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Abstract—Decision support queries that scan large indexes can 
suffer significant degradation in I/O performance due to index 
fragmentation. DBAs rely on rules of thumb that use index size 
and fragmentation information to accomplish the task of 
deciding which indexes to defragment. However, there are two 
fundamental limitations that make this task challenging. First, 
database engines offer little support to help estimate the impact 
of defragmenting an index on the I/O performance of a query. 
Second, defragmentation is supported only at the granularity of 
an entire B+-Tree, which can be too restrictive since 
defragmentation is an expensive operation. This paper describes 
techniques for addressing the above limitations. We also study 
the problem of selecting the appropriate indexes to defragment 
for a given workload. We have implemented our techniques in 
Microsoft SQL Server and developed a tool that can provide 
appropriate index defragmentation recommendations to DBAs. 
We evaluate the effectiveness of the proposed techniques on 
several real and synthetic databases.  

I. INTRODUCTION 
Decision support queries often require scans of large 

indexes. When data is inserted or updated, indexes on that 
table can get fragmented due to page splits in the B+-Tree. 
There are two kinds of index fragmentation, both of which can 
have significant impact on I/O performance of a query. 
Internal fragmentation occurs when a leaf page of an index is 
only partially filled, thus increasing the number of pages that 
need to be scanned. External fragmentation occurs when the 
logical order of leaf pages in the B+-Tree differs from the 
physical order in which the pages occur in the data file, 
thereby increasing the number of disk seeks required. Thus, 
compared to an index that is not fragmented, both internal and 
external fragmentation can result in more I/Os for queries that 
scan the index. For example, the article [12] shows that 
fragmentation can reduce the I/O performance of decision 
support queries significantly (e.g. by a factor of 5 in the 
execution time).   

Today’s relational database management systems (DBMSs) 
support mechanisms for an index to be defragmented. 
Defragmenting an index consists of compacting pages to 
reduce internal fragmentation, as well as reordering pages to 
reduce external fragmentation. Index defragmentation is a 
heavyweight operation that can itself incur significant I/O cost, 
and must therefore be invoked judiciously. The responsibility 
of deciding which indexes in the database to defragment 
typically falls on a database administrator (DBA). To assist 
DBAs in this task, DBMSs expose mechanisms for reporting 
information about the current fragmentation of each index, 

including measures of internal and external fragmentation. We 
refer to techniques that rely only on the fragmentation 
information for deciding which indexes to defragment as data-
driven approaches. Since it is usually not possible to 
defragment all indexes within a typical batch window (e.g. a 
few hours at night), DBAs today use rules of thumb to select 
which indexes to defragment, e.g. select indexes that are most 
fragmented.  

We observe two key limitations with the state-of-the-art in 
index defragmentation. First, the granularity at which index 
defragmentation is supported is the full B+-Tree, which can 
very expensive for large indexes. In many cases, the 
fragmentation may not be uniformly distributed across the 
B+Tree. For example, consider a clustered index on the 
OrderDate column of a large fact table that stores order 
information. As new data is inserted into the fact table, the 
B+-Tree gets fragmented. However, it is often the case that 
many of the queries referencing only recent data (e.g. last 
month or last quarter). The performance benefit from 
defragmenting the index only arises for ranges scanned by 
queries. Thus the ability to perform index defragmentation for 
a specified logical range on the key column of a B+-Tree (e.g. 
OrderDate  > ‘06/30/2009’) can potentially provide most of 
the benefits of defragmenting the full index but at a much 
lower cost. We refer to this capability as range-level index 
defragmentation. 

A second limitation is that while data-driven approaches to 
index defragmentation are easy to understand and implement, 
a purely data-driven approach can suggest defragmenting 
indexes that have little or no impact on query performance. 
This is because they ignore potentially valuable workload 
information, i.e. information about queries that scan the index. 
Using workload information can be crucial in large data 
warehouses consisting of hundreds of indexes, which is 
typical in enterprise applications. While leveraging workload 
information can be important, there are a couple of key 
challenges which make it difficult for DBAs to exploit 
workload information for index defragmentation. First, it is 
difficult to estimate the impact of defragmenting an index on 
the I/O performance of a query that scans that index. Naturally, 
it is important to estimate the impact without actually 
defragmenting the index. Such “what-if” analysis of impact of 
defragmentation on query I/O performance is an essential 
component for enabling a workload driven approach to index 
defragmentation. Second, even if the above “what-if” analysis 
functionality is available, selecting which indexes to 



defragment for large databases (with many indexes) and 
workload (with many queries) can be non-trivial.  

Despite the importance of index defragmentation, to the 
best of our knowledge, there is no prior published work that 
addresses the above challenges. Effective solutions to these 
problems can greatly reduce the DBA’s burden and hence the 
cost of administering a DBMS. This paper makes the 
following contributions. First, we introduce the novel idea of 
range-level index defragmentation and describe the desirable 
properties that any range-level index defragmentation scheme 
should satisfy. We present a scheme that meets these 
requirements (Section IV). Second, we describe an API in the 
DBMS engine for efficiently supporting “what-if” analysis of 
the impact of defragmenting an index (or a range of the index) 
on a given query (Section V). Third, we formally define the 
problem of selecting an optimal set of indexes (or index 
ranges) to defragment, and show that this problem is 
computationally hard. We present an algorithm that, given a 
database, a workload of SQL queries, and a budget for the 
cost of defragmenting indexes, can automatically recommend 
which indexes (or index ranges) should be defragmented 
(Section VI). Finally, we have implemented the functionality 
described above in a commercial database system: Microsoft 
SQL Server 2008. We present results of experiments on both 
real and synthetic databases that highlight: (a) The importance 
of exploiting workload information for index defragmentation; 
(b) The advantages of range-level index defragmentation 
compared to full index defragmentation; (c) The effectiveness 
of our techniques for automatically recommending which 
indexes to defragment.  

We begin by first reviewing (in Section II) the kinds of 
index fragmentation that can occur in a B+-Tree, the impact of 
fragmentation on I/O performance, and mechanisms for 
defragmenting an index. Section III formalizes the index 
defragmentation problem, outlines alternative approaches, and 
describes the architecture of our solution   

II. PRELIMINARIES 
We present the types of index fragmentation, their impact 

of I/O performance of a query, and mechanisms for index 
defragmentation.  

A. Index Structures 
All modern databases support index structures for speeding 

up access to data. An index I is defined by a sequence of 
columns on a given table or materialized view. In this paper, 
we assume that indexes are stored as B+-Trees. In general, 
when an index is partitioned, each partition of the index is 
stored as a separate B+-Tree. For ease of exposition, we 
assume that each index has only one partition; however the 
techniques in this paper carry over to the case of multiple 
partitions as well. Thus in this paper we will use the terms 
index and B+-Tree interchangeably.  

Note that in a B+-Tree, the leaf pages form a linked list 
where each leaf page points to the next leaf page in the logical 
order of keys in the index. This makes range queries that scan 
the index more efficient.  Figure 1 (a) shows the leaf pages of 

a B+Tree as a singly linked list. In general, the leaf pages are 
often connected via a doubly linked list which can improve 
the efficiency of both ascending and descending order range 
queries. 

 
 

B. Index Fragmentation 
When an index is first built, there is little or no fragmentation. 
Over time, as data is inserted, deleted and updated, index 
fragmentation can increase due to B+-Tree page splits. There 
are two important types of fragmentation in an index.  

