
Workload Driven Index Defragmentation
Vivek Narasayya, Manoj Syamala

 Microsoft Research
One Microsoft Way, Redmond, WA, USA.

viveknar@microsoft.com

manojsy@microsoft.com

Abstract—Decision support queries that scan large indexes can
suffer significant degradation in I/O performance due to index
fragmentation. DBAs rely on rules of thumb that use index size
and fragmentation information to accomplish the task of
deciding which indexes to defragment. However, there are two
fundamental limitations that make this task challenging. First,
database engines offer little support to help estimate the impact
of defragmenting an index on the I/O performance of a query.
Second, defragmentation is supported only at the granularity of
an entire B+-Tree, which can be too restrictive since
defragmentation is an expensive operation. This paper describes
techniques for addressing the above limitations. We also study
the problem of selecting the appropriate indexes to defragment
for a given workload. We have implemented our techniques in
Microsoft SQL Server and developed a tool that can provide
appropriate index defragmentation recommendations to DBAs.
We evaluate the effectiveness of the proposed techniques on
several real and synthetic databases.

I. INTRODUCTION
Decision support queries often require scans of large

indexes. When data is inserted or updated, indexes on that
table can get fragmented due to page splits in the B+-Tree.
There are two kinds of index fragmentation, both of which can
have significant impact on I/O performance of a query.
Internal fragmentation occurs when a leaf page of an index is
only partially filled, thus increasing the number of pages that
need to be scanned. External fragmentation occurs when the
logical order of leaf pages in the B+-Tree differs from the
physical order in which the pages occur in the data file,
thereby increasing the number of disk seeks required. Thus,
compared to an index that is not fragmented, both internal and
external fragmentation can result in more I/Os for queries that
scan the index. For example, the article [12] shows that
fragmentation can reduce the I/O performance of decision
support queries significantly (e.g. by a factor of 5 in the
execution time).

Today’s relational database management systems (DBMSs)
support mechanisms for an index to be defragmented.
Defragmenting an index consists of compacting pages to
reduce internal fragmentation, as well as reordering pages to
reduce external fragmentation. Index defragmentation is a
heavyweight operation that can itself incur significant I/O cost,
and must therefore be invoked judiciously. The responsibility
of deciding which indexes in the database to defragment
typically falls on a database administrator (DBA). To assist
DBAs in this task, DBMSs expose mechanisms for reporting
information about the current fragmentation of each index,

including measures of internal and external fragmentation. We
refer to techniques that rely only on the fragmentation
information for deciding which indexes to defragment as data-
driven approaches. Since it is usually not possible to
defragment all indexes within a typical batch window (e.g. a
few hours at night), DBAs today use rules of thumb to select
which indexes to defragment, e.g. select indexes that are most
fragmented.

We observe two key limitations with the state-of-the-art in
index defragmentation. First, the granularity at which index
defragmentation is supported is the full B+-Tree, which can
very expensive for large indexes. In many cases, the
fragmentation may not be uniformly distributed across the
B+Tree. For example, consider a clustered index on the
OrderDate column of a large fact table that stores order
information. As new data is inserted into the fact table, the
B+-Tree gets fragmented. However, it is often the case that
many of the queries referencing only recent data (e.g. last
month or last quarter). The performance benefit from
defragmenting the index only arises for ranges scanned by
queries. Thus the ability to perform index defragmentation for
a specified logical range on the key column of a B+-Tree (e.g.
OrderDate > ‘06/30/2009’) can potentially provide most of
the benefits of defragmenting the full index but at a much
lower cost. We refer to this capability as range-level index
defragmentation.

A second limitation is that while data-driven approaches to
index defragmentation are easy to understand and implement,
a purely data-driven approach can suggest defragmenting
indexes that have little or no impact on query performance.
This is because they ignore potentially valuable workload
information, i.e. information about queries that scan the index.
Using workload information can be crucial in large data
warehouses consisting of hundreds of indexes, which is
typical in enterprise applications. While leveraging workload
information can be important, there are a couple of key
challenges which make it difficult for DBAs to exploit
workload information for index defragmentation. First, it is
difficult to estimate the impact of defragmenting an index on
the I/O performance of a query that scans that index. Naturally,
it is important to estimate the impact without actually
defragmenting the index. Such “what-if” analysis of impact of
defragmentation on query I/O performance is an essential
component for enabling a workload driven approach to index
defragmentation. Second, even if the above “what-if” analysis
functionality is available, selecting which indexes to

defragment for large databases (with many indexes) and
workload (with many queries) can be non-trivial.

