to our definition of 5. We note that the dis-
tribution is quite skewed with a few channels with many
subscriptions and many with a few. The median number of
the fraction of subscriptions per channel is as small as about
2% 107°. Moreover, only about 1% of all the channels have
the fraction of subscriptions at least the factor 1/10 of that
of the most popular channel. The body of the distribution in
Fig. 5-top is well approximated by a line (power-law) with
the slope of about —2/3. In Fig. 5-bottom, we re-plot the
same data but show the fraction of the subscriptions covered
by a set of most popular channels. From this figure, we note
that about half of the subscriptions are covered by as few as
2.5% of the most popular channels.

We consider the user-centric system welfare with the chan-
nel utility functions V;(f;) = —t;(f;) where ¢;(f;) is the
dissemination time given by Eq. (6). For each user u, we set
Cu = |S(u)| + C where |S(u)] is specified by the input data
and C is a parameter. We compute optimum assignment by
using the algorithm GREEDY (Sec. 4.1). Uniform and Top
Popular assignments are computed as prescribed by their
respective definitions.

In Fig. 6, we show the dissemination time per subscription
versus the per node capacity C'. The rate of the access to
the infrastructure is fixed to 1 access per day by each user.
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Figure 6: Dissemination time per subscription ver-
sus the size of the public cache C, C, = |S(u)| + C.

The rate at which each user encounters other users is fixed
to 100 users per day. If the dissemination is solely by direct
access to the infrastructure, then the dissemination time is
about 13.5 hours. We note that the dissemination time un-
der the system optimum assignment can be reduced for the
order of several hours if the dissemination is augmented with
the peer-to-peer dissemination. Perhaps even more interest-
ingly, we observe that the gap between the system optimum
and that of the Uniform and Top Popular assignments can
be significant.

In Fig. 7, we present the results under the same setting
as in Fig. 6 but varying the encounter rate and holding the
cache size C fixed to 5 (Top) and 20 (Bottom). These results
show a lack of order for the Uniform and Top Popular as-
signments — for some cases one is better than the other one
and vice-versa in other cases. In any case, system optimum
indeed provides best performance.

6. A DISTRIBUTED METROPOLIS HAST-
INGS ALGORITHM

We now consider the problem of designing a distributed
algorithm. The goal is for each node to control its set of
helped channels so that the resulting global configuration x
maximizes a system welfare of the form

Vie) =Y w;V;(fi(x)) (13)

JjE€ET

as discussed in Sec. 3 (note that, unlike in Sec. 3, we make
the dependence on the global configuration x explicit).

6.1 Metropolis-Hastings

We propose to use a Metropolis-Hastings algorithm [12],
as it lends itself well to distributed optimization, and was
successfully used in distributed control problems in wireless
networks [13]. Before giving our distributed algorithm, we
first give a short description of a centralized version of the
Metropolis-Hastings algorithm:

At every time step, the algorithm picks a tentative config-
uration z’, with probability Q(z, z’), where z is the current
configuration. We assume that the matrix Q(z,z’) has the
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Figure 7: Dissemination time per subscription ver-
sus the rate of encounters . The cache for user u
set as Cy, = |S(u)|+ C with (Top) C =5 and (Bottom)
C = 20.

weak symmetry property:
Q(z,2) > 0= Q(z',z) >0

for all z # 2’. The tentative configuration is accepted
(i.e. becomes the new configuration) with probability p =
min(1, g) with
! /
§— Q) "
m(2)Q(z, ")

where 7(-) is a probability distribution on the set of possi-
ble configurations. The algorithm does not converge stricto
sensu, however, after a large number of iterations, the prob-
ability distribution of the configuration x converges to the a
priori distribution 7(+). Typically, one uses for 7(-) a Gibbs
distribution, given by

()= e T (15)

where T is a system parameter (the “temperature”) and Z
is the normalizing constant. If T' is small, the distribution
m(+) is very much concentrated on the large values of V (x),
so that the algorithm produces random configurations that
tend to maximize V(z).

