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ABSTRACT

We present the results, experiences and lessons learned from
comparing a diverse set of technical approaches to indoor
localization during the 2014 Microsoft Indoor Localization
Competition. 22 different solutions to indoor localization
from different teams around the world were put to test in
the same unfamiliar space over the course of 2 days, allowing
us to directly compare the accuracy and overhead of various
technologies. In this paper, we provide a detailed analysis of
the evaluation study’s results, discuss the current state-of-
the-art in indoor localization, and highlight the areas that,
based on our experience from organizing this event, need
to be improved to enable the adoption of indoor location
services.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]:

Real-time and embedded systems

General Terms

Experimentation

Keywords

indoor localization, fingerprinting, ranging, evaluation

1. INTRODUCTION

Accurate indoor localization has the potential to change
the way people navigate indoors in the same way the GPS
changed the way people navigate outdoors. For well over a
decade, academia and industry have recognized the value of
the indoor localization problem and have devoted a lot of
effort and resources into solving it.
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Infrastructure-free approaches have focused on leverag-
ing already existing WiFi [5, 15, 49, 40, 41, 45, 6, 22, 47,
50, FM and TV [8, 9, 34, 28, 29, 27, 12, 33, 19, 48],
GSM [31, 44], geo-magnetic [10], and sound signals [43]
to enable indoor localization through detailed fingerprint-
ing. Infrastructure-based approaches rely on the deploy-
ment of customized RF-beacons [37], such as RFID [30],
infrared [46], ultrasound [36, 20], Bluetooth [7], short-range
FM transmitters [26], lights [23], and magnetic signal mod-
ulators [32, 2] to enable accurate indoor position estimation.

Even though hundreds of different approaches have been
proposed in the literature, the indoor location problem still
remains unsolved. The research community has not con-
verged to a single, widely accepted solution that can achieve
the desired accuracy at the required cost. We believe that
this is partly due to the highly ad-hoc evaluation process of
indoor location systems. Each system is usually evaluated
in a custom, highly controlled environment making hard to
draw conclusions about its performance and overhead in re-
alistic conditions. Even worse, this type of evaluation makes
comparison of different solutions almost impossible.

With this in mind, we organized the Microsoft Indoor Lo-
calization Competition [1]. The main motivation behind
the competition was to give the opportunity to different
academic and industry groups to test their indoor location
technologies in a realistic, unfamiliar environment. This en-
vironment established a common baseline for assessing the
relative accuracy and overhead of the different indoor loca-
tion technologies. At the same time, it allowed researchers
working on indoor location to meet and interact with each
other, and closely observe the competing solutions in action.

The competition was aggressively advertised through the
academia, industry research, and industry startup channels.
To motivate participation, cash prizes were awarded to the
top performing teams. In response to our call for participa-
tion, 36 submissions from 32 teams registered for the com-
petition. Eventually, 21 teams actually participated with
22 systems. The participating teams originated from vari-
ous countries across Europe, America, and Asia representing
a wide variety of technical approaches to the indoor loca-
tion problem (Table 1). The participating teams came from
academia, industry research, and smaller startups in the in-
door location space.
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Team Reference Team’s Affiliation Technical Approach (Months) Rank
1 Bestmann et al. [37] Lambda:4 Entwicklungen 2.4GHz Phase Offset 60 1
2 Li et al. [23] MSR Asia WiFi+Modulated LEDs 12 4
g 3 Adler et al. [3] Freie Univ. Berlin 2.4GHz Time-of-Flight 72 5
o 4 Lazik et al. [20 CMU Ultrasonic Time-of-Flight 24 6
p?) 5 Ashok et al. [4 Rutgers TR/Radio Time-of-Flight 18 8
5 6 Nikodem et al. [42] Wroclaw Univ. of Tech. 2.4GHz Time-of-Flight 5 9
] MT-Silesia Sp.
2 7 Dentamaro et al. [11] NextoMe WiFi+Bluetooth+IMU 24 10
B 8 Abrudan et al. [2] Univ. of Oxford Modulated Magnetic Signals 24 15
g 9 Sark et al. [3§] Humboldt Univ. of Berlin SDR Time-of-Flight 4 16
S 10 Pirkl et al. [32] DFKI Modulated Magnetic Signals 90 17
11 Schmid et al. [39] Greina Technologies 2.4GHz Phase Offset 24 18
12 Jiang et al. [17, 18] Xian Jiaotong Univ. WiFi+Sound Time-of-Flight 12 21
13 Selavo et al. [35] LE.CS. Steerable Antennas ToF 12 22
. WiFi Fingerprinting
14 Klepal et al. [6] Cork Institute of Technology Bayesian Filter 96 2
. . WiFi+IMU Fingerprinting
. 15 Laoudias et al. [22] Univ. of Cyprus/Cywee Netral Network 36 3
@ - —
& 16 Zou et al. [52, 51] Nanyang Tech. Univ. Wll\i:uf;rfgl\?zg;;ling 12 7
g 17 Ferraz et al. [13] Ubee S.A. WiFi+IMU Fingerprinting 9 11
2 . . WiFi+IMU Fingerprinting
§ 18 Li et al. [24] MSR Asia Particle Filter 24 12
% 19 Marcaletti et al. [25] ETH/IMDEA /Armasuisse Wik Tnpe—of—'thht 12 13
& Adaptive Filter
S . . WiFi+IMU-+Maps
= 20 Xiao et al. [47] Univ. of Oxford Conditional Random Fields 12 14
. WiFi+Magnetic Fingerprinting
21 Zhang et al. [50] Nanyang Tech. Univ. Particle Filter 12 19
. . WiFi+IMU Fingerprinting
22 Ghose et al. [14] Tata Consulting Services Clustering /Decision Trees 3 20