Despite the importance of index defragmentation, to the
best of our knowledge, there is no prior published work that
addresses the above challenges. Effective solutions to these
problems can greatly reduce the DBA’s burden and hence the
cost of administering a DBMS. This paper makes the
following contributions. First, we introduce the novel idea of
range-level index defragmentation and describe the desirable
properties that any range-level index defragmentation scheme
should satisfy. We present a scheme that meets these
requirements (Section IV). Second, we describe an API in the
DBMS engine for efficiently supporting “what-if” analysis of
the impact of defragmenting an index (or a range of the index)
on a given query (Section V). Third, we formally define the
problem of selecting an optimal set of indexes (or index
ranges) to defragment, and show that this problem is
computationally hard. We present an algorithm that, given a
database, a workload of SQL queries, and a budget for the
cost of defragmenting indexes, can automatically recommend
which indexes (or index ranges) should be defragmented
(Section VI). Finally, we have implemented the functionality
described above in a commercial database system: Microsoft
SQL Server 2008. We present results of experiments on both
real and synthetic databases that highlight: (a) The importance
of exploiting workload information for index defragmentation;
(b) The advantages of range-level index defragmentation
compared to full index defragmentation; (c) The effectiveness
of our techniques for automatically recommending which
indexes to defragment.

We begin by first reviewing (in Section II) the kinds of
index fragmentation that can occur in a B+-Tree, the impact of
fragmentation on I/O performance, and mechanisms for
defragmenting an index. Section III formalizes the index
defragmentation problem, outlines alternative approaches, and
describes the architecture of our solution

II. PRELIMINARIES
We present the types of index fragmentation, their impact

of I/O performance of a query, and mechanisms for index
defragmentation.

A. Index Structures
All modern databases support index structures for speeding

up access to data. An index I is defined by a sequence of
columns on a given table or materialized view. In this paper,
we assume that indexes are stored as B+-Trees. In general,
when an index is partitioned, each partition of the index is
stored as a separate B+-Tree. For ease of exposition, we
assume that each index has only one partition; however the
techniques in this paper carry over to the case of multiple
partitions as well. Thus in this paper we will use the terms
index and B+-Tree interchangeably.

Note that in a B+-Tree, the leaf pages form a linked list
where each leaf page points to the next leaf page in the logical
order of keys in the index. This makes range queries that scan
the index more efficient. Figure 1 (a) shows the leaf pages of

a B+Tree as a singly linked list. In general, the leaf pages are
often connected via a doubly linked list which can improve
the efficiency of both ascending and descending order range
queries.

B. Index Fragmentation
When an index is first built, there is little or no fragmentation.
Over time, as data is inserted, deleted and updated, index
fragmentation can increase due to B+-Tree page splits. There
are two important types of fragmentation in an index.

1) Internal Fragmentation: Occurs when pages in the index
are not filled to their maximum limit. The maximum limit can
be specified by the DBA. The system usually sets a default
(e.g. 0.85). Without loss of generality, in this paper we will
assume a fill factor of 1.0 for simplicity of exposition. Our
techniques and results carry over for any given value of fill
factor. Consider the index shown in Figure 1(a). If we assume
that each page holds 4 rows, then all pages in the index have
internal fragmentation since each page has unused space page.

2) External Fragmentation: Occurs when leaf pages of the
index are not in logical order. This can happen for instance
when new data is inserted into a page that does not have
sufficient space to hold the new row. This causes a B+-Tree
split and a new page to be allocated which causes the pages to
be out of order. Consider the index shown in Figure 1(a). The
logical order of the pages in the B+-Tree, which can be
obtained by following the B+-Tree pointers is: 101, 106, 103,
102, 105, 104. The physical order of pages in the B+-Tree is
101, 102, 103, 104, 105, 106. Since these two orders are not
identical, the index has external fragmentation.

C. Impact of Index Fragmentation on Query Performance
Index fragmentation can significantly affect I/O

performance of queries that scan the index. Internal
fragmentation results in more pages than necessary to store
the data. This implies more I/Os required to scan the index.
When there is external fragmentation, the physical order of
pages in the data file does not match the logical order of pages
in the B+-Tree. In this case, more I/Os must be issued to seek

Figure 1. (a) Leaf nodes of a B+-Tree with internal and external
fragmentation. (b) B+-Tree after it is defragmented.

to different locations in the file. There are a few situations in
which index fragmentation has little on no impact on query
I/O performance. First, if the query is doing a lookup that
requires accessing only a single leaf page of the index, then
fragmentation has no impact. Such queries are common in
OLTP workloads. Second, when (some of the) leaf pages of
the index required by the query are already resident in the
DBMS buffer pool, fewer I/Os on the index are required.
Hence the impact of fragmentation on I/O performance of the
query is reduced.