6.2 A Distributed Rewiring Algorithm

We use Metropolis-Hastings as follows. We use a Gibbs
distribution, as in Eq.(15) with V() the utility function in
Eq. (13). We consider every meeting between two nodes as
one step of the algorithm. When two nodes meet, they op-
portunistically exchange content updates; then one of them,
say u is selected as leader and attempts to replace one of
its helped channels by one of the channels forwarded from
the set held by the other node, say v, as described in Algo-
rithm 2. We now turn to the computation of the acceptance
probability (line 5 of the algorithm), as given by Eq.(14).
First we compute Q(z, ') where ' = x — 1“7 + 19" is the



Algorithm 2 Distributed Algorithm for Allocation of
Helped Channels
1: if F(u,z) C F(v,z) then do nothing
2: else
3: u selects one channel j uniformly at random in the
set H(u,x)
4: u selects one channel j' uniformly at random in the
set F(v,z) \ F(u,x)
5: compute the acceptance probability p =
with ¢ given by Eq.(18)
6: draw a random number U uniformly in [0, 1];
7 if U < p then drop channel j and adopt channel j’
as a helped channel
8: end if
9: end if

min(1, q)

new conﬁguration (1" is the configuration vector defined
by 1% ,—llfu—u and j = j', 0 otherwise):

PROPOSITION 6.1. The following holds

licr(v,2)
zv#u |F (v, z)\F(u z)|+1; i ¢F (v, 1)
! = 1 o (16)
Qo) S e

vFEU \F(v )\ F(u,z)|

Proof is in Appendix D.
We will make use of the following approximation, derived
in Appendix E,
QU | L)
Q(z, ') fi(@)

We also note the following result (proof in Appendix F.)

(17)

PROPOSITION 6.2. Suppose that for a finite constant D >
0, imy—yoo NT = D. Then,

Vi)-V() 1

Jlim S V(@) — w3V (5 ()))
In view of the last proposition, we have
(ﬂflaﬂf) L(V(E)-V())
q =
Qz,a)°
~ Q@) @) wr (w0 V] (@)=, V] (£5(2)))
Q)" '

Combining with (17) we obtain for ¢ the value
) o

fy(m
fa’(x)

where D = NT is a global system parameter.

Algorithm 2 requires node u to estimate f; and f;/. This
can be done by having the nodes exchange, when they meet,
updates of channel popularity for all channels that they
know of, and then performing exponential smoothing. A
simple, but memory hungry scheme, is as follows. Every
node v maintains for every channel j an estimate f;. When
node u meets node v’, for all channels that 1’ helps or sub-
scribes to, node u does f; < a + (1 — a) f; and for all other
channels f; «— (1 —a)f; where 0 < a < 1.

A less memory hungry scheme can be obtained by imple-
menting a lazy evaluation scheme; it avoids the scalability

B (wy V] (F5 @)=, V] (£(2))) (18)

problem that would arise if all nodes would carry popularity
information for all channels, while achieving approximately
the same goal. We keep f; in memory, for a total of at most
W records, but only for the forwarded channels and other-
wise for the most recently seen channels. When a node u
meets a node u’ and has to push out an f; record due to
the W limit, the record with the oldest modification date is
pushed out. The record for the new channel at this node is
set to fj — aH_W +(1—a)fj(u'), where f;(u') is the record
at v’ (which must be present since u’ forwards 7).

Further, all nodes need to share the global system variable
D, and know the utility function of each channel (the latter
can be contained as meta-information in the channel data).
In Section 6.3, we give a simplified algorithm, which does
not require such estimations.

6.3 A Simplified Algorithm

It is possible to entirely avoid the estimation of the f;
quantities, albeit at the expense of imposing a family of
utility functions. The idea is to pick a set of utility functions
V;(-) such that f; and f;; cancel out in Eq.(18). This results
in a scheme that belongs to the class of schemes pick from
neighbour that was introduced in Section 4.2.3.

THEOREM 6.1. If for each channel j, the utility function
is VPEN(2) in Eq.(12) then q in Eq.(18) is given by

B
q= 19
Bi (19)
with B; = eﬁj and By = e ? . In particular, q is thus

independent of fj(x), fj:(x) and more generally of the con-
figuration x.