1)  Internal Fragmentation:  Occurs when pages in the index 
are not filled to their maximum limit. The maximum limit can 
be specified by the DBA. The system usually sets a default 
(e.g. 0.85). Without loss of generality, in this paper we will 
assume a fill factor of 1.0 for simplicity of exposition. Our 
techniques and results carry over for any given value of fill 
factor.  Consider the index shown in Figure 1(a). If we assume 
that each page holds 4 rows, then all pages in the index have 
internal fragmentation since each page has unused space page.  

2)  External Fragmentation:  Occurs when leaf pages of the 
index are not in logical order. This can happen for instance 
when new data is inserted into a page that does not have 
sufficient space to hold the new row. This causes a B+-Tree 
split and a new page to be allocated which causes the pages to 
be out of order. Consider the index shown in Figure 1(a). The 
logical order of the pages in the B+-Tree, which can be 
obtained by following the B+-Tree pointers is: 101, 106, 103, 
102, 105, 104. The physical order of pages in the B+-Tree is 
101, 102, 103, 104, 105, 106. Since these two orders are not 
identical, the index has external fragmentation.  

C. Impact of Index Fragmentation on Query Performance 
Index fragmentation can significantly affect I/O 

performance of queries that scan the index. Internal 
fragmentation results in more pages than necessary to store 
the data. This implies more I/Os required to scan the index. 
When there is external fragmentation, the physical order of 
pages in the data file does not match the logical order of pages 
in the B+-Tree. In this case, more I/Os must be issued to seek 

Figure 1. (a) Leaf nodes of a B+-Tree with internal and external 
fragmentation. (b) B+-Tree after it is defragmented. 



to different locations in the file. There are a few situations in 
which index fragmentation has little on no impact on query 
I/O performance. First, if the query is doing a lookup that 
requires accessing only a single leaf page of the index, then 
fragmentation has no impact. Such queries are common in 
OLTP workloads. Second, when (some of the) leaf pages of 
the index required by the query are already resident in the 
DBMS buffer pool, fewer I/Os on the index are required. 
Hence the impact of fragmentation on I/O performance of the 
query is reduced.  

D. Index Defragmentation 
There are two commonly used approaches available for 

defragmenting an index: (a) Rebuild (b) Reorganize.  
Rebuilding an index involves the same process as creating 

an index. It requires a full scan and sort of the rows on which 
the index is defined. The DBMS then allocates and writes out 
the pages of the index. Each leaf page is filled (modulo the 
specified fill factor) and thus there is no internal 
fragmentation. Since the pages are written to the file 
sequentially in logical order, there is also no external 
fragmentation.   

In contrast to rebuilding, reorganizing an index (we refer to 
this operation as Reorg) is an in-place operation and therefore 
does not require additional space. In the first phase (the 
compaction phase), internal fragmentation is removed by 
moving rows across pages. For example, in Figure 1(a), the 
two rows with value A from page 106 are moved to page 101 
during the compaction step. Thus the number of pages in the 
index can reduce. In the second phase (the swap phase), the 
pages that remain after the compaction step are reordered via a 
series of page swaps so that the logical order of pages in the 
B+-Tree agrees with the physical order of pages in the data 
file.  

Finally, although Rebuild and Reorg incur different costs, 
both are heavyweight operations that can involve a significant 
number of I/Os. In this paper, when we refer to 
defragmentation we will mean the Reorg operation. The 
techniques described in this paper, except Section IV, apply to 
both operations. In principle, the ideas of Section IV can also 
be extended for Rebuild, although we do not focus on that in 
this paper.  

E. Definitions and Notation  
Index Layout: We define the layout of an index to be the 
sequence of (pid, c) values of the leaf pages of the index in 
logical order; where pid is the page id of the leaf page, and c 
is the fraction of used space within the page. Thus assuming 
each page can hold 4 records, the layout for the index I in 
Figure 1(a) is: <(101, 0.5),(106,0.75),(103,0.75), (102,0.5), 
(105,0.5), (104,0.25)>.  
 
NI: Denotes number of pages in index I.  
 
Reorg(I): Denotes the index that results by executing the 
reorganization operation for index I.  
Compaction Ratio: The compaction ratio is a measure of the 
internal fragmentation of an index. It is the number of pages in 

the index if it is defragmented to the number of pages in the 
index currently. We denote the compaction ratio for an index I 
by CR(I). Note that 0 < CR(I) ≤ 1. CR(I) = 1 implies the index 
has no internal fragmentation, whereas a value close to 0 
implies large internal fragmentation. Note that compaction 
ratio can be written using the above notation as: ܴܥሺܫሻ ൌ  ோܰሺூሻூܰ  

External Fragmentation: EF(I) denotes a measure of external 
fragmentation of an index. EF(I) is the ratio of the number of 
fragments (non-contiguous of page sequences) in the index I 
to the total number of pages in the index.   
 
ReorgCost(I): Denotes the cost of executing Reorg(I) as 
determined by a cost model. The main purpose of this cost 
model is to help differentiate (i.e. compare) defragmentation 
costs across different indexes. In this paper we use a cost 
model that captures the I/O cost of this operation. In particular 
we model the cost of defragmenting an index I using the 
Reorg operation using the following formula: 

ሻܫሺݐݏܥ݃ݎܴ݁  ൌ ݇ଵ ூܰ  ݇ଶ ூܰ൫1 െ ሻܫሺܴܥሻ൯  ݇ଷܫሺܴܥ ூܰܨܧሺܫሻ 
The first two terms in the above formula represents the cost 

of removing internal fragmentation. This involves scanning 
the leaf pages of the index to detect the amount of internal 
fragmentation, moving rows to fill pages, and removing 
unused pages (which is proportional to the amount of internal 
fragmentation). The final term represents the cost of removing 
external fragmentation. This step needs to work on CR(I)×NI 
pages, since this is the number of pages remaining after 
internal fragmentation is removed. The cost of this step 
depends on the degree of external fragmentation EF(I). We 
have set the constants k1, k2, and k3 by calibrating this cost 
model for our system (Microsoft SQL Server).  
 
Index Ranges: As mentioned earlier, in this paper we will 
consider defragmenting logical ranges of an index. A logical 
range of an index is a range predicate on the leading column 
of the index. For an index with the leading column OrderDate, 
an example of a logical range is ’06-30-2009’ ≤ OrderDate 
≤ ’09-30-2009’. In general, it is possible to defragment a set 
of logical ranges R of an index. We will use Reorg(I, R) to 
denote that the set of ranges R of index I are defragmented.  
Reorg(I) is shorthand that denotes the special case where the 
full index is defragmented.  
 
Workload: We define a workload W as a set of SQL query 
and update statements, where each statement has an associated 
weight. Thus W = {(Q1, w1), … (Qn, wn)}, where Qi is the 
SQL statement, and wi is the weight. For example, the weight 
can represent the frequency of a query. All DBMSs have 
mechanisms to collect the workload by monitoring the 
statements that execute against the database server (e.g. in 
Microsoft SQL Server, the Profiler provides this functionality). 
 



III. INDEX DEFRAGMENTATION PROBLEM  

A. Approaches to Index Defragmentation 
As described in Section II defragmenting an index is an 

expensive operation. Furthermore, in many data warehouses, 
there are a large number of indexes which may be fragmented. 
DBAs typically have a limited time budget for defragmenting 
indexes (e.g. a nightly batch window). Thus, it is often not 
possible to defragment all indexes in the database.   