D. Index Defragmentation
There are two commonly used approaches available for

defragmenting an index: (a) Rebuild (b) Reorganize.
Rebuilding an index involves the same process as creating

an index. It requires a full scan and sort of the rows on which
the index is defined. The DBMS then allocates and writes out
the pages of the index. Each leaf page is filled (modulo the
specified fill factor) and thus there is no internal
fragmentation. Since the pages are written to the file
sequentially in logical order, there is also no external
fragmentation.

In contrast to rebuilding, reorganizing an index (we refer to
this operation as Reorg) is an in-place operation and therefore
does not require additional space. In the first phase (the
compaction phase), internal fragmentation is removed by
moving rows across pages. For example, in Figure 1(a), the
two rows with value A from page 106 are moved to page 101
during the compaction step. Thus the number of pages in the
index can reduce. In the second phase (the swap phase), the
pages that remain after the compaction step are reordered via a
series of page swaps so that the logical order of pages in the
B+-Tree agrees with the physical order of pages in the data
file.

Finally, although Rebuild and Reorg incur different costs,
both are heavyweight operations that can involve a significant
number of I/Os. In this paper, when we refer to
defragmentation we will mean the Reorg operation. The
techniques described in this paper, except Section IV, apply to
both operations. In principle, the ideas of Section IV can also
be extended for Rebuild, although we do not focus on that in
this paper.

E. Definitions and Notation
Index Layout: We define the layout of an index to be the
sequence of (pid, c) values of the leaf pages of the index in
logical order; where pid is the page id of the leaf page, and c
is the fraction of used space within the page. Thus assuming
each page can hold 4 records, the layout for the index I in
Figure 1(a) is: <(101, 0.5),(106,0.75),(103,0.75), (102,0.5),
(105,0.5), (104,0.25)>.

NI: Denotes number of pages in index I.

Reorg(I): Denotes the index that results by executing the
reorganization operation for index I.
Compaction Ratio: The compaction ratio is a measure of the
internal fragmentation of an index. It is the number of pages in

the index if it is defragmented to the number of pages in the
index currently. We denote the compaction ratio for an index I
by CR(I). Note that 0 < CR(I) ≤ 1. CR(I) = 1 implies the index
has no internal fragmentation, whereas a value close to 0
implies large internal fragmentation. Note that compaction
ratio can be written using the above notation as: ܴܥሺܫሻ ൌ ோܰሺூሻூܰ

External Fragmentation: EF(I) denotes a measure of external
fragmentation of an index. EF(I) is the ratio of the number of
fragments (non-contiguous of page sequences) in the index I
to the total number of pages in the index.

ReorgCost(I): Denotes the cost of executing Reorg(I) as
determined by a cost model. The main purpose of this cost
model is to help differentiate (i.e. compare) defragmentation
costs across different indexes. In this paper we use a cost
model that captures the I/O cost of this operation. In particular
we model the cost of defragmenting an index I using the
Reorg operation using the following formula:

ሻܫሺݐݏܥ݃ݎܴ݁ ൌ ݇ଵ ூܰ ݇ଶ ூܰ൫1 െ ሻܫሺܴܥሻ൯ ݇ଷܫሺܴܥ ூܰܨܧሺܫሻ
The first two terms in the above formula represents the cost

of removing internal fragmentation. This involves scanning
the leaf pages of the index to detect the amount of internal
fragmentation, moving rows to fill pages, and removing
unused pages (which is proportional to the amount of internal
fragmentation). The final term represents the cost of removing
external fragmentation. This step needs to work on CR(I)×NI
pages, since this is the number of pages remaining after
internal fragmentation is removed. The cost of this step
depends on the degree of external fragmentation EF(I). We
have set the constants k1, k2, and k3 by calibrating this cost
model for our system (Microsoft SQL Server).

Index Ranges: As mentioned earlier, in this paper we will
consider defragmenting logical ranges of an index. A logical
range of an index is a range predicate on the leading column
of the index. For an index with the leading column OrderDate,
an example of a logical range is ’06-30-2009’ ≤ OrderDate
≤ ’09-30-2009’. In general, it is possible to defragment a set
of logical ranges R of an index. We will use Reorg(I, R) to
denote that the set of ranges R of index I are defragmented.
Reorg(I) is shorthand that denotes the special case where the
full index is defragmented.