PRrROOF. Follows from Eq. (12) and Eq. (18). [

With this simplified algorithm, nodes need to know the static
parameters 3; > 0 associated with each channel. There is no
global constant, nor it is necessary to evaluate f;(x). Higher
values of j mean that we give more value to disseminating
channel j more quickly. Note that only the relative values
of B3; matter, as Eq.(19) uses only ratios, and (3; can thus be
interpreted as the priority level for channel j. The resulting
algorithm is as follows.

Algorithm 3 Distributed Algorithm for Allocation of

Helped Channels when Utility is Given by Eq.(12). Every

channel j has a static priority level 8; > 0.

1: if F(u,z) C F(v,z) then do nothing

2: else

3: u selects one channel j uniformly at random in the
set H(u,x)

4: u selects one channel j' uniformly at random in the
set F(v,x) \ F(u,x)

5: if 3, > B; then drop channel j and adopt channel

j’ as a helped channel
else

draw a random number U uniformly in [0, 1];

if U < % then drop channel j and adopt chan-
J

® TP

nel j' as a helped channel

9: end if
10: end if
11: end if




If we set 5; = 1 for all channels, i.e. we give all chan-
nels the same utility function, then Algorithm 3 always ac-
cepts the proposed change. Note however that, even in this
case, the resulting allocation is, in general, not uniform, as
the optimal allocation depends on the proportion of sub-
scribers s; for each channel; indeed, the algorithm will tend
to give more help to channels that have few subscribers.
Note also that, in general, the scheme is different from that
in Sec. 4.2.1 as under the scheme therein, each user picks
from the set of all distinct channels for which this user is not
a subscriber, while for the algorithm in the present section,
the picking is from the forwarding channels of an encoun-
tered user.

6.4 A Battery Saving Algorithm

The previous algorithm may be improved to account for
battery saving. The motivation is that a node may be reluc-
tant to help disseminate channels if its battery level is low.
We address this issue as follows. Assume that every node u
knows its battery level b, > 0. The battery is empty when
b, = 0. Assume to simplify that all nodes measure b, in
the same scale, for example, number of remaining hours of
operation at full activity. We can replace the global utility

in Eq.(13) by
S wiVif) = > Walba)

JjET uelU

where W, () is a convex, decreasing function of its argument
(for example Wy (b) = ), such that W, (b) expresses the
penalty perceived by user u when its battery level is b. We
can apply the Metropolis-Hastings algorithm with this new
function. The only difference is in the computation of the
acceptance probability. This can be applied to Algorithms 2
or 3 in the same way, we give the details only for Algo-
rithm 3. The computation of ¢ in Eq.(19) is replaced by

g= D by ) (20)
B

where u and u’ are the two nodes involved in the interaction
and hy(b) > 0 is the marginal cost of exchanging a channel
when two nodes meet, divided by the temperature 7' (an
increasing function of b).

The resulting algorithm is the same as Algorithm 2 with
Eq.(18) on line 5 replaced by Eq.(20). The required configu-
ration is (1) every channel j has a static priority level 8; > 0
and (2) every node u knows its own function h,(b) for the
cost of exchanging one channel with a neighbour when this
node’s battery level is b.

7. SIMULATION RESULTS

In this section, we present simulation results that address
the following goals: (i) demonstrate the concentration of
the distributed Metropolis-Hastings algorithm to the opti-
mum system welfare and (ii) demonstrate that optimizing
a system welfare under real-world mobility produces good
forwarding assignments of channels to users.

In order to cover a broad set of parameters, we conducted
simulations by varying the parameters along the following
dimensions: (i) node mobility either random mixing or using
a real mobility trace, (ii) small and large system scale with
respect to the number of users and the number of channels,
(iii) different distributions for the subscriptions per channel,

(iv) the fractions of nodes forwarding or subscribed to a
channel either known or locally estimated, and (v) a range of
the temperatures for the Metropolis-Hastings algorithm. We
consider random mixing mobility in order to provide results
for scenarios for which we have a good understanding of
the relation between the channel dissemination time and the
fraction of the forwarding nodes. We used our own discrete-
event simulator.

7.1 Random Mixing Mobility

We simulate random mixing mobility where each user en-
counters other users uniformly at random. In such a system,
we indeed have that the dissemination time for any channel
depends only on the portion of the nodes that forward the
channel (Section 3.1).