Table 1: The teams that participated in the 2014 Microsoft Indoor Localization Competition. Teams in each
category are listed in order of the localization accuracy they achieved (highest to lowest). Teams 3 and 4
achieved almost identical location errors (0.005m difference), and we considered this to be a tie. The second
place was awarded to Li et al., because they deployed fewer anchor nodes. The column before the last one
shows the development time (in months) spent on each system.

In this paper, we describe the competition’s evaluation
process, provide a detailed analysis of the results, and dis-
cuss the experiences and lessons learned from the organiza-
tion of this competition. In particular, we make the follow-
ing contributions:

e We provide an in-depth evaluation of the accuracy of
22 different indoor localization systems from academia,
industry research and startups in the same realistic,
unfamiliar space. We show that sub-meter accuracy is
feasible today, and that even WiFi-based approaches
can achieve close to 1m accuracy.

o We show that the localization accuracy degrades by as
much as 3m due to setup and environmental changes,
such as human or furniture movement and RF inter-
ference, between calibration and actual evaluation of
the system.

2.

e We compare the expected or previously reported ac-
curacy of each system as determined by controlled lab
experiments to the accuracy achieved in our realistic,

unfamiliar environment, and show that in practice lo-
calization accuracy degrades by 1m — 4m on average.

We show that localization accuracy can widely vary
across different evaluation points even for the most ac-
curate systems. In addition, we show that there are
easy and hard evaluation points in the sense that most
or almost any of the systems can achieve low error re-
spectively. This shows that the choice of evaluation
test points is critical, and it reveals the difficulty of
objectively evaluating indoor location systems.

We evaluate the stability of localization accuracy for
the top performing systems, and study the promise
and limitations of automated, robot-based evaluation.

EVALUATION PROCESS

In this section we provide an overview of the systems that
participated in the competition, and describe the details of
the evaluation process.
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Figure 1: The 300m? area used for the competition. 20 evaluation points were placed into two rooms and
the hallway. Besides the manual evaluation, the EVARILOS robot automatically mapped the evaluation area
and then was used to automatically evaluate the accuracy of the top two teams.

2.1 Participating Teams

Initially 32 teams registered 36 different submissions for
the competition. Eventually, 21 teams with 22 different ap-
proaches attended the competition (Table 1). All systems
were classified into two categories: infrastructure-free and
infrastructure-based, based on their hardware deployment
requirements. Teams in the infrastructure-free category did
not require the deployment of any custom hardware to com-
pute indoor locations, apart from existing WiFi infrastruc-
ture. Most of these approaches leverage existing WiFi sig-
nals and combine them with sensors, such as accelerom-
eter, gyro, and compass, on existing off-the-shelf devices
such as phones and tablets. On the other hand, teams in
the infrastructure-based category required the deployment of
custom hardware such as, bluetooth beacons, magnetic res-
onators, ultrasound speakers, custom RF transmitters and
more.

Overall, 9 systems were in the infrastructure-free cate-
gory, and 13 systems in the infrastructure-based category
(Table 1).