Workload: We define a workload W as a set of SQL query
and update statements, where each statement has an associated
weight. Thus W = {(Q1, w1), … (Qn, wn)}, where Qi is the
SQL statement, and wi is the weight. For example, the weight
can represent the frequency of a query. All DBMSs have
mechanisms to collect the workload by monitoring the
statements that execute against the database server (e.g. in
Microsoft SQL Server, the Profiler provides this functionality).

III. INDEX DEFRAGMENTATION PROBLEM

A. Approaches to Index Defragmentation
As described in Section II defragmenting an index is an

expensive operation. Furthermore, in many data warehouses,
there are a large number of indexes which may be fragmented.
DBAs typically have a limited time budget for defragmenting
indexes (e.g. a nightly batch window). Thus, it is often not
possible to defragment all indexes in the database.

In approaching the problem of deciding which indexes in
the database to defragment, there are two orthogonal
considerations: (a) Whether to leverage workload information
or not. (b) Whether to allow range-level index
defragmentation or not. Leveraging the workload can be
important since we would like to pick indexes to defragment
that have the most benefit on the I/O performance of the
workload. Considering range-level index defragmentation is
important since fragmentation can be skewed across different
logical ranges of the index. Thus, defragmenting a logical
range can potentially provide significant benefit for queries
while incurring a small fraction of the cost of fully
defragmenting the index. Thus, the four alternative
approaches to index defragmentation are shown in Figure 2.

Full index defrag,
Data only
(FULL)

Range defrag,
Data only
(RANGE)

Full index defrag,
Data + Workload

(FULL-W)

Range defrag,
Data + Workload

(RANGE-W)

FULL: This is a data-driven approach that only considers
defragmenting the full index. In this approach, DBAs rely on
APIs exposed by the DBMS that return measures of internal
and external fragmentation for a B+-Tree (e.g. those
mentioned in Section II.E). Typically, DBAs use rules of
thumb/best practices to decide which indexes to defragment
(e.g. indexes with the largest fragmentation).
FULL-W: This approach uses both data (i.e. fragmentation
statistics of the index) as well as workload information.
However, similar to FULL, it constrains that the entire index
must be defragmented.
RANGE: This is similar to FULL in that it is a purely data-
driven approach, but it leverages the ability to defragment a
range of an index. Thus, it is strictly more general than FULL.
RANGE-W: The most general option that uses index
fragmentation statistics as well as workload; and also
leverages the ability to defragment a range. It uses strictly
more information than both FULL-W and RANGE.

B. Problem Definition and Hardness
We now formally define the index defragmentation problem,
and show that it is NP-Hard.

Index Defragmentation Problem: Given a database with a
set of indexes S = {I1, … In}, a workload W = {(Q1,w1), …

(Qm,wm)}, where each Qi is a query, and wi is the weight of
query Qi. For each index Ij the cost of defragmenting the index
is ReorgCost(Ij). The benefit of defragmenting index Ij on
query Qi is Benefit(Qi, Ij). Given a defragmentation cost
budget of B, find a subset D ⊆ S to defragment such that: ݓ ൈ ሺݐ݂݅݁݊݁ܤ ܳ , ݀ሻୀଵௗא

is maximized, subject to the constraint: ሺ݀ሻݐݏܥ݃ݎܴ݁ אௗ

Claim: The Index Defragmentation Problem is NP-Hard.
Proof: See APPENDIX A. The reduction is from the
Knapsack problem[11].

The above definition of the index defragmentation problem
assumes the full index is defragmented. However, the
formulation extends in a straightforward manner for the case
when range-level index defragmentation is possible.

C. Architecture Overview
The architecture of our solution to the index

defragmentation problem is shown in Figure 3. We propose
the following two key extensions to the storage engine of the
DBMS: (a) Ability to perform range-level index
defragmentation (Section IV). (b) A “what-if” API for
estimating the impact of defragmenting an index (in general, a
set of ranges of an index) on a given query (Section V). We
also propose a client tool (an “Index Defragmentation
Advisor”) that can recommend a set of indexes (in general a
set of index ranges) to defragmenting for a given workload
and given budget on defragmentation cost.

IV. RANGE LEVEL INDEX DEFRAGMENTATION
As discussed in Section II, index defragmentation is a

heavyweight operation that can involve a significant amount
of I/O. However, DBMSs today only allow defragmentation
at the level of the complete B+-Tree. Therefore, it is natural to
consider whether it is possible to allow defragmentation at the
level of a logical range of the B+-Tree rather than the

Figure 2. Approaches to index defragmentation.