We consider a small- and a large-scale system where for
the former the number of users and the number of channels
are both set to 20 while for the latter the number of users is
200 and the number of channels is 100. For the fractions of
subscribers per channel (§), we assume a Zipf distribution
with the scale parameter equal to either 2/3 or 1. The for-
mer value is motivated by the empirical distribution derived
from the Zune data (Fig. 5 discussed in Section 5) while the
latter value was used in previous work [1]. For the objective
of the system welfare, we consider both the channel- and
user-centric cases with the utility function V;(f;) = —t;(f;)
for channel j where t;(f;) is the dissemination time and f;
is the fraction of forwarding nodes. In particular, we ad-
mit Eq. (6). In cases when f or § are locally estimated,
each node uses an exponential weighted averaging with the
smoothing constant (weight of a sample) set as follows. For
the estimation of f, the constant is set to 0.9. For the es-
timation of 3, the constant is equal to 0.1 and 0.02 for the
channel- and user-centric case, respectively.

In Fig. 8, we present the results obtained for the channel-
centric case. The graphs show the mean dissemination time
per channel, i.e. (37, ;;(f;))/J, versus the number of en-
counters per node. We show the results for the Metropolis-
Hastings with f assumed to be either known or locally esti-
mated by individual nodes. We observe that the system wel-
fare under the Metropolis-Hastings algorithm concentrates
near the optimum system welfare. The results in Fig. 8
indicate a faster concentration in cases when f is globally
known. In Fig. 9, we present analogous results for the user-
centric case. In this case, we show the mean dissemination
time per user, i.e. (3¢ 8iti(fi))/ 2 e 85, With f and
§ either globally known or locally estimated by individual
nodes. In summary, the presented results in either channel-
or user-centric case support the following claim:

The system welfare under the Metropolis-Hastings
algorithm concentrates near the optimum system
welfare with f (and & in the user-centric case) ei-
ther globally known or locally estimated.

7.2 Real Trace Mobility

We compare the system performance under the assign-
ment of channels to users that optimizes a system welfare
(OPT) with that of heuristics Uniform (UNI) and Top Popu-
lar (TOP), respectively introduced in Sec. 4.2.1 and Sec. 4.2.2.
Our goal is to demonstrate that OPT can do a better job
compared to the heuristics UNI and TOP.

We define the system welfare using the dissemination func-
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Figure 10: Empirical dissemination curve for the
target fraction of nodes a = 0.25 from the CAM mo-
bility trace.

tion t;(f;) inferred from the mobility trace CAM and letting
V;(f;) = —t;(f;) as in the preceding section. Specifically, we
define the logarithm of ¢;(f;) by a concatenation of linear
segments that closely follow the empirical data as showed
in Fig. 10. While different methods could be used to in-
fer a dissemination curve like that in Fig. 10, we relied on
hand-picking which suffices for our purpose. We consider a
scenario with J = 7 channels, two subscriptions per each
user, and two channels helped by each user. We assume
that the channel subscription rates follow a Zipf distribu-
tion with the scale parameter equal to 1. For each setting
of the simulation parameters, we repeat the experiment five
times, each time injecting a message of a channel to a user
picked uniformly at random from the users who are either
subscribers or helpers for the channel at the beginning of the

Table 1: Per-channel and per-user dissemination
times in minutes for CAM trace.

[ Channel-centric | UNI | TOP [ OPT |
Median 70.2500 | 133.1000 | 52.1429
Mean 70.4700 | 137.1250 | 57.2000

User-centric UNI TOP OPT
Median 70.4028 97.4528 56.9333
Mean 70.0578 | 102.7284 | 59.4089

trace. Note that there are 36 distinct users in the CAM data
and that the encounter rate 7 is equal to 0.001 per second,
i.e. 1.2 users every two minutes.

In Table 1 we present the median and mean dissemination
time per channel, and per user, for the channel- and user-
centric cases, respectively. For both mean and median dis-
semination time, OPT substantially outperforms UNI and
TOP for either channel-centric or user-centric case. In par-
ticular, in the channel-centric case, OPT achieves over 70
minutes less dissemination time than TOP and over 10 min-
utes less dissemination time than UNI for both mean and
median dissemination time. In the user-centric case, OPT
achieves over 40 minutes less dissemination time than TOP
and over 10 minutes less dissemination time than UNI for
both mean and median dissemination time. Furthermore,
in Fig. 11, we show the mean dissemination time for each
channel for channel-centric case (top) and user-centric case
(bottom). We discuss the channel-centric case (qualitatively
similar conclusions hold for the user-centric case). First, un-
der the channel assignment UNI, some intermediate popular
channels may be penalized with a high dissemination time.