Most of the participating teams were able to setup their
systems according to their expectations. However, a few
teams faced difficulties that might have negatively impacted
their performance. In particular, Team 11 erroneously mea-
sured the ground truth location of one of their anchor nodes,
leading to much higher than expected localization error.
For various reasons, Teams 13 and 18 spent only a limited
amount of time setting up, and this resulted into subopti-
mal system configurations. Finally, Team 20 faced technical

issues that prevented it from using wearable inertial sensors,
thus negatively impacting its overall accuracy.

2.2 System Setup and Evaluation

The competition took place in Berlin, Germany at the ho-
tel venue of the 2014 International Conference on Informa-
tion Processing in Sensor Networks (IPSN). Two attached
rooms, each measuring 10m by 9m in dimensions, and the
hallway in front of the two rooms (measuring approximately
10m by 4m) were used for the evaluation. Figure 1 shows
the floor plan of the approximately 300m? evaluation area.
None of the participating teams had access to the evaluation
area before the competition.*

The competition was a 2-day event. During the first
day, all teams were given 7 hours to setup their indoor
location technologies in the evaluation area. During this
time, teams were able to deploy their custom hardware, if
any, and also perform any profiling of the space necessary
(i.e., fingerprinting, map construction etc.). Each team was
allowed to deploy up to 10 infrastructure points (i.e., ac-
cess points, custom RF modules, magnetic field modulators,
light-modulating lamps etc.) in the evaluation area.

To avoid having each team deploying their own generic
WiFi access points, the organizers deployed 10 WiFi ac-
cess points in the evaluation area. Each room was equipped
with 5 access points, one at each corner of the room and
one in the middle of the room. The deployed access points

'A demo video made by one of the competing teams [22]
showing the hallway and Room A in Figure 1(c) can be seen
at: http://youtu.be/g(lBSRw6qGn4

(f) Automatically mapped floorplan
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Figure 2: Average location error, root mean square error(RMSE), and the standard deviation of the location
error for all 22 teams. As a reference, if a team were to always report the center of the evaluation area as
the true location, the average location error would be 7 meters.

were mounted on cocktail tables like the ones shown in Fig-
ure 1(b) at a height of approximately 1.5 meters from the
ground. All the teams that relied on generic WiFi access
points for estimating indoor location, could only use these
access points.

Note that the deployment of 10 dedicated WiFi access

points created a bias in favor of all systems in the infrastructure-

free category. Given the relatively small size of the evalu-
ation area, deploying 10 access points resulted into an un-
usually high density of access points. Most areas today (i.e.,
malls) provide fewer number of access points that are also
mounted differently in the space (i.e., mounted on the ceil-
ing).

At the beginning of the first day, the organizers indicated
an origin point for the reference coordinate system that each
team should use to report locations. Locations were re-
ported as two-dimensional coordinates (i.e., (2.12m, 5.1m))
with respect to the origin point.

At the end of the first day, the deployed hardware from all
teams was turned off, and all contestants left the evaluation
area. At that time, the organizers marked 20 points on
the floor of the evaluation area and measured the X and Y
coordinates of these points with respect to the predefined
origin point (Figure 1(a)). The ground truth measurements
of the evaluation points were taken using laser range finders.
Leveraging the technical drawings of the building used for
the evaluation, we verified that the evaluation points were
measured with centimeter level accuracy (1 — 2cm error).
This measurement error is an order of magnitude less than
the localization error achieved by the best team, and thus it
did not affect the evaluation results.

During the second day of the evaluation, each team would
show up at a pre-assigned time slot, turn on its deployed
system, and hand the device to be localized to the organiz-
ers. The device was a mobile phone, a tablet or a laptop
depending on the system under test. The organizers carried
the device above each of the 20 evaluation points, waited
for a couple of seconds, and recorded the location reported
by the system under test. All systems were evaluated based
on the average location error across all 20 evaluation points.
The location error for a given point was defined as the Eu-
clidean distance between the true and reported coordinates
for that point. Note that even though we recorded location

estimates only on the pre-measured 20 evaluation points,
the system under test was allowed to continuously perform
localization. For instance, the system under test could use
inertial sensors to perform continuous path tracking to im-
prove localization accuracy.