Figure 3. Architecture of the index defragmentation advisor tool.

complete B+-Tree. For example, for the index shown in
Figure 1(a), using range-level index defragmentation it would
be possible to specify Reorg(Ir), which specifies that only the
pages in the B+-Tree corresponding to the specified range r
(e.g. col BETWEEN ‘C’ AND ‘D’, where col is the leading
column of index I) should defragmented. After defragmenting
this range, the index would appear as shown in Figure 4.
Observe that other ranges such as col BETWEEN ‘A’ AND
‘B’ would not be defragmented.

There are two fundamental reasons why range level
defragmentation can be advantageous. First, fragmentation
may not be uniform across an entire index. It is common to
have updates that are skewed towards certain key ranges of
the indexes compared to other ranges. Thus, the fragmentation
in the index can also be skewed. In such cases, defragmenting
the range with large fragmentation may be adequate. Second,
the workload may be skewed. For example, if most queries in
the workload access a certain range of an index, then
fragmenting that range may be sufficient.

In Section IV.A, we first outline the desirable properties
that any range-level index defragmentation should possess. In
Section IV.B we present a range-level index defragmentation
method and show that it satisfies the desirable properties.

A. Requirements for Range-Level Index Defragmentation
Consider a query that scans a range r of a given index I. We
use NumIOs(r, I) to denote the number of I/Os required for the
range scan r on index I. We present three key requirements
that are desirable for any range-level defragmentation method.

Equivalence: The number of I/Os required for a query that
scans exactly the defragmented range should be the same as
though the full B+-Tree was defragmented. This requirement
ensures that range-level defragmentation does not compromise
I/O performance when compared to defragmenting the full
index. Using the notation above, we can express the
correctness requirement as:

NumIOs(r, Reorg(I, {r}) = NumIOs(r, Reorg(I))
Stability: Intuitively, this means that for any range that we
have already defragmented, we do not want the
defragmenting of a different range on the same index to “undo”
the performance benefits. For example, suppose we
defragment a range r1, and suppose the number of I/Os
required for a query that now scans r1 is n1. Now suppose we
further defragment a range r2. The number of I/Os required for
a query that scans r1 should still be n1.

More formally, we can define stability as follows.
∨ r1,r2: NumIOs(r1, Reorg(I,{r1})) = NumIOs(r1, Reorg(I1, {r2})
where I1 = Reorg(I, {r1}).

Efficiency: The efficiency requirement states that the work
done by the method to defragment a range should be
proportional to the number of pages in the range. As an
example, consider a partitioning of the index into two logical
ranges. Ideally, the sum of the cost of invoking the range-
defragmentation method on the two logical ranges should not
cost significantly more than the cost of defragmenting the full
index in a single invocation.

B. Range-Level Index Defragmentation Method
We now present a method for range-level index

defragmentation that satisfies the above requirements. There
are two key decisions that influence a range-level
defragmentation method: (a) How the fragmentation of pages
in the specified range r is removed. (b) The offset, measured
in the number of pages, at which the first page of the range r
(after defragmentation) will be placed. Note that the rest of the
pages of r after defragmentation will be placed contiguously
following the first page.

First, we observe that the equivalence and efficiency
requirements described earlier determine how we proceed
with respect to decision (a). In particular, our method will
need to perform compaction and reordering of pages (see
Section II.D) that belong to the specified range r. Thus the key
remaining decision is (b), i.e. we need to determine the offset
(in number of pages) from the first leaf page of the B+-Tree
where the first page of the given range r should be placed after
defragmentation. We use the stability requirement described
earlier to guide our answer to this question.

To illustrate why this decision is non-trivial, consider the
following example of a range level index defragmentation
scheme that does not satisfy the stability requirement. It
always set the offset to 0 regardless of the specified range r, i.e.
place the pages of r starting at the beginning of the B+-Tree. It
is easy to see that this scheme satisfies the equivalence and
efficiency requirements. However, this scheme is not stable,
since if we now defragment another logical range r’ (e.g. it is
non-overlapping with r), then the pages of r’ get placed
starting at offset 0. Thus, pages in r can get swapped to
different locations in the file, and therefore r can become
fragmented once again. In turn, this will increase the number
of I/Os for any query that scans r, thereby violating stability.

1) Determining Offset
We now describe how we determine the offset. Let p(r)

denote the prefix range of r, i.e. logical range between the first
key in the index and the key just preceding the first key in
range r. For example, in the index of Figure 4, if r is the range
[‘C’,’D’], then p(r) is the range [‘A’,’B’]. Similarly, let s(r)
denote the suffix of range r. The following result tells us what
offset should be used when defragmenting r in order to ensure
stability.