600~ . OPT
UNI
TOP

Dissemination time (min)

il

30 35

T T TITTT T

Channel

lind

Figure 11: Mean channel dissemination time un-
der CAM mobility with channel-centric system wel-
fare (top) and user-centric system welfare (bottom).
Channels are enumerated in decreasing popularity
(channel 1 is most popular, etc).

In particular, in Fig. 11(top), we note that the tenth most
popular channel gets as much as five hours larger dissemi-
nation time than under other channel assignments. Second,
same can happen under TOP where the results conform to
the expected bias against less popular channels. To be spe-
cific, many less popular channels get as much as several
hours larger dissemination time than under other channel
assignment. The results demonstrate cases where assigning
channels by optimizing a system welfare avoids penalizing
some channels, which can occur under the heuristics such as
UNTI or TOP.

8. RELATED WORK

[1] proposes several heuristics for content exchange be-
tween devices based on the inferred preference of the user
owning a device and that of encountered devices. Each de-
vice is assumed to forward an unlimited number of feeds
and prioritizes the download of pieces of the content feeds
from encountered devices. Feeds subscribed by a device are
prioritized over other feeds. In addition, each device uses
a solicitation strategy to decide which pieces to fetch from
the encountered devices. Specifically, the solicitation strate-
gies considered in [1] include the most solicited and uniform
which essentially correspond to the top popular and uni-
form channel assignments considered in this paper. The
approach in [1] was to evaluate the system performance for
a set of solicitation strategies. In this paper, our approach
is different—we start with a system welfare objective from
which a channel selection strategy follows.

Another related system is CarTorrent [2], a peer-to-peer
file sharing tailored for vehicular network scenarios by us-
ing an epidemic-style content dissemination. Our work is
distinct from that on epidemic-style dissemination in that
unlike to previous work, our focus is on efficient dissemina-
tion of multiple content streams.

A related line of research is that of peer-to-peer storage.
[14] modeled a peer-to-peer data sharing system, originally
proposed in [15] to enable access to content under limited
access to the Internet. [14] studied the performance of var-
ious cache policies with limited cache size at individual de-
vices. Several content replication strategies were investi-
gated in [16]. In these systems, nodes query for the content
through multiple hops that is supported by the system. Our
work has some similarity with that on peer-to-peer storage
in that our system welfare amounts to deciding what portion
of nodes should ”cache” a given channel. Note, however, that
our objective is different — our goal is to optimize caching of
channels with respect to channel dissemination times that
derive from mobility of devices.

Another system welfare problem was recently considered
in [9] but for a different problem of optimizing the access
rates of mobile devices to a server. The age of single epi-
demic was recently considered in [17].

Last but not least, we mention the work on characteri-
zation of real-world mobility. An early analysis of human
mobility was presented in [18] where it was found that the
distribution of the inter-contact time between mobile de-
vices decays as a power-law over a range from minutes to a
portion of a day. In [7], it was found that this distribution,
in fact, is well characterized by a power-law decay with an
exponential cut-off. Finally, the authors in [19] studied the
diameter of random temporal networks; on the basis of ana-
lytical and empirical results, they found that such networks
are characterized by small diameter.

9. CONCLUSION

We proposed a framework for optimizing the dissemina-
tion of multiple information channels in wireless ad-hoc net-
works. The problem amounts to finding an assignment of
users to channels for forwarding the content of channels that
optimizes a given system welfare objective. We showed that
a system-optimum assignment can be found by a central-
ized greedy algorithm. Moreover, we proposed a distributed
algorithm using the Metropolis-Hasting sampling that sta-
bilizes around the system optimum. We also discussed how
to incorporate the battery expenditure of devices into the
optimization framework.