2.2.1 Introducing Realistic Uncertainty

To assess the ability of each approach to localize devices
at dynamic/unfamiliar environments, part of the evaluation
area’s furniture placement was modified after the setup day
and before the evaluation day. More specifically, both rooms
in Figure 1(a) were equipped with furniture. Approximately
half of each room was filled with tables and chairs resem-
bling a typical classroom setup. The other half of the rooms
was either empty or sparsely occupied by tall cocktail ta-
bles (Figure 1(a) and Figure 1(b)). Room A, shown in Fig-
ure 1(a), remained unchanged between the setup and eval-
uation days. The furniture in Room B (Figure 1(b)) were
completely rearranged in terms of both placement and ori-
entation. Competitors were not aware of which room will be
modified and how until the evaluation day. This allowed us
to evaluate the accuracy of the different approaches in both
familiar and unfamiliar setups.

Two more sources of unfamiliarity were, unintentionally,
introduced during the evaluation. First, even with the or-
ganizers deploying the WiFi access points, there was still
a huge level of wireless interference during the first day of
system setup where all teams were simultaneously profiling
the space and calibrating their systems. The wireless in-
terference was significantly reduced during the second day
where the actual evaluation took place, as only one system
was active at a time. Second, during both days of the event
(setup and evaluation days), people participating in the eval-
uation study as well as guests of the hotel venue where the
evaluation took place were more than welcome to enter the
rooms and walk around. This provided varying levels of oc-
cupancy and human movement in the evaluation area during
the setup and evaluation days.

2.3 Automated Evaluation

Even though the official evaluation was based on the man-
ual process described in the previous section, the organiz-
ers had the ability to leverage the EVARILOS benchmark-



ing platform [16] to automatically evaluate the localization
accuracy of the two teams in the infrastructure-based and
infrastructure-free categories that achieved the lowest local-
ization errors.

The EVARILOS benchmarking platform is an integrated
experimental infrastructure that fully automates the evalu-
ation of indoor localization systems [21]. It leverages the
TWISTbot mobility platform (Figure 1(e)) comprised of
a Kubuki mobility base, a Microsoft Kinect sensor and a
Hokuyo URG-04L laser ranger, to enable accurate and re-
peatable positioning of the evaluated localization devices at
different evaluation points.

During the setup day, the TWISTbot platform was able
to automatically extract the floor plan of the evaluation area
using its onboard sensors (Figure 1(f)). During the evalu-
ation day, each team’s device was mounted on top of the
robot, and then the robot was given the true coordinates
of each of the 20 evaluation points. In response, the robot
autonomously navigated to the evaluation points and when
there, it recorded the location of the system under test. Even
though the EVARILOS benchmarking platform can interact
with the evaluated localization system over a well defined
API, locations were manually recorded and compared with
the ground-truth information provided by the TWISTbot to
reduce the integration overhead for the participating teams.

This allowed us to evaluate the stability of the localization
accuracy for the top performing systems, and to study the
promise and limitations of robot-based evaluation.

3. LOCALIZATION ACCURACY ANALYSIS

Figure 2 shows the localization accuracy of all 22 systems.
The average location error achieved varied between 0.72m
and 10.22m. Only 3 teams were able to achieve less than
2m accuracy, while half of the teams achieved less than 3m
error. The team with the highest accuracy was Team 1 with
an average location error of 0.72m. It is worth noting that
Team 1 opted to deploy only 6 out of the total 10 anchor
nodes they were allowed to deploy in the evaluation area.

In the infrastructure-based category, Team 1 was followed
by Team 2, Team 3, and Team 4, with all 3 teams achieving
almost identical location errors (2m - 2.1m). Teams 3 and
4 deployed 10 anchor nodes, while Team 2 deployed only 5
LED lamps.

In the infrastructure-free category, Team 14 achieved the
lowest location error (1.6m). Teams 15, 16, and 17 followed
with location errors of 1.96m, 2.22m, and 2.81m respec-
tively.

Interestingly, the gap in terms of location accuracy be-
tween infrastructure-free and infrastructure-based approaches
seems to be significant only for the top performing teams.
The most accurate infrastructure-based approach (Team 1)
was able to achieve half the error of the top infrastructure-
free approach (Team 14), which represents a notable increase
in localization accuracy.

Figure 3(a) shows the empirical CDF of the location er-
rors for the top 4 teams in both categories. The top ap-
proaches in both categories (Team 1, and Team 14) are
clearly ahead of the other teams. Surprisingly, the per-
formance of the remaining top approaches is very similar
independently of any custom infrastructure used. The dif-
ference between infrastructure-based and infrastructure-free
approaches is rather small (= 0.5m). Also, the maximum
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Figure 4: Relationship between the achieved loca-
tion error in meters and the development time spent
on each system.

location errors produced by infrastructure-based approaches
can be higher than that of infrastructure-free approaches.