In approaching the problem of deciding which indexes in 
the database to defragment, there are two orthogonal 
considerations: (a) Whether to leverage workload information 
or not. (b) Whether to allow range-level index 
defragmentation or not. Leveraging the workload can be 
important since we would like to pick indexes to defragment 
that have the most benefit on the I/O performance of the 
workload. Considering range-level index defragmentation is 
important since fragmentation can be skewed across different 
logical ranges of the index. Thus, defragmenting a logical 
range can potentially provide significant benefit for queries 
while incurring a small fraction of the cost of fully 
defragmenting the index. Thus, the four alternative 
approaches to index defragmentation are shown in Figure 2.  

Full index defrag,
Data only
(FULL)

Range defrag,
Data only
(RANGE)

Full index defrag,
Data + Workload

(FULL-W)

Range defrag,
Data + Workload

(RANGE-W)
 

 
 
FULL: This is a data-driven approach that only considers 
defragmenting the full index. In this approach, DBAs rely on 
APIs exposed by the DBMS that return measures of internal 
and external fragmentation for a B+-Tree (e.g. those 
mentioned in Section II.E). Typically, DBAs use rules of 
thumb/best practices to decide which indexes to defragment 
(e.g. indexes with the largest fragmentation).  
FULL-W: This approach uses both data (i.e. fragmentation 
statistics of the index) as well as workload information. 
However, similar to FULL, it constrains that the entire index 
must be defragmented.  
RANGE: This is similar to FULL in that it is a purely data-
driven approach, but it leverages the ability to defragment a 
range of an index. Thus, it is strictly more general than FULL. 
RANGE-W: The most general option that uses index 
fragmentation statistics as well as workload; and also 
leverages the ability to defragment a range. It uses strictly 
more information than both FULL-W and RANGE.  

B. Problem Definition and Hardness 
We now formally define the index defragmentation problem, 
and show that it is NP-Hard.   

Index Defragmentation Problem: Given a database with a 
set of indexes S = {I1, …  In}, a workload W = {(Q1,w1), … 

(Qm,wm)}, where each Qi is a query, and wi is the weight of 
query Qi. For each index Ij the cost of defragmenting the index 
is ReorgCost(Ij). The benefit of defragmenting index Ij on 
query Qi is Benefit(Qi, Ij).  Given a defragmentation cost 
budget of B, find a subset D ⊆ S to defragment such that:   ݓ ൈ ሺݐ݂݅݁݊݁ܤ ܳ , ݀ሻୀଵௗא  

is maximized, subject to the constraint:  ሺ݀ሻݐݏܥ݃ݎܴ݁  אௗ  

Claim: The Index Defragmentation Problem is NP-Hard.  
Proof: See APPENDIX A. The reduction is from the 
Knapsack problem[11].  

The above definition of the index defragmentation problem 
assumes the full index is defragmented. However, the 
formulation extends in a straightforward manner for the case 
when range-level index defragmentation is possible.  

 

C. Architecture Overview 
The architecture of our solution to the index 

defragmentation problem is shown in Figure 3. We propose 
the following two key extensions to the storage engine of the 
DBMS: (a) Ability to perform range-level index 
defragmentation (Section IV). (b) A “what-if” API for 
estimating the impact of defragmenting an index (in general, a 
set of ranges of an index) on a given query (Section V). We 
also propose a client tool (an “Index Defragmentation 
Advisor”) that can recommend a set of indexes (in general a 
set of index ranges) to defragmenting for a given workload 
and given budget on defragmentation cost.  

IV. RANGE LEVEL INDEX DEFRAGMENTATION 
As discussed in Section II, index defragmentation is a 

heavyweight operation that can involve a significant amount 
of I/O.  However, DBMSs today only allow defragmentation 
at the level of the complete B+-Tree. Therefore, it is natural to 
consider whether it is possible to allow defragmentation at the 
level of a logical range of the B+-Tree rather than the 

Figure 2. Approaches to index defragmentation.  

Figure 3. Architecture of the index defragmentation advisor tool.  



complete B+-Tree. For example, for the index shown in 
Figure 1(a), using range-level index defragmentation it would 
be possible to specify Reorg(Ir), which specifies that only the 
pages in the B+-Tree corresponding to the specified range r 
(e.g. col BETWEEN ‘C’ AND ‘D’, where col is the leading 
column of index I) should defragmented. After defragmenting 
this range, the index would appear as shown in Figure 4. 
Observe that other ranges such as col BETWEEN ‘A’ AND 
‘B’ would not be defragmented.  

There are two fundamental reasons why range level 
defragmentation can be advantageous. First, fragmentation 
may not be uniform across an entire index. It is common to 
have updates that are skewed towards certain key ranges of 
the indexes compared to other ranges. Thus, the fragmentation 
in the index can also be skewed. In such cases, defragmenting 
the range with large fragmentation may be adequate. Second, 
the workload may be skewed. For example, if most queries in 
the workload access a certain range of an index, then 
fragmenting that range may be sufficient.  

In Section IV.A, we first outline the desirable properties 
that any range-level index defragmentation should possess. In 
Section IV.B we present a range-level index defragmentation 
method and show that it satisfies the desirable properties.  

 
 
 

A. Requirements for Range-Level Index Defragmentation 
Consider a query that scans a range r of a given index I. We 
use NumIOs(r, I) to denote the number of I/Os required for the 
range scan r on index I. We present three key requirements 
that are desirable for any range-level defragmentation method.  

Equivalence: The number of I/Os required for a query that 
scans exactly the defragmented range should be the same as 
though the full B+-Tree was defragmented. This requirement 
ensures that range-level defragmentation does not compromise 
I/O performance when compared to defragmenting the full 
index. Using the notation above, we can express the 
correctness requirement as:  

NumIOs(r, Reorg(I, {r}) = NumIOs(r, Reorg(I)) 
Stability: Intuitively, this means that for any range that we 
have already defragmented, we do not want the 
defragmenting of a different range on the same index to “undo” 
the performance benefits. For example, suppose we 
defragment a range r1, and suppose the number of I/Os 
required for a query that now scans r1 is n1. Now suppose we 
further defragment a range r2. The number of I/Os required for 
a query that scans r1 should still be n1. 

More formally, we can define stability as follows. 
∨ r1,r2: NumIOs(r1, Reorg(I,{r1})) = NumIOs(r1, Reorg(I1, {r2}) 
where I1 = Reorg(I, {r1}).  

 
Efficiency: The efficiency requirement states that the work 
done by the method to defragment a range should be 
proportional to the number of pages in the range.  As an 
example, consider a partitioning of the index into two logical 
ranges. Ideally, the sum of the cost of invoking the range-
defragmentation method on the two logical ranges should not 
cost significantly more than the cost of defragmenting the full 
index in a single invocation.  

B. Range-Level Index Defragmentation Method 
We now present a method for range-level index 

defragmentation that satisfies the above requirements. There 
are two key decisions that influence a range-level 
defragmentation method: (a) How the fragmentation of pages 
in the specified range r is removed.  (b) The offset, measured 
in the number of pages, at which the first page of the range r 
(after defragmentation) will be placed. Note that the rest of the 
pages of r after defragmentation will be placed contiguously 
following the first page.  