There are several interesting directions for future investi-
gation. First, it is of interest to examine the relation between
the dissemination time and the fraction of the forwarding
nodes across a large set mobility traces. Second, our dis-
tributed algorithm involves control over two timescales, a
slow timescale for the assignment of users to channels and
a fast timescale for the online estimation of the parameters
— it is of interest to examine the rates of convergence of
the two controls. Third, it may be worth exploring other
Metropolis-Hastings samplings for speeding up the conver-
gence and alternative online estimators that are both fast
and robust. Forth, it would be important to examine which
particular system welfare objective would be of special in-
terest in practice. Fifth, one may analyze the gap between
the problems SYSTEM and SYSTEM-R (Appendix). Last
but not least, it is of interest to consider the system wel-
fare problem proposed in this paper in scenarios where the
dissemination time of a channel depends not only on the
number of the nodes that forward the channel, but also on
which nodes in particular are the forwarding nodes.
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APPENDIX

A. PROOF OF PROPOSITION 3.1

Let t(f) = nt;(f), A = Aj/n, K = Kj, ¢(0) = ¢;(0).
From Eq. (6), we have

1

= 1
1) = 37 los(af +0)
where
_ K
¢ C I e
T A-K)(AM9(0)
Now, note
d? 2
wt(f) = Wlog(af—i—b)

2 1 a 1
A+ 1)2af+b X+ f(af +b)2

It follows that (d?/df?)t(f) > 0, i.e. t(f) is strictly convex,
if and only if

A+f 1 A+ f
log(af +b) aaf+b 3 (aaf+b> > 0. (22)
Let
A f
= . 2
x aaf—i— 5 (23)
From the last identity, we have
af +b— b— a)\'
11—z
Note that it holds
b—aXx > 1 (24)
zr < 1 (25)
Indeed, from Eq. (21) we have
b—aX=1+ KA > 1.

(1= EK)(A+¢(0)
Thus, Eq. (24) follows. From Eq. (23) and Eq. (21),

A+ f

r=——-"——.
A+(1 éf)<f>(0) + f

Combining with the fact K < 1 (as a < 1), Eq. (25) follows.
Eq. (22) can be rewritten as

logb_a)\ —z—22>>0
1—=2
ie.
L=t _ o(i+}e)
b= ax <e .
Under Eq. (24), the last inequality is implied by
1z <eo(1t37)



but this indeed holds as by the mean-value theorem, h(z) =

6_1(1"'%1) satisfies
hiz)=1—z+ %h”(x*)

for some 0 < z* < x and the readily checked property that
R'(z) > 0, for any = > 0.

B. RELAXED SYSTEM

We get some insight in how the system forwarding capac-
ity is assigned over channels, for given channels subscription
rates § = (s1,...,8s), by considering the following relax-
ation of SYSTEM-H.

SYSTEM-R
maximize i w;Vj (s5 + hy)
=1
over ;w € 10,1 — sy]
subject to i hj<c—s
j=1

Here c and s are the per node capacity and per node num-
ber of subscriptions, respectively,

1 & 1 <
C:NZC“ ands:ﬁuz::lw(u)\.

u=1

SYSTEM-R is obtained by removing all the constraints
in SYSTEM-H but those for which |A| = 1 or |A| = J in the
definition of the polyhedron P(v). Moreover, the portion of
user that help any given channel is relaxed to take fractional
values — this is a good approximation for systems with a
large number of users, i.e. large N. For each user u, we only
retain (i) the constraint that u can be assigned to a channel
j only if w is not subscribed to channel j, i.e. 7 € J\ S(u)
and (ii) the user capacity constraint, i.e. that a user u can
help only C', —|S(u)| channels. We have the following result.

ProposITION B.1. The optimum value of SYSTEM is
less than or equal to that of SYSTEM-R.

While we believe that in many cases the system welfare
under SYSTEM-R would be equal to that under SYSTEM,
we leave for future study to examine the gap between the
two problems. In the sequel, we consider the solution to
SYSTEM-R.