Figure 5 shows the exact location error that the top 4
teams in each category achieved for all 20 evaluation points.
Note that the location error achieved by each team varies
across evaluation points. In addition, the top teams do not
necessarily achieve the best performance for all evaluation
points. For instance, Team 14 (the top infrastructure-free
approach) achieves the worst or close to the worst location
error compared to the other teams for several evaluation
points (1, 2, 11, 15, 18).

3.1 Implementation Variations

Even though different teams leveraged similar techniques
for indoor location estimation, the variance in performance
across implementations was significant. For instance, the
accuracy achieved by approaches measuring time-of-flight or
phase offset in the 2.4GHz range varied from 0.72m (Team
1) all the way to approximately 4m (Team 11). Similarly,
WiFi-only approaches exhibited similar variations ranging
from 1.6m (Team 14) to approximately 5m (Team 22) lo-
cation accuracy. On the other hand, the two teams that
leveraged modulated magnetic signals (Team 8 and Team
10) achieved similar accuracy (= 4m).

We believe that some of these variations can be attributed
to the amount of time that the teams have devoted in im-
plementing their approaches. As shown in Table 1, Team 1
has spent 5 years optimizing its infrastructure-based system,
while Team 11 has only been working on its implementation
for two years. Similarly, in the case of infrastructure-free ap-
proaches, Team 14 has spent 8 years developing its system,
while Team 22 has devoted only 3 months.

In some cases, though, development time does not seem to
help. For instance, even though Team 10 has spent almost 5
years on indoor localization using modulated magnetic sig-
nals, Team 8 achieved similar performance using the same
technology after 2 years of development time.

Figure 4 shows the localization accuracy achieved by each
team as a function of the development time. Even though
some relatively young systems performed well, it is clear that
the variation in performance is higher when the development
time is less than 2 years. The only teams that were able to
achieve localization errors lower than 2m had devoted more
than 5 years of development time.
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Figure 3: Empirical cumulative distribution function of the location error for the top 4 teams in the
infrastructure-free (left) and infrastructure-based (right) categories.

3.2 The Impact of Furniture Setup

Right after the setup day and before the evaluation day,
the furniture setup in Room B was modified, while the fur-
niture setup in Room A remained the same (Figure 1). Ta-
ble 2 shows the average location error achieved by the top
4 teams in both categories and for each of the two rooms
separately. With the exception of Team 15, the rest of the
infrastructure-free approaches report higher location errors
in the room where the furniture setup was modified. The
error increase varies anywhere between 0.47m and 0.94m.

Surprisingly, even infrastructure-based approaches seem
to be affected by the changes in the furniture setup. The
top 4 teams in this category, with the exception of Team
3, exhibited an increase in location errors in the modified
room that varied anywhere between 0.11m and 2.99m. For
Teams 1 and 3 the error difference between the rooms is
rather small, but for the rest of the approaches the error
increase can be even higher than that of infrastructure-free
approaches. We believe that this is primarily due to differ-
ences in the way these teams deployed hardware in the two

rooms, and not due to the furniture setup in the rooms. For
instance, Team 2 deployed only 2 LED lamps in the modified
room and 3 LED lamps in the room that remained identical.
This type of deployment decisions are the main source of er-
ror increase in the case of infrastructure-based approaches
in Table 2.

This intuition can be further verified by Figure 3(b), and
Figure 3(c), where the empirical CDF of the location error
for the top 4 teams is shown for each room separately. All
CDF curves for the infrastructure-free approaches seem to
be uniformly shifted to the right in the case of modified furni-
ture. However, for infrastructure-based approaches this shift
is significantly smoother and varies across systems. We be-
lieve that this variability across teams is caused by the type
of deployment decisions made by each team as described
earlier.

Figure 5 shows a more detailed view on the impact that
the furniture setup has on the location accuracy of the top 4
teams in each category. The errors for the evaluation points
in the room with the modified furniture (first 8 points) are
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Figure 5: Location error achieved at each evaluation point by the top 4 teams in the infrastructure-free (top)

and infrastructure-based categories (bottom).