First, we observe that the equivalence and efficiency 
requirements described earlier determine how we proceed 
with respect to decision (a). In particular, our method will 
need to perform compaction and reordering of pages (see 
Section II.D) that belong to the specified range r. Thus the key 
remaining decision is (b), i.e. we need to determine the offset 
(in number of pages) from the first leaf page of the B+-Tree 
where the first page of the given range r should be placed after 
defragmentation. We use the stability requirement described 
earlier to guide our answer to this question. 

To illustrate why this decision is non-trivial, consider the 
following example of a range level index defragmentation 
scheme that does not satisfy the stability requirement. It 
always set the offset to 0 regardless of the specified range r, i.e. 
place the pages of r starting at the beginning of the B+-Tree. It 
is easy to see that this scheme satisfies the equivalence and 
efficiency requirements. However, this scheme is not stable, 
since if we now defragment another logical range r’ (e.g. it is 
non-overlapping with r), then the pages of r’ get placed 
starting at offset 0. Thus, pages in r can get swapped to 
different locations in the file, and therefore r can become 
fragmented once again. In turn, this will increase the number 
of I/Os for any query that scans r, thereby violating stability.   

1) Determining Offset 
We now describe how we determine the offset. Let p(r) 

denote the prefix range of r, i.e. logical range between the first 
key in the index and the key just preceding the first key in 
range r. For example, in the index of Figure 4, if r is the range 
[‘C’,’D’], then p(r) is the range [‘A’,’B’]. Similarly, let s(r) 
denote the suffix of range r. The following result tells us what 
offset should be used when defragmenting r in order to ensure 
stability.  

Lemma: For any range level index defragmentation scheme 
S that satisfies the equivalence and efficiency properties to be 

Figure 4. Index in Figure 1(a) after it has been defragmented for range: 
col BETWEEN ‘C’ and ‘D’  



stable, when defragmenting any range r on index I, it must use 
an offset equal to the number of pages in p(r) in the fully 
defragmented index. 

Proof:  See APPENDIX B. (Using an adversary argument). 
  

2) Efficiently Computing Offset 
Based on the above result, our range-level defragmentation 

method needs to compute the offset for a range r as the 
number of pages in p(r) (the prefix of r) in the fully 
defragmented index.  Thus the key question is how to compute 
this value efficiently. Suppose the number of pages in p(r) in 
the current index is Nc and the number of pages in p(r) in the 
fully defragmented index is Nd. Note that Nd ≤ Nc and that the 
reduction (if any) occurs only due to internal fragmentation of 
the pages in p(r). Thus: 
 ௗܰ ൌ  ܰ ൈ   ሻሻݎሺሺܴܥ 
where CR(p(r)) is the compaction ratio of p(r). This implies: 

ௗܰ ൌ   ܰ ൈ ∑ אሺೝሻே  = ∑ ݂אሺሻ   
where fp is the fullness of page p in the range p(r). Since 
computing fp requires accessing the leaf page p it can be a 
potentially expensive operation.  Thus the key challenge is to 
accurately estimate Nd without having to access each leaf 
page in p(r).  

Fortunately, the above estimation problem is amenable to 
the use of sampling. In particular, we compute fp for a uniform 
random sample of the pages in p(r) and scale up the results. 
The well-known theorem from [8] shows that the estimate 
thereby obtained is an unbiased estimator of the true value ∑ ݂אሺሻ . Thus, if ௗܰ   is an estimator of Nd, S is a uniform 
random sample of n pages in p(r), and ε is the standard error 
of the estimator, then:  

ௗܰ   ൌ ݊ܰ ൈ  ݂אௌ ߝ             ൌ ܰ ൈ ට1ܦ െ ݊ܰ√݊  

where D is the standard deviation of fp values over all pages in 
p(r). As we show in our experiments, using relatively small 
sampling fraction (such as 1%) is adequate to yield very 
accurate estimates of Nd. Thus, the offset computation can be 
made efficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3) Algorithm 

We summarize our overall algorithm for range-level index 
defragmentation in Figure 5. We first compute the offset at 
which the range will be placed. Step 2 is the compaction step, 
where the internal fragmentation for range r is eliminated, and 
Steps 3-6 eliminate external fragmentation. Observe that the 
main overheads of this method (relative to full index 
defragmentation) are incurred in Step 1. The other steps are 
necessary even in full index defragmentation. In Section VII.B 
we evaluate the efficiency and stability properties of our 
range-level index defragmentation method.  

V. ESTIMATING IMPACT OF DEFRAGMENTATION ON 
I/O COST OF QUERY 

A workload driven approach to index defragmentation 
requires the ability to quantify the impact of defragmenting 
the index on the I/O cost of a query. Since defragmenting an 
index is an expensive operation, it is important that the above 
functionality be supported without having to actually 
defragment the index and execute the query. If such a “what-if” 
analysis capability were available as an API in the DBMS, 
DBAs could benefit from it directly. For example, a DBA can 
compare two existing indexes by quantifying the impact of 
defragmenting each of them on queries in the workload. 
Furthermore, this API can also be leveraged by tools (such as 
the one we describe in Section VI) that provide automated 
recommendations for which indexes to defragment for a given 
workload of queries.  

In this section, we describe how the above “what-if” 
analysis API can be implemented in a DBMS. We first 
describe this for the special case when the full index is 
defragmented. This special case is in fact important, since 
today’s DBMSs only support full index defragmentation. We 
denote to the reduction in number of I/Os for a range scan 
query Q if index I is fully defragmented as Benefit(Q, I). 
Recall that in Section IV we introduced the idea of range-level 
index defragmentation. Thus, in the second part of this section, 
we discuss the necessary extensions to allow estimating the 
benefit for query Q if a set of ranges on I is defragmented 
(denoted by Benefit(Q, I, R)).  

A. Estimating Benefit when Full Index is Defragmented 
The benefit of defragmenting an index I on a range scan 

query Q is the reduction in the number of I/Os for Q if the 
index is defragmented, i.e.  

Benefit(Q, I) = NumIOs(Q,I) – NumIOsPostDefrag(Q, I) 
where NumIOs(Q,I) is the number of I/Os required to execute 
the range scan Q over the index I, and NumIOsPostDefrag(Q,I) 
is the number of I/Os over the defragmented index I. We now 
describe how to compute each of the terms efficiently, i.e. 
without actually defragmenting the index or executing Q.  
 

1) Computing NumIOs(Q, I) 
The key observation that enables an efficient 

implementation of NumIOs(Q, I) is that to estimate the 
number of I/Os for a range scan query we only require the 
sequence of page ids in the B+-Tree scanned by the query. 
This information is available in the index pages of the B+-

RangeDefrag(r) 
1. Estimate Nd using uniform random sampling over pages in 

p(r), i.e., the prefix of r. 
2. Traverse pages in r in logical order, and eliminate internal 

fragmentation by moving rows as needed. // compaction step 
3. O = Nd pages from the start of the B+Tree 
4. For each page p in r in logical order 
5.   If the page id of p is not already at offset O, swap p with the 

page currently at offset O 
6.   Advance O to the next physical page in the B+-Tree 
7. Return 

Figure 5. Algorithm for range-level index defragmentation 



Tree and does not require scanning the leaf pages. Since the 
ratio of index pages to leaf pages in a large B+-Tree index is 
typically very small, and the index pages of a B+-Tree are 
usually memory resident, the sequence of leaf page ids in a 
range can be obtained efficiently.  