PropPoOSITION B.2. There is a unique solution to SY STEM-

R that satisfies the following:

0 Dj(p/w;) < s;
hi(p) = Dji(u/w;) —s; s < Dj(p/wj) <1  (26)
1—s; 1 < Dj(p/wy)

where D;(-) is the inverse of V() and p is the solution of

S hy(p) = c—s. (27)

j=1

The solution can be interpreted as follows. The function
D;(z) can be interpreted as the demand for the forward-
ing capacity for channel j, given a shadow price z.> The
shadow price for a channel j is equal to p/w;. If the de-
mand by a channel is less than or equal to the forwarding
capacity provided by the subscribers of this channel, then
the channel gets no extra forwarding capacity. If the de-
mand of a channel is greater than what can be supported
by the system (all users forward the channel), then all users
forward this channel. Otherwise, the portion of users that
forward the channel is equal to the demand for this channel.
See Figure 12 for an illustration.

Proor. SYSTEM-R is a convex optimization problem
and thus has a unique global optima. The dual problem is
min,>o F(p), where

Fp) = glea;F(h,u) (28)
J J
F(h,p) = Zw]"/j(sa‘+h]’)—#<zh]’—(c—8)>
H = {ze€[0,1)): z;<1—s;, j=1,...,J}

The problem (28) separates into the following optimization
problems, for j =1,...,J,

CHANNEL-j
maximize w;V;(s; + h;) — ph;
over hj €10,1 — s4]

For each j, CHANNEL-j is a convex optimization problem
so there is a unique optimum solution h;. The objective is a
concave function with hj;. Let us first consider the optimiza-
tion without the constraint h; € [0,1 — s;]. The necessary
and sufficient optimality condition is

w;Vj (s + hy) = p.

Hence, s; + h; = Vj'_l(u/wj) = Dj(u/w;). In case, h; €
(0,1 — s;) we have that the solution to SYSTEM-R satisfies
h; = Dj(u/w;) — s;. The condition h; € (0,1 — s;) can
be rewritten as s; < Dj(u/w;) < 1. In other cases for the
unconstrained problem we either have h; < 0or 1 —s; <
h; and hence the solution to SYSTEM-R is 0 and 1 — s,
respectively. This concludes the proof. [J

B.0.1 Properties of the Solution

We consider how the subscription popularity of channels
relates to the allocated forwarding capacity for the solution
to SYSTEM-R. Specifically, we identify cases when the bias
is to forwarding either most popular or least popular chan-
nels.

Let us introduce an enumeration of channels so that the
following holds

w1V1'(51) 2 w2V2/(82) 2 B 2 wJVJ,(SJ)A (29)

We argue that in the following sense this order of channels
corresponds to a priority order — if a set of k channels is al-
located zero helper capacity, then this must be the channels
J—k+1,...,J. To see this, note from Proposition B.2 that
the optimum allocation h can be obtained by the following
water filling algorithm:

3The concepts of a demand function and a shadow price
are rather intuitive and are standard in the microeconomic
analysis [20].



Figure 12: The helper capacity allocated to channel
j versus the shadow price under SYSTEM-R.

FIND SYSTEM-R OPT: Initialize u = w1 V{ (s1).
Continuously decrease p with unit rate until equal-
ity in (27) is attained.

Applying this algorithm, we note that by (29) and the
definition of the functions in Eq. (26), we have the asserted
property of the priority order.

We discuss two special cases. First, consider symmet-
ric channel-centric system welfare with the weights and the
channel utility functions equal for all channels. Under the
assumption that the channel utility functions are concave,
we have that the priority order is in nonincreasing channel
subscription order, i.e. s1 < s2 < --- < s5. This can be
seen as a consequence of the concavity of the channel util-
ity functions, i.e. the diminishing returns with the allocated
forwarding capacity. Second, we consider symmetric user-
centric system welfare, where all the channel utilities are
assumed to be identical. Note that in (29) we have @ = §
and s;Vj(s;) = s;V{(s;) for each channel j. We will show
that channels are prioritized in a way that depends on the
elasticity of the function zVy(z), which we discuss in the
following,.

PROPOSITION B.3. Suppose xV{(x) is a nonincreasing (resp.

nondecreasing) function of x, then the priority order is a
nondecreasing (resp. nonincreasing) channel subscription
order i.e. s1 < --- < sy (resp. s1>--->871).