Lemma: For any range level index defragmentation scheme
S that satisfies the equivalence and efficiency properties to be

Figure 4. Index in Figure 1(a) after it has been defragmented for range:
col BETWEEN ‘C’ and ‘D’

stable, when defragmenting any range r on index I, it must use
an offset equal to the number of pages in p(r) in the fully
defragmented index.

Proof: See APPENDIX B. (Using an adversary argument).

2) Efficiently Computing Offset
Based on the above result, our range-level defragmentation

method needs to compute the offset for a range r as the
number of pages in p(r) (the prefix of r) in the fully
defragmented index. Thus the key question is how to compute
this value efficiently. Suppose the number of pages in p(r) in
the current index is Nc and the number of pages in p(r) in the
fully defragmented index is Nd. Note that Nd ≤ Nc and that the
reduction (if any) occurs only due to internal fragmentation of
the pages in p(r). Thus:
 ௗܰ ൌ ܰ ൈ ሻሻݎሺሺܴܥ
where CR(p(r)) is the compaction ratio of p(r). This implies:

ௗܰ ൌ ܰ ൈ ∑ אሺೝሻே = ∑ ݂אሺሻ
where fp is the fullness of page p in the range p(r). Since
computing fp requires accessing the leaf page p it can be a
potentially expensive operation. Thus the key challenge is to
accurately estimate Nd without having to access each leaf
page in p(r).

Fortunately, the above estimation problem is amenable to
the use of sampling. In particular, we compute fp for a uniform
random sample of the pages in p(r) and scale up the results.
The well-known theorem from [8] shows that the estimate
thereby obtained is an unbiased estimator of the true value ∑ ݂אሺሻ . Thus, if ௗܰ is an estimator of Nd, S is a uniform
random sample of n pages in p(r), and ε is the standard error
of the estimator, then:

ௗܰ ൌ ݊ܰ ൈ ݂אௌ ߝ ൌ ܰ ൈ ට1ܦ െ ݊ܰ√݊

where D is the standard deviation of fp values over all pages in
p(r). As we show in our experiments, using relatively small
sampling fraction (such as 1%) is adequate to yield very
accurate estimates of Nd. Thus, the offset computation can be
made efficient.

3) Algorithm

We summarize our overall algorithm for range-level index
defragmentation in Figure 5. We first compute the offset at
which the range will be placed. Step 2 is the compaction step,
where the internal fragmentation for range r is eliminated, and
Steps 3-6 eliminate external fragmentation. Observe that the
main overheads of this method (relative to full index
defragmentation) are incurred in Step 1. The other steps are
necessary even in full index defragmentation. In Section VII.B
we evaluate the efficiency and stability properties of our
range-level index defragmentation method.

V. ESTIMATING IMPACT OF DEFRAGMENTATION ON
I/O COST OF QUERY

A workload driven approach to index defragmentation
requires the ability to quantify the impact of defragmenting
the index on the I/O cost of a query. Since defragmenting an
index is an expensive operation, it is important that the above
functionality be supported without having to actually
defragment the index and execute the query. If such a “what-if”
analysis capability were available as an API in the DBMS,
DBAs could benefit from it directly. For example, a DBA can
compare two existing indexes by quantifying the impact of
defragmenting each of them on queries in the workload.
Furthermore, this API can also be leveraged by tools (such as
the one we describe in Section VI) that provide automated
recommendations for which indexes to defragment for a given
workload of queries.

In this section, we describe how the above “what-if”
analysis API can be implemented in a DBMS. We first
describe this for the special case when the full index is
defragmented. This special case is in fact important, since
today’s DBMSs only support full index defragmentation. We
denote to the reduction in number of I/Os for a range scan
query Q if index I is fully defragmented as Benefit(Q, I).
Recall that in Section IV we introduced the idea of range-level
index defragmentation. Thus, in the second part of this section,
we discuss the necessary extensions to allow estimating the
benefit for query Q if a set of ranges on I is defragmented
(denoted by Benefit(Q, I, R)).

A. Estimating Benefit when Full Index is Defragmented
The benefit of defragmenting an index I on a range scan

query Q is the reduction in the number of I/Os for Q if the
index is defragmented, i.e.

Benefit(Q, I) = NumIOs(Q,I) – NumIOsPostDefrag(Q, I)
where NumIOs(Q,I) is the number of I/Os required to execute
the range scan Q over the index I, and NumIOsPostDefrag(Q,I)
is the number of I/Os over the defragmented index I. We now
describe how to compute each of the terms efficiently, i.e.
without actually defragmenting the index or executing Q.