The pseudocode for our procedure NumIOs is shown in 
Figure 6. The idea is to “simulate” the execution of the range 
scan, but without issuing the actual I/Os. We maintain a 
lookahead buffer of page ids. The goal is to identify 
opportunities to identify contiguous page ids within this buffer, 
since such contiguous pages can be fetched using a single I/O, 
thereby optimizing access to disk. The size of the lookahead 
buffer (M) can be set to a value which is an upper bound of 
the number of pages that the system will fetch in a single I/O.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The algorithm first traverses the index pages of the B+-Tree 

to identify the starting page id for the given range. Starting at 
this page id in the range, and traversing the index pages of the 
B+-Tree in logical order, we fill up the lookahead buffer P 
with page ids in the range. We then identify contiguous page 
id sequences in the sorted order of pages in P. Each time the 
contiguity is violated, we know that the query would have 
incurred an additional I/O, and we increment the counter 
appropriately. The buffer is then replenished with page ids so 
that it is filled again up to the maximum limit M.  

Our technique above can be viewed as an adaptation of 
previous work (e.g. [3][4][5]) which used information in the 
index nodes of a B+-Tree for estimating the cardinality of a 
range predicate. In our case, rather than estimating cardinality, 
we need to estimate the number of I/Os for scanning that 
range.  

2) Computing NumIOs(Q, Defrag(I)) 
Due to the semantics of the defragmentation operation 

(Section II.D) we know that once an index is defragmented, 
any range of that index will have no internal or external 
fragmentation. Thus, the main challenge in estimating 
NumIOs(Q, Defrag(I)) is to estimate the number of pages in 
the range after the index has been defragmented. We observe 
that for this purpose, we can leverage the same technique 
(based on uniform random sampling) described in Section IV. 
In this case, we invoke this technique on the pages in the 
query range. Recall that the estimator thus obtained is an 

unbiased estimator of the true number of pages in the range 
after the index is defragmented. The pseudocode for our 
procedure (called NumIOsPostDefrag) is shown in Figure 8. 
Since after the defrag operation, the logical and physical order 
of pages in the B+-Tree are identical, we know that page ids 
will be consecutive. Thus each I/O can read in the max 
number of pages (M).  

  
 
 
 
 
 
 
 
 
 
 

We note that the above two procedures may require 
adaptations to reflect specific aspects of range scans on a 
given system (e.g. we have also modeled effect of I/Os due to 
index pages); but we omit these details here. Instead, we focus 
on the core ideas of simulating the actual range scan while 
accessing only the index pages of the B+-Tree; and sampling 
of leaf pages to estimate internal fragmentation. Finally, 
similar to the cost model used in query optimizers today, the 
above procedures do not model transient effects such as 
buffering on I/Os. In principle, our cost model can be 
extended by allowing additional parameters that capture such 
effects. In our experiments (Section VII.C), we evaluate the 
accuracy and performance of the above “what-if” API in our 
implementation in Microsoft SQL Server.  

B. Estimating Benefit when a Set of Ranges is Defragmented 
Let Q be a query that scans a range of index I, and let R be 

a set of non-overlapping ranges of an index I. We will denote 
by Benefit(Q, I, R) the reduction in the number of I/Os for 
query Q if the set of ranges R is defragmented. Note that this 
generalizes the notion of Benefit(Q, I) described in Section A. 
Consider Figure 8 which shows a query Q and R = {r1, r2 and 
r3}.  

 
We can express the benefit for query Q using the following 

equation (Equation 1):  ݐ݂݅݁݊݁ܤሺܳ, ,ܫ ܴሻ ൌ ′ଵݎሺݐ݂݅݁݊݁ܤ , ሻܫ  ଶݎ൫ݐ݂݅݁݊݁ܤ  , ൯ܫ ′ଷݎሺݐ݂݅݁݊݁ܤ  , ሻܫ  ′ଵଶݎሺݏܱܫ݉ݑܰ , ሻܫ ′ଶଷݎሺݏܱܫ݉ݑܰ  , ሻܫ െ ′ଵଶݎሺݏܱܫ݉ݑܰ  , ,ܫ ܴሻെ ′ଶଷݎሺݏܱܫ݉ݑܰ  , ,ܫ ܴሻ 
Note that for the ranges of the query Q that overlap with r1, r2 
and r3, (respectively r’

1, r2 and r’
3), the number of I/Os (if the 

ranges are defragmented) can be computed as though  r’
1, r’

2 

Figure 8. Computing Benefit(Q, I, {r1,r2,r3})  

NumIOsPostDefrag(Q, I) 
1. Let r be the range of the index I scanned by query Q. 
2. Sample k% of the data pages in the logical range r and use 

fullness of sampled pages to estimate number of pages in r 
after it is defragmented (say N) 

3. Let M = max number of pages read in a single I/O 
4. n  =  N / M 
5.  Return n. NumIOs(Q, I) 

1. Let r be the range of the index I scanned by query Q.  
2. Let P be a lookahead buffer that maintains leaf page ids in 

sorted order, max M elements. 
3. n = 0; 
4. Do 
5.    Add page ids to P obtained by iterating over index pages   

     of B+-Tree in logical order until there are M page ids    
     in P or last page id in range r is encountered. 

6.    Extract from P the maximal sequence of contiguous     
     page ids at the start of P    

7.    n = n+ 1 
8. While(P is non empty) 
9. Return n. 

Figure 6. Estimating the number of I/O for a query Q that scan a 
range of index I. 

Figure 7. Estimating the number of I/Os for scanning a range of index I if 
it were to be fully defragmented.  



and r’
3 are three independent queries and the entire index were 

defragmented. However, consider the range r’
12 that is part of 

Q but is not defragmented. Observe that although the range 
r’

12 is not defragmented, its layout can change when R is 
defragmented. This is because defragmenting a range (e.g. r1) 
can require swapping pages. Some of those swaps may 
involve pages that belong to r’

12. Thus, the difference in the 
number of I/Os for this range after the set of ranges R is 
defragmented = ܰݏܱܫ݉ݑሺݎଵଶ′ , ሻܫ െ ′ଵଶݎሺݏܱܫ݉ݑܰ  , ,ܫ ܴሻ. 

There are potentially different ways to model the impact of 
defragmenting a range r on the layout of another non-
overlapping range r’. Below we mention two alternatives, 
both of which can be modeled at low overhead. In general, the 
accuracy of such models can be increased by tracking the 
layout more accurately, but more find-grained models can 
significantly increase overheads as well.  
Independence: The simplest model assumes independence 
across ranges, i.e. defragmenting r has no impact on the layout 
of  r’. In this case, in Equation 1 above: ܰݏܱܫ݉ݑሺݎଵଶ′ , ሻܫ െ ′ଵଶݎሺݏܱܫ݉ݑܰ  , ,ܫ ܴሻ ൌ 0 ′ଶଷݎሺݏܱܫ݉ݑܰ   , ሻܫ െ ′ଶଷݎሺݏܱܫ݉ݑܰ  , ,ܫ ܴሻ ൌ 0 
Thus, the benefit for the query is modeled as the sum of the 
benefits for each of the ranges r’

1, r2 and r’
3.  