Avg. Location Error (meters)
Approach | Identical Room | Modified Room (Room B)
Infrastructure-free
Team 14 1.2 1.67
Team 15 2.21 1.92
Team 16 1.75 2.69
Team 17 2.09 2.91
Infrastructure-based
Team 1 0.6 0.71
Team 2 1.15 2.06
Team 3 2.16 1.95
Team 4 0.71 3.7

Table 2: Average location error achieved by the top
4 approaches in each category for the two rooms.
Most of the approaches experienced significant in-
crease in location error in the room where the fur-
niture location and orientation was modified.

significantly higher compared to the evaluation points in the
room with the unmodified furniture (points 8 through 16).

Note that the error for the evaluation points in the hall-
way also increases. We believe that this was caused by the
limited coverage that most teams’ equipment provided at
the hallway. During setup, most teams emphasized deploy-
ment in the interior of the two rooms, creating blind spots
in the hallway.

3.3 Error Correlation Between Teams

In this section we examine the correlations of the different
teams in terms of their performance across the evaluation
points. For each team, a vector including the localization
error for each of the 20 evaluation points was calculated. We

analyze the correlation of each pair of teams by computing
the cross-correlation between their localization error vectors.

Figure 6 shows the computed correlation matrix for all 22
teams. There is a clear subset of teams that are highly cor-
related. First, the top 4 WiFi-based fingerprinting teams
(Teams 14, 15, 16, and 17) are highly correlated. Sur-
prisingly, Team 22 is also highly correlated to these teams
even though it achieved almost double the localization error.
Even though less accurate, this team achieved similar trends
in localization error across evaluation points.

Even more surprisingly, the top WiFi-fingerprinting ap-

proaches seem to be highly correlated to the the top 4 infrastructure-

based teams (Teams 1, 2, 3, and 4) despite the fact that some
of these teams are using completely different technology (i.e.,
Team 4 leverages ultrasonic transmissions).

3.4 Variance Across Evaluation Points

Figure 7 shows the average location error across all teams
for each of the 20 evaluation points. At a high-level, there
seem to be good and bad points in terms of location accu-
racy. For instance, points 6, 9, 10, 11, 12, and 16 tend to
generate lower location errors across all teams compared to
the rest of the evaluation points. It is interesting to note
that all these points tend to be located towards the center
of the two evaluation rooms. On the other hand, points lo-
cated at the edges of the rooms (i.e., 1,2, 7, 8), or at the
hallway (i.e., 19, 20) generate the highest location error with
the largest deviations.

This indicates that there are points that almost any sys-
tem can estimate accurately, and there are points that al-
most any system can have a hard time estimating accurately.
This information can be rather useful when evaluating the
performance of indoor localization techniques. We believe
that proper evaluation metrics should be defined that are
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Figure 6: The cross-correlation of the localization
accuracy vectors for every pair of systems evaluated.

able to emphasize more on the hard to estimate locations
in the area of interest. How these metrics are specifically
defined is beyond the scope of this study.

3.5 Lab vs. Reality

Indoor localization approaches are usually evaluated in
highly controlled environments (i.e., research lab). This type
of evaluation could positively bias the performance of the
system. To quantify this bias, we asked each participating
team to report the localization error that it had previously
achieved in their own experiments, and compared this error
to the one achieved in our evaluation study.

Figure 8 shows the difference between expected and achieved

localization error for all teams. Most teams achieved worse
accuracy by approximately 1.5m to 4m. There were teams
though (i.e., Team 1, Team 14, Team 17) that were able
to achieve the same or even better accuracy than expected.
Note that all the teams that achieved higher than expected
accuracy are WiFi-based approaches (Teams 14, 17, 18). We
believe that this was due to the large number of WiFi access
points that were leveraged in the evaluation study. Given
that the evaluation area was relatively small (300m?), all
10 access points could be successfully sniffed from every lo-
cation in the evaluation area, creating an ideal setup for
WiFi-based approaches.

3.6 Robot-based Evaluation

The best two teams (Teams 1 and 14), as determined by
the manual evaluation process, were invited to another eval-
uation round using the EVARILOS benchmarking platform
described in Section 2.3.

Table 3 shows the average location error for both the robot
and the manual evaluation process. Surprisingly, the ap-
proach by Team 1 was able to achieve the exact same local-
ization accuracy indicating the stability and reliability of the
technology. The accuracy of the approach by Team 14 was
only slightly increased by 0.15m. Given that this is a pure
WiFi-based approach, the overall accuracy and its stability
is impressive.