1) Computing NumIOs(Q, I)
The key observation that enables an efficient

implementation of NumIOs(Q, I) is that to estimate the
number of I/Os for a range scan query we only require the
sequence of page ids in the B+-Tree scanned by the query.
This information is available in the index pages of the B+-

RangeDefrag(r)
1. Estimate Nd using uniform random sampling over pages in

p(r), i.e., the prefix of r.
2. Traverse pages in r in logical order, and eliminate internal

fragmentation by moving rows as needed. // compaction step
3. O = Nd pages from the start of the B+Tree
4. For each page p in r in logical order
5. If the page id of p is not already at offset O, swap p with the

page currently at offset O
6. Advance O to the next physical page in the B+-Tree
7. Return

Figure 5. Algorithm for range-level index defragmentation

Tree and does not require scanning the leaf pages. Since the
ratio of index pages to leaf pages in a large B+-Tree index is
typically very small, and the index pages of a B+-Tree are
usually memory resident, the sequence of leaf page ids in a
range can be obtained efficiently.

The pseudocode for our procedure NumIOs is shown in
Figure 6. The idea is to “simulate” the execution of the range
scan, but without issuing the actual I/Os. We maintain a
lookahead buffer of page ids. The goal is to identify
opportunities to identify contiguous page ids within this buffer,
since such contiguous pages can be fetched using a single I/O,
thereby optimizing access to disk. The size of the lookahead
buffer (M) can be set to a value which is an upper bound of
the number of pages that the system will fetch in a single I/O.

The algorithm first traverses the index pages of the B+-Tree

to identify the starting page id for the given range. Starting at
this page id in the range, and traversing the index pages of the
B+-Tree in logical order, we fill up the lookahead buffer P
with page ids in the range. We then identify contiguous page
id sequences in the sorted order of pages in P. Each time the
contiguity is violated, we know that the query would have
incurred an additional I/O, and we increment the counter
appropriately. The buffer is then replenished with page ids so
that it is filled again up to the maximum limit M.

Our technique above can be viewed as an adaptation of
previous work (e.g. [3][4][5]) which used information in the
index nodes of a B+-Tree for estimating the cardinality of a
range predicate. In our case, rather than estimating cardinality,
we need to estimate the number of I/Os for scanning that
range.

2) Computing NumIOs(Q, Defrag(I))
Due to the semantics of the defragmentation operation

(Section II.D) we know that once an index is defragmented,
any range of that index will have no internal or external
fragmentation. Thus, the main challenge in estimating
NumIOs(Q, Defrag(I)) is to estimate the number of pages in
the range after the index has been defragmented. We observe
that for this purpose, we can leverage the same technique
(based on uniform random sampling) described in Section IV.
In this case, we invoke this technique on the pages in the
query range. Recall that the estimator thus obtained is an

unbiased estimator of the true number of pages in the range
after the index is defragmented. The pseudocode for our
procedure (called NumIOsPostDefrag) is shown in Figure 8.
Since after the defrag operation, the logical and physical order
of pages in the B+-Tree are identical, we know that page ids
will be consecutive. Thus each I/O can read in the max
number of pages (M).

We note that the above two procedures may require
adaptations to reflect specific aspects of range scans on a
given system (e.g. we have also modeled effect of I/Os due to
index pages); but we omit these details here. Instead, we focus
on the core ideas of simulating the actual range scan while
accessing only the index pages of the B+-Tree; and sampling
of leaf pages to estimate internal fragmentation. Finally,
similar to the cost model used in query optimizers today, the
above procedures do not model transient effects such as
buffering on I/Os. In principle, our cost model can be
extended by allowing additional parameters that capture such
effects. In our experiments (Section VII.C), we evaluate the
accuracy and performance of the above “what-if” API in our
implementation in Microsoft SQL Server.

B. Estimating Benefit when a Set of Ranges is Defragmented
Let Q be a query that scans a range of index I, and let R be

a set of non-overlapping ranges of an index I. We will denote
by Benefit(Q, I, R) the reduction in the number of I/Os for
query Q if the set of ranges R is defragmented. Note that this
generalizes the notion of Benefit(Q, I) described in Section A.
Consider Figure 8 which shows a query Q and R = {r1, r2 and
r3}.