Uniformity: A more general model of interaction assumes that 
the impact of defragmenting a range r uniformly impacts the 
layout of all other ranges r’. This implies that larger the range 
r’, the greater is the impact of defragmenting r on it. 
Furthermore, a conservative model will assume that the 
impact is adverse, i.e., the number of I/Os for r’ will increase 
as a result of defragmenting r. A specific formula based on 
uniformity and assuming a conservative approach is: ܰݏܱܫ݉ݑ൫ݎ′ , ,ܫ ሼݎሽ൯ ൌ ′ݎ൫ݏܱܫ݉ݑܰ  , ൯ܫ   ܰ′ ൈ  ሻݎሺܨܧ
where EF(r) is the measure of external fragmentation (defined 
in Section II.E), ܰ′  is the number of pages in r’, and N is the 
total number of pages in the index. To extend r to a set of 
ranges, we would sum up the contributions of each range in 
the set. Using the uniformity model, Equation 1 above 
becomes:  ݐ݂݅݁݊݁ܤሺܳ, ,ܫ ܴሻ ൌ ′ଵݎሺݐ݂݅݁݊݁ܤ , ሻܫ  ଶݎ൫ݐ݂݅݁݊݁ܤ  , ൯ܫ ′ଷݎሺݐ݂݅݁݊݁ܤ  , ሻܫ ሺܰభమ′  ܰభమ′ ሻܰ   ோאሻݎሺܨܧ  

VI. AUTOMATED RECOMMENDATION OF INDEXES TO 
DEFRAGMENT 

In Section V we introduced “what-if” analysis capability 
for index defragmentation, i.e. the functionality of being able 
to estimate the impact of defragmenting an index on the I/O 
performance of a range scan query. In this section, we 
describe how such “what-if” analysis capability can be 
leveraged to develop a client tool that can provide automated 
recommendations for which indexes to defragment for a given 
workload. Such a tool can be useful to DBAs, e.g. to help 
decide which indexes to defragment within a given 
maintenance batch window.  

In Section III.A we outlined the four alternative approaches 
to index defragmentation: FULL, RANGE, FULL-W, 
RANGE-W (Figure 2). Recollect that RANGE-W is the most 
general approach since it uses both workload as well as range-
level defragmentation; the other methods do not use one or 
both of these. In this section, we present an algorithm for the 
index defragmentation problem (Section III.B). This is an 
optimization problem which we showed to be NP-Hard via 
reduction to the Knapsack problem (Appendix A). Note that 
the algorithm we present below is for the general version of 
the problem where range-level defragmentation is allowed. 
Due to the above hardness result, and the similarity of our 
problem to the Knapsack problem, we use the greedy heuristic 
for Knapsack in our algorithm below. We have designed our 
algorithm in such a way that turning off or modifying certain 
steps in the RANGE-W algorithm will yield solutions for each 
of the other three alternatives.  

A. Algorithm for Recommending Indexes to Defragment 
The algorithm for recommending index ranges to 

defragment for a given workload and defragmentation cost 
budget (RANGE-W) is shown in Figure 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Steps 2-8 are responsible for candidate generation, i.e. 

identifying the space of index ranges to defragment. In 
particular, we exploit two sources of information for candidate 
generation. Steps 2-5 identifies as candidates, ranges scanned 
by queries in the workload.  Steps 6-10 introduce additional 
candidates at a finer granularity than those based on the 
workload alone. As an example, consider a query that scans an 
entire index. For this case, these additional candidates we 

RecommendIndexesToDefragment (W, B) 
W is a workload, B is a defragmentation cost budget 
1. C = {} //  Set of candidate indexes (ranges) to defragment 
2. // Identify candidates based on workload 
3. For each query Q in W 
4.   For each range scan r in Q over an index 
5.      C = C ∪ r // r is the range scanned in query Q 
6. // Identify additional candidates based on data 
7. For each index I referenced in workload 
8.   Build equi-depth histogram on leading column of index 
9.   For each bucket r in histogram that is accessed by workload 
10.      C = C ∪ r // candidate based on data-only 
11. // Compute total benefit of each candidate index range 
12. For each range r in C (say r belongs to index I) 
13.   For each query Q in W that references index I 
14.     TotalBenefit(r) += wQ×Benefit(Q, I, {r}) // use “what-if” 

API 
15. // Greedy heuristic for Knapsack 
16. BudgetUsed = 0 
17. For each range r in C in descending order of 

TotalBenefit(r)/ReorgCost(r) 
18.   If (budgetUsed + ReorgCost(r)) ≤ B) 
19.     R = R ∪ r ; BudgetUsed += ReorgCost(r) 
20.     Update benefit of ranges r′∈ C on same index as r //  
             handle interactions 
21. Return R 

Figure 9. Algorithm for recommending index (ranges) to defragment for a 
given workload and defragmentation cost budget (RANGE-W). 



introduce are important since they can take advantage of 
range-level index defragmentation.  We identify logical ranges 
of approximately equal width for the ranges accessed in the 
workload. We use an equi-depth histogram for identifying 
these ranges. Such a histogram may already be present in the 
database, and if not, we construct one. Note that approximate 
equi-depth histograms can be efficiently computed using a 
uniform random sample of pages of the index (e.g. [6]). 
Optionally, for efficiency purposes only, we can prune out 
candidates with very low fragmentation below a threshold.   

In Steps 11-14, we compute for each candidate range its 
total benefit for all queries in the workload (taking into 
account the weight of each query). This step leverages the 
“what-if” API described in Section V. Steps 15-20 implement 
the greedy heuristic for the Knapsack problem.  Note that Step 
20 needs to be invoked only if the “what-if” API models 
interactions across ranges within an index (e.g. using the 
uniformity assumption as described in Section V.B). For 
example if the independence assumption is used, then Step 20 
can be skipped. The worst case running time of the algorithm 
in O(n×m + m×log(m)), where n is the number of queries in 
the workload and m is the number of indexes.  

We observe that the FULL-W solution can be obtained by 
modifying: (a) Step 5 in the above algorithm to add the full 
index instead of range r. (b) Omitting Steps 6-10 that 
introduce finer grained candidate ranges based on data only. 
Similarly, to obtain the RANGE algorithm (which does not 
consider the workload) we: (a) Omit Steps 2-5 (b) Modify 
Steps 6-11 so as introduce candidates for all indexes rather 
than those referenced in the workload. (c) Modify Steps 11-14 
so that the TotalBenefit(r) for a candidate range is Benefit(r, I, 
{r}), i.e. the benefit obtained for a range scan on r itself (and 
not queries in the workload). To obtain FULL, we use the 
same modifications as in RANGE, except that we also skip 
introducing candidates based on the histogram and only 
introduce one candidate per index.  

VII. EXPERIMENTS 
We have implemented: (1) The range-level index 

defragmentation API (Section IV); (2) The “what-if” API 
(Section V) in the storage engine of Microsoft SQL Server 
2008; (3) A client tool for recommending which indexes to 
defragment for a given workload (Section VI). We have 
implemented all four approaches: FULL, FULL-W, RANGE, 
RANGE-W. In this section, we present the results of our 
experimental evaluation on both real world and synthetic 
databases.  

A. Databases and Workloads 
We use a real world database and a synthetically generated 

database for our experiments. The real world database (we 
will refer to it as REAL) is used by an internal customer, and 
is used to track business listings. The database is about 11GB; 
we use the largest table which has around 10 million rows 
with 16 non-clustered indexes on it. We note that the indexes 
were already fragmented to different degrees (and we did not 
alter this in our experiments). For these indexes the external 

fragmentation varied from around 20% to 90+% and internal 
fragmentation varied from around 10%-30%.  