The results in Table 3 also show the feasibility of automat-
ing the evaluation process of indoor location technologies us-
ing properly equipped robots. Even though the evaluation
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Figure 7: Average location error and its standard
deviation across all teams for each of the 20 evalua-
tion points.

Avg. Location Error (meters)
Approach | Manual Robot
Team 1 0.72 0.72
Team 14 1.56 1.71

Table 3: Automatic evaluation using the EVARILOS
benchmarking platform. For Team 14, the robot
evaluation included only 18 out of the total 20 evalu-
ation points. Obstacles or failures in robot’s naviga-
tion, prevented the robot from placing the system-
under-test above all evaluation points.

area was a very challenging navigation and locomotion envi-
ronment due to the presence of a lot of people and installed
localization infrastructure (including a lot of loose cabling
on the floors), the TWISTbot mobility platform was able
to position the system-under-test devices to the different
evaluation points with an average positioning error of less
than 25c¢m. This result highlights the promising potential
of leveraging robots as a source of ground-truth informa-
tion for automatic evaluation of many indoor localization
solutions that typically have location estimate errors that
are several multiples of this value. However, scaling out au-
tomated, robot-based evaluation to any type of floor-plan
that might include multiple floors with different locomotion
conditions still remains a challenging, unsolved problem.

4. LESSONS LEARNED

This evaluation study allowed us to closely observe and
evaluate multiple teams deploying various technologies in
an unfamiliar area. Even though the competing teams did
not cover every single research and industry effort in the
indoor location space, we believe that the submissions are
representative of the most popular indoor location technolo-
gies. Therefore, based on the analysis of the results and our
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Figure 8: The difference between expected (previ-
ously measured in the lab) and achieved location
accuracy in meters. Negative values indicate worse
accuracy than expected while postitive values indi-
cate better than expected results.

experience organizing this event, we believe we can safely
extract a set of high level conclusions.

4.1 The Indoor Location Problem is NOT Solved

After more than a decade of intensive work in this area,
the indoor location problem remains unsolved. There does
not seem to exist a technology or a combination of tech-
nologies that can recreate the experience that GPS offers
outdoors in the indoor environment. Even though Team
14 managed to achieve an impressive 1.6 meters accuracy
solely based on off-the-shelf access points (the high density
of deployed access points positively biased this type of sys-
tems), and Team 1 was able to achieve 0.72 meters location
error, this level of accuracy can only enable a subset of the
envisioned indoor localization scenarios. Applications that
require room-level or even meter level accuracy (i.e., indoor
navigation), can be easily powered by such technologies.

However, more sophisticated applications such as dynamic
personalized pricing, and product placement and advertise-
ments in the context of retail stores (i.e., grocery or clothing
stores) require much higher granularity of location informa-
tion. In such scenarios, there might be tens of different prod-
ucts within a meter distance from the user, rendering the
current systems inefficient. In addition, there does not seem
to be a technology that can consistently provide the same lo-
calization error across all evaluation points. All systems ex-
hibited large accuracy variations across different evaluation
points which raises concerns about the stability/reliability
of current indoor location technologies.

4.2 Deployment Overhead Remains High

Most of the teams that participated in the evaluation
study had to deploy custom infrastructure, and the rest had
to manually profile the evaluation area. From directly ob-
serving all the teams during the setup day, it became clear
that the deployment/profiling cost of current approaches is
prohibitively high. All teams were given 7 hours to de-
ploy their hardware and/or profile a relatively small area of
300m?2. Even though one would think that 7 hours should
be way more than enough time for the teams to setup their
systems, this wasn’t the case. On average, it took each team
5 hours to setup its approach in the designated evaluation
area. 8 out of the total 22 teams made use of the full 7

hours of setup time, and for a couple of teams 7 hours was
not enough time to fully deploy their systems. This is par-
ticularly concerning given the fact that the teams did not
have to worry about any practical issues that any commer-
cial deployment would impose (i.e., aesthetics, properly hide
the deployed equipment etc.).

In addition, the whole process of deploying custom hard-
ware and profiling the space was quite intrusive. We don’t
believe that any business owner would like to perform either
of these two tasks while real customers are in the business.

When considering the massive size of deployment candi-
date sites (i.e., shopping malls) and how intrusive, time con-
suming and labor intensive the processes of deploying hard-
ware and profiling the space are, realistic indoor location de-
ployments that can achieve centimeter-level accuracy seem
infeasible at this point. Reducing the overhead and manual
labor required by the different indoor location technologies
is of paramount importance for their success.