PRrROOF. Indeed, if zV/(z) is nonincreasing (resp. nonde-
creasing) with z, then for any 4,j € J such that s;V/(s;) >
s;Vi(s;), we have s; < s; (resp. s; > s;). [

Let us define the elasticity of the function zV{(z) by

() dV{((z))

1"/1 €T Vl’ T

e(z) = , x> 0.
( Vl,(l') dzz

This is a standard measure that indicates the relative change
of the function with the relative change of x.

Saying that xV{(x) is a nonincreasing function of z is
equivalent to saying that e(z) < —1 for all > 0. Likewise,
for xV{ (z) nondecreasing with z we have the correspondence
e(z) > —1 for all z > 0. We thus have that if the function
zV{ (z) is sufficiently elastic then the less popular channels
are prioritized. In contrast, if the function V() is suffi-
ciently flat then the more popular channels are prioritized.

C. PROOF OF PROPOSITION 4.5

Proof follows from the derivation formulae

iUPFN _ dePFN%
dt; ’ df; dt;
igUPFN _ dQVjPFN LfJ 2 N dePFN dzfj
dtz ™’ df? dt; dfy  dt?
_ dzijFN % 2 B d‘/jPFN d2 i
df? dt; df; df2 dt;

The result follows under the assumptions that ¢;(f;) is a
nonincreasing convex function of f; and that VP N (fj)is a
nondecreasing, convex function of f;.

D. PROOF OF PROPOSITION 6.1

A node u at encounter of a node v replaces a channel
j € H(u,x), selected uniformly at random, with a channel
j' picked uniformly at random from F(v,z)\ F(u,z). This
amounts to the following transition probabilities @) for the
candidate configuration change (we consider that no step of
the algorithm is performed if the condition F(u,z) C F(v,x)
is fulfilled):

Qz,x') =0ifa’ #2—1%7 +1%7" for any u, j and j' # 7.

Else if 2/ = 2 — 1%7 4+ 17" for some u, j and j' # j then

_ 1 u,x) v,x)
Qz,2") =5 fﬁﬁf,x)\ N > otu F(v, f)iiv(u )]
/ 1 “j/€H(u,2z’) 1 JEF(v,z’)
Q' z) N TH(uaN] N 2ovtu [Foe N
Note the following relations
F(u,2') = [F(u,2)\{j}]U{s'} (30)
Fv,2') = F(v,2), v#u (31)
For v # u and j € F(v,z), we have
' n = 1F2)\ Fu,z)| if j' € F(v,x)
|F (v, )\F(u,z")| = { |F(v,2)\ Flu,z)| +1 else.
(32)

We thus have,

’ 1 1] €H (u,z’) 1 1JEF(v,z)
T ,r) = .
Q )= N |H (u,z)| N Z |F(v,2) \ F(u, )| + 1jr¢ p(o,2)

which shows Eq. (16).

E. APPROXIMATION IN EQUATION (18)

We can re-write Eq.(16) as Qa'a) ¢ with

Q(z,z’)
jGF(vz’)
= 33
“ —IZ|va’\F(um’)| (33)
— €F(v,x) 34
—1Z|va\F(ux)\ (34)

Now let V' be a random variable equal to one user drawn
uniformly at random in U \ {u}:

1
( [F(V,2')\ F(u,z")] 1]'6”“’))

! ‘j € F(V, x’)) P(j e F(V,z")

a=E

" < [F(V.2)\ Fu, )]

1 y )
" < F(V,0)\ F(w,2)]|” € E(V, x)> P(j' € F(V,2))



Note that for large N

PleFva)) = DY dxy
, N
P(j e F(V,z)) = ]é_lwfju

N. Further, under enough mixing, we conjecture that

1
N ( [F(V,2)\ Fu, 2')]

jeF(V, x’))

1 "
~ E<|F<v,x>\F<u,x>\ J EF(V’“’))

which gives Eq. (17).

F. PROOF OF PROPOSITION 6.2
First, note
V(@) = V(z) = wplVi(fy (@) =V (fy(2))]
—w;[V;(f(2") = Vi(fi(@))].
Second, we have f;(z') = f;(z)++ and f;(z') = f;(
Thus, we have
NV (fir (")) = Vi (fyr (@) — Vir(fy ()
NV;(fi(@) = Vi(fi@)] — Vj(fi(x))

as N tends to infinity. The result follows.

(35)

(36)
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