We also use the synthetic database (SYNTHETIC) since it 
allows us to systematically vary relevant parameters for our 
experiments: amount and skew of fragmentation, number of 
indexes etc. The size of the database varied between 1GB to 
10GB depending on the specific experiment. 

Finally, we also generated queries in a controlled manner 
so that we could vary the number of queries in the workload, 
the width of the ranges (from small ranges to full index scans), 
the skew in the workload etc.  The experiments were run on a 
Windows Server 2008 machine with 4 processors and 8GB 
RAM, and an external disk drive. All results reported below 
are with a cold buffer. 

B. Efficiency and Stability of Range-Level Defragmentation 
1) Efficiency 

To study the efficiency of our range-level index 
defragmentation method (Section IV.A), we selected several 
indexes from the real world database. For each index, we 
logically partition the index into k logical ranges on the 
leading column of the index, i.e. the partitions together cover 
the full index. We varied k over the values: 1, 2, 4, 8, 16. 
Observe that k = 1 corresponds to full index defragmentation 
and k = 16 means we defragment each of the 16 ranges using 
range-level index defragmentation. We measured the total 
time in each case. We found that the overhead for 
defragmenting 16 ranges as compared to the full index was 
between 4%-7%. The overheads for defragmenting for fewer 
than 16 ranges was even smaller (e.g. for k=4 it is between 
2%-5%). This confirms our expectation that our range-level 
index defragmentation scheme is efficient, i.e., it takes time 
proportional to the size of the range.  
2) Stability 

On the REAL database, we verified stability (Section IV.A) 
of our range-level index defragmentation scheme on several 
different indexes. For each index we generated an index range 
(say r) at random and defragmented that range. We then 
measured the actual number of I/Os required to scan r (say n1). 
Next, we selected another range r′ on the same index (also at 
random), and defragmented r′. We again measured the actual 
number of I/Os required to scan r (say n2). We compared n1 
with n2. For each index we repeated this test for different 
combinations of (r, r′). We found that in almost all cases n1 
and n2 were either identical. In some cases, they differed by 
very few I/Os which are due small errors in estimating the 
offset using sampling (Section IV.B). This experiment shows 
that our scheme satisfies our definition of stability.  

C. Evaluation of “What-If” API 
In this experiment we evaluate the accuracy of the “what-if” 

API by comparing the I/Os estimated by the API against the 
actual number of I/Os. For 4 indexes each on REAL and 
SYNTHETIC, we generate several different range scan 
queries by selecting ranges at random (total of 32 queries). 
For each such query, we estimate the number of I/Os if the 
index is defragmented using the API in Section V). We then 



defragment the index and measure the actual number of I/Os 
for the query. The scatter plot in Figure 10 shows that the 
estimated number of I/Os vs. actual number of I/Os for each 
query. The line fit on the chart using linear regression has an 
R2 value of 0.98, indicating that our API is able to model the 
actual number of I/Os reasonably accurately. In particular, this 
experiment suggests that our API can be used effectively to 
compare benefits of defragmentation between different range 
scans.  

 
 
 
 

 
 

 
 
Next, we drill-down into the specific issue of accuracy of 

estimating the internal fragmentation of a given range using 
uniform random sampling over the leaf pages of the B+-Tree 
in that range (Section IV.B.2). Recollect that this method is 
necessary for range-level defragmentation (to estimate the 
offset), as well as for the “what-if” API to estimate the number 
of I/Os if an index is defragmented. Figure 11 shows that the 
accuracy of estimating internal fragmentation using sampling 
improves rapidly as the sampling percentage is increased. In 
particular, at 1% sampling, the estimation error becomes very 
small (<1%). This experiment shows that sampling is an 
effective approach for estimating the internal fragmentation of 
a range of leaf pages in a B+-Tree. 

D. Comparison of Approaches for Automated Index 
Defragmentation 

1)  Varying Budget   
For the REAL database, we generate a workload of 8 queries 
where the ranges are selected at random. We fix the number of 
indexes scanned by the workload to 4. We vary the budget 

(measured in units of ReorgCost cost model as described in 
Section III) for defragmenting indexes from 2K units to 100K 
units and measure the I/O benefit for each method.  

 
 

Figure 12 shows that RANGE-W performs the best across all 
budgets; and in particular is significantly better than all other 
alternatives for small defragmentation cost budget values. 
Also, note that the percentage reduction in I/Os is very 
significant (up to 60%). We see that between RANGE and 
FULL-W there is no clear winner: as the budget increases 
FULL-W starts performing better since it is able to select 
more (full) indexes to defragment which help improve 
workload performance. In contrast RANGE picks index 
ranges that have no benefit for the workload. Nevertheless, at 
lower budgets, RANGE can still be more effective than 
FULL-W, since some ranges picked do help the workload. 
Not surprisingly, all techniques perform as well or better than 
FULL; thus we do not consider FULL in other experiments.  

 
 

2)  Varying Number of Indexes referenced 
We generated 8 workloads (W1..W8), where workload Wi 

performs full scans over i indexes. We fix a small defrag 
budget (8K units). Thus as the number of indexes referenced 
increases, the fixed budget becomes smaller as a percentage 
of the total cost of defragmenting all indexes referenced. Thus 
we expect the % benefits to decrease as number of indexes 
referenced increases. Figure 13 shows that across all points, 
RANGE-W gives the largest percentage reduction in I/Os. 
FULL-W performs better than RANGE when a small subset 
of indexes (e.g. for W1) is referenced because it is able to pick 
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Figure 10. Accuracy of “what-if” API in estimating I/Os after 
defragmentation.  

Figure 11. Estimation error for internal fragmentation vs. Sampling 
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Figure 13. Benefit vs. Number of indexes scanned(fixed defrag budget) 

Figure 12. Benefit for workload vs. defragmentation cost budget.  



within the small budget the index that is referenced, whereas 
RANGE selects indexes based purely on fragmentation 
statistics. However, as the number of indexes referenced 
increases, the ranges selected by RANGE start to benefit some 
of the queries in the workload. Since FULL-W can only pick a 
few full indexes to defragment (due to small budget), RANGE 
does better in some cases (e.g. W8). This experiment shows 
that while RANGE-W is the best alternative, both RANGE 
and FULL-W can be effective in certain cases, and neither is 
always better than the other.  

3)  Importance of Range-Level Index Defragmentation 
In our next experiment, we use the SYNTHETIC database, 

and generate indexes with the following property: in index Ik a 
logical range that covers k% (k=30,70, 90) of the pages in the 
index is injected with a very large amount (EF = 0.99) of 
external fragmentation. Thus, smaller the k value, the more 
localized (“skewed”) is the fragmentation. For each index, we 
generate a workload consisting of a single query that scans the 
entire index.  

 
 
 
From Figure 14 we see that when the fragmentation is most 

localized (k=30), the percentage reduction in I/Os for the 
workload is significant even for low budget values. Note that 
since the workload is a scan of the full index, in this case the 
candidates based on workload alone (Steps 2-5 in Figure 9) 
are not adequate. Thus, this experiment shows that RANGE-
W’s strategy of identifying candidates based on data (Steps 6-
10) helps significantly since it is able to take advantage of 
range-level index defragmentation. We observe similar results 
for other values of k as well.  