4.3 Changes in the Environment Impact Ac-
curacy

Even though previous studies have already shown that
large objects such as furniture and human presence can im-
pact localization accuracy, indoor location technologies are
typically evaluated on static environments. By modifying
the furniture setup in one of the rooms in the evaluation
area we were able to quantify the impact of large objects
on different indoor location approaches. Infrastructure-free
approaches that rely on WiFi signals can experience up to
1 meter of location error increase due to furniture setup
changes (Table 2). This is particularly high considering that
the average location error of the top infrastructure-free ap-
proach was 1.6m. However, the increase in location error
depends heavily on the implementation. For instance, the
top two teams in the infrastructure-free category experience
less than 0.5m or even no increase in error at all when the
furniture setup is altered.

4.4 Redesigning Indoor Location Evaluation

The way indoor location technologies are evaluated and
compared can be rather tricky. Even though various metrics
have been proposed in the literature (i.e., average location
error, RMSE, 95" percentile etc.), there are variations in
the real world that are not being properly captured by these
metrics. For instance, as Figure 7 shows, not all evaluation
points are equal. There are easy points that almost any
indoor location approach can easily handle, and there are
points that are really hard to accurately localize. As a re-
sult, the way evaluation points are selected and weighted in
the evaluation metric becomes crucial. We believe that a lot
of work needs to be done in terms of standardizing the eval-
uation process and metrics of indoor location technologies
to properly capture these parameters.

In addition, manually evaluating indoor localization tech-
nologies proved to be a tedious, time-consuming process.
This overhead naturally limits the density of the measure-
ment points and the number of systems that can be eval-
uated in a reasonable time frame. The initial results from
using an automated robot-based benchmarking platform are
encouraging, and indicate that such platforms can poten-
tially reduce the evaluation overhead while increasing the
fidelity of the evaluation process.



4.5 Designing Future Indoor Localization Com-

petitions

Our first attempt at organizing an indoor localization com-
petition gave us a lot of insight on how an ideal competition
should be organized. First, one of the major issues that
teams had to deal with was the RF interference caused by
the numerous custom RF solutions that were simultaneously
deployed. This interference made calibration a tedious task,
and in some cases it prevented contestants from properly
calibrating their systems. Ideally, and assuming no realis-
tic time restrictions, each team should be allocated a time
slot during which only this team’s system is active, enabling
hassle-free system calibration.

Second, in this competition dedicated access points were
deployed just for the competition to make sure that contes-
tants can easily measure their ground truth locations. How-
ever, any infrastructure-free approach should be able to rely
on existing access points, and should also be able to deal
with all the different sources of noise that this implies (i.e.,
lower deployment density, power level adaptation etc.).

Third, instead of using a relatively small area consisting of
two large rooms on a single floor, a significantly larger area
with a mixture of open and office-like spaces across multiple
floors should be leveraged for such an evaluation.

Fourth, the evaluation of systems in this competition has
been point-based ignoring the ability of these systems to
perform continuous localization as the human subject moves
in space and time. A way to capture and quantify the ability
of indoor location systems to capture the continuous path
that the human subject follows would be of great value.

Fifth, to ensure that all systems are evaluated under iden-
tical environmental conditions (i.e., number of people in the
room, interference etc.), all systems should be simultane-
ously evaluated at a given evaluation point. Also, in order
to capture temporal variations, all systems should be evalu-
ated across different time windows as well.

Sixth, it is very hard to capture the effectiveness of an
indoor localization algorithm with a single metric. Ideally,
competing systems should be compared across a wide variety
of localization accuracy metrics, and several other aspects of
each system, such as deployment overhead, setup time, and
more, should be quantified in detail.

5. CONCLUSIONS

The indoor location competition described in this paper
was an experiment that aimed to bring multiple indoor loca-
tion technologies under the same roof and directly compare
their accuracy and overhead requirements. The overwhelm-
ing participation clearly demonstrated that indoor location
remains a hot topic. It also demonstrated the need from
the research and industry community in this area to have
a venue for demonstrating its latest results and comparing
its performance to other teams in a reliable way. Based on
the passion the teams demonstrated and the fun they had
during the event, we believe that more experiments like this
one need to take place or even be established as recurring
(i.e., yearly) events.
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