E. Scalability of RANGE-W Algorithm 
In our final experiment, we evaluate the scalability of 

RANGE-W algorithm with increasing workload size (on the 
REAL database). We generate different workloads of size 50, 
100, 250, 500 distinct queries; and measure the running time 
and number of “what-if” API calls issued by the algorithm. 
We plot these numbers as a ratio relative to the 50 query 
workload case. We observe from Figure 15 that the running 
time and number of “what-if” API calls made by RANGE-W 
both grow sub-linearly with the number of queries. The 
number of “what-if” API calls increases by a factor of about 
8.5 (between 50 and 500 queries), and the running time 
increases by only a factor of 4. This confirms our expectation 

that RANGE-W scales well in practice. Finally, we note that 
even in absolute terms the running time is reasonable (e.g. for 
the 500 query case the running time is 967 seconds, and the 
number of API calls is 740). 

 
 
 

VIII. RELATED WORK 
The authors of [9] show that fragmentation can have a 

significant impact on I/O performance of range scan queries, 
which are common in decision support workloads. These 
results can be viewed as motivation for our work. All 
commercial DBMSs support APIs to collect fragmentation 
statistics about a B+-Tree index including measures of 
internal and external fragmentation. These are aggregate 
statistics over the full B+-Tree. They also support the ability 
to defragment (rebuild and reorganize) an existing B+-Tree. 
However, we are not aware of any DBMS that supports range-
level index defragmentation in a B+-Tree (Section IV). 
Similarly, no DBMSs today support an API for estimating the 
impact of defragmentation on I/O performance (Section  V).  

The state-of-the-art approaches for index defragmentation 
rely on using fragmentation statistics of an index. As we have 
shown in this paper, workload driven approaches can perform 
significantly better. We have also shown that using range level 
defragmentation can greatly increase effectiveness.  

The idea of leveraging the workload for performance 
tuning problems such as physical database design (e.g. 
[1][9][13]), statistics selection (e.g. [7][10]), histogram 
refinement and cardinality estimation (e.g. [1][13]) etc. has 
been studied previously. However, techniques for studying 
how to exploit workload information for the index 
defragmentation problem have not been studied previously.  

Our technique for estimating the number of I/Os for a range 
scan query over a B+-Tree index (Section V) leverages 
information in the index pages of the B+-Tree. This technique 
can be viewed as an adaptation of previous work (e.g. 
[3][4][5]) which used information in the index nodes of a B+-
Tree for estimating the cardinality of a range predicate. 

IX. CONCLUSION AND FUTURE WORK 
We have presented novel techniques relating to index 

defragmentation: a “what-if” analysis API in the database 
engine for estimating the impact of defragmenting an index on 
I/O performance; range-level index defragmentation; 
formalization and hardness of the index defragmentation 
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Figure 14. Benefit vs. budget for varying amount of fragmentation 



problem, and a scalable algorithm for the problem. Our 
experiments on real and synthetic databases in Microsoft SQL 
Server demonstrate the promise of our techniques. 

In this paper we have adopted an offline model where the 
DBA needs to specify a workload and decide when to 
implement the recommendations. The problem of online index 
defragmentation, i.e. “closing the loop” automatically, is an 
interesting area of future work.  Finally, the question of how 
index fragmentation affects performance for other forms of 
stable storage besides disks also remains unanswered. 
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APPENDIX A 
We show hardness for a special case of the Index 

Defragmentation problem (defined in Section III.B), where: (a) 
ReorgCost(I) = NI, the number of pages in index I. (b) The 
reduction in I/O cost is obtained by eliminating internal 
fragmentation only, i.e.,(there is no external fragmentation) . 
Thus Benefit(Q, I) = (1 – CR(I)). NumPagesScanned(Q, I), 
where CR(I) (0 < CR(I) ≤ 1) is the compaction ratio for index 
I, and NumPagesScanned(Q, I) is the number of pages of 
index I scanned by query Q. 
Claim: The Index Defragmentation Problem is NP-Hard.  
Proof: By reduction from the Knapsack problem.  
Knapsack problem: Given a set of n items S, where each 

element s ∈ S has Value(s), Weight(s), and a knapsack size B; 
pick a subset K ⊆ S such that ∑s∈K Weight(s) ≤ B and ∑s∈K 
Value(s) is maximized. 

Given an instance of the Knapsack Problem, we generate 
an instance of the Index Defragmentation Problem as follows. 
For each item s ∈ S, we create a table with a single column, 
and we define a clustered index on that column. We also 
generate one query per item s, which performs a full scan of 
the clustered index. We insert data into the table such that the 
number of pages in the index is Weight(s). We ensure that the 
compaction ratio C of the index and weight w of the query that 
scans the index, are set such that the following equation is 
satisfied.  ܸ݈ܽ݁ݑሺݏሻ ൌ ݓ  ൈ ሺ1 െ ሻܴܥ  ൈ  ሻݏሺݐ݄ܹ݃݅݁

In general there are multiple solutions of w and CR that can 
satisfy the above equation. One such solution is as follows: If 
the ratio ௨ሺ௦ሻௐ௧ሺ௦ሻ   1  , we set w = 1and CR = ሺ1 െ ௨ሺ௦ሻௐ௧ሺ௦ሻሻ. If ௨ሺ௦ሻௐ௧ሺ௦ሻ   1, we set w = 2 ൈ ቒ ௨ሺ௦ሻௐ௧ሺ௦ሻቓ, and 

CR = ௨ሺ௦ሻௐ௧ሺ௦ሻൈଶൈቒ ೇೌೠሺೞሻೈሺೞሻቓ . Observe that in both cases we 

ensure 0 < CR ≤ 1.  
By the above construction, the defragmentation cost of the 

index Is corresponding to item s = NumPages(Is) = Weight(s). 
Note also that the Benefit(Qs, Is) = w.(1 – CR). 
NumPagesScanned(Qs, Is) = w. (1-CR) . NumPages(Is) = 
Value(s).  

Thus, solving the above instance of the Index 
Defragmentation problem with a defragmentation budget B is 
a solution to an arbitrary instance of the Knapsack problem.  

APPENDIX B 
Lemma: For any range level index defragmentation scheme 

S that satisfies the equivalence and efficiency properties to be 
stable, when defragmenting any range r on index I, it must use 
an offset equal to the number of pages in p(r) in the fully 
defragmented index.   

Proof:  We show this by using an adversary argument. The 
adversary constructs an index where there is external 
fragmentation but no internal fragmentation. Defragmenting 
requires only reordering pages but no compaction. In this case, 
the number of pages in the index is the same before and after 
defragmentation (let this value be N). The adversary first 
picks a range r1 for defragmentation such that |p(r1)| = |s(r1)| = 
k; i.e. there are k pages in the prefix as well as suffix of range 
r. Observe that due to the above construction, k is the number 
of pages in p(r) after I is defragmented as well. Now, suppose 
the scheme S uses offset k’ (≠ k) when defragmenting r. If 
k’<k, the adversary chooses the next range to defragment as 
p(r). Since there k pages in p(r) are at least one page 
belonging to r is in the first k pages of the B+-Tree, this 
means that at least one page of r will be swapped out of its 
location when p(r) is defragmented. This violates stability 
since because is S efficient, it cannot correct such 
fragmentation by reorganizing r. Similarly, if k’>k, the 
adversary chooses s(r) to defragment, and once again this 
violates stability.  
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