We can express the benefit for query Q using the following

equation (Equation 1): ݐ݂݅݁݊݁ܤሺܳ, ,ܫ ܴሻ ൌ ′ଵݎሺݐ݂݅݁݊݁ܤ , ሻܫ ଶݎ൫ݐ݂݅݁݊݁ܤ , ൯ܫ ′ଷݎሺݐ݂݅݁݊݁ܤ , ሻܫ ′ଵଶݎሺݏܱܫ݉ݑܰ , ሻܫ ′ଶଷݎሺݏܱܫ݉ݑܰ , ሻܫ െ ′ଵଶݎሺݏܱܫ݉ݑܰ , ,ܫ ܴሻെ ′ଶଷݎሺݏܱܫ݉ݑܰ , ,ܫ ܴሻ
Note that for the ranges of the query Q that overlap with r1, r2
and r3, (respectively r’

1, r2 and r’
3), the number of I/Os (if the

ranges are defragmented) can be computed as though r’
1, r’

2

Figure 8. Computing Benefit(Q, I, {r1,r2,r3})

NumIOsPostDefrag(Q, I)
1. Let r be the range of the index I scanned by query Q.
2. Sample k% of the data pages in the logical range r and use

fullness of sampled pages to estimate number of pages in r
after it is defragmented (say N)

3. Let M = max number of pages read in a single I/O
4. n = N / M
5. Return n. NumIOs(Q, I)

1. Let r be the range of the index I scanned by query Q.
2. Let P be a lookahead buffer that maintains leaf page ids in

sorted order, max M elements.
3. n = 0;
4. Do
5. Add page ids to P obtained by iterating over index pages

 of B+-Tree in logical order until there are M page ids
 in P or last page id in range r is encountered.

6. Extract from P the maximal sequence of contiguous
 page ids at the start of P

7. n = n+ 1
8. While(P is non empty)
9. Return n.

Figure 6. Estimating the number of I/O for a query Q that scan a
range of index I.

Figure 7. Estimating the number of I/Os for scanning a range of index I if
it were to be fully defragmented.

and r’
3 are three independent queries and the entire index were

defragmented. However, consider the range r’
12 that is part of

Q but is not defragmented. Observe that although the range
r’

12 is not defragmented, its layout can change when R is
defragmented. This is because defragmenting a range (e.g. r1)
can require swapping pages. Some of those swaps may
involve pages that belong to r’

12. Thus, the difference in the
number of I/Os for this range after the set of ranges R is
defragmented = ܰݏܱܫ݉ݑሺݎଵଶ′ , ሻܫ െ ′ଵଶݎሺݏܱܫ݉ݑܰ , ,ܫ ܴሻ.

There are potentially different ways to model the impact of
defragmenting a range r on the layout of another non-
overlapping range r’. Below we mention two alternatives,
both of which can be modeled at low overhead. In general, the
accuracy of such models can be increased by tracking the
layout more accurately, but more find-grained models can
significantly increase overheads as well.
Independence: The simplest model assumes independence
across ranges, i.e. defragmenting r has no impact on the layout
of r’. In this case, in Equation 1 above: ܰݏܱܫ݉ݑሺݎଵଶ′ , ሻܫ െ ′ଵଶݎሺݏܱܫ݉ݑܰ , ,ܫ ܴሻ ൌ 0 ′ଶଷݎሺݏܱܫ݉ݑܰ , ሻܫ െ ′ଶଷݎሺݏܱܫ݉ݑܰ , ,ܫ ܴሻ ൌ 0
Thus, the benefit for the query is modeled as the sum of the
benefits for each of the ranges r’

1, r2 and r’
3.

Uniformity: A more general model of interaction assumes that
the impact of defragmenting a range r uniformly impacts the
layout of all other ranges r’. This implies that larger the range
r’, the greater is the impact of defragmenting r on it.
Furthermore, a conservative model will assume that the
impact is adverse, i.e., the number of I/Os for r’ will increase
as a result of defragmenting r. A specific formula based on
uniformity and assuming a conservative approach is: ܰݏܱܫ݉ݑ൫ݎ′ , ,ܫ ሼݎሽ൯ ൌ ′ݎ൫ݏܱܫ݉ݑܰ , ൯ܫ ܰ′ ൈ ሻݎሺܨܧ
where EF(r) is the measure of external fragmentation (defined
in Section II.E), ܰ′ is the number of pages in r’, and N is the
total number of pages in the index. To extend r to a set of
ranges, we would sum up the contributions of each range in
the set. Using the uniformity model, Equation 1 above
becomes: ݐ݂݅݁݊݁ܤሺܳ, ,ܫ ܴሻ ൌ ′ଵݎሺݐ݂݅݁݊݁ܤ , ሻܫ ଶݎ൫ݐ݂݅݁݊݁ܤ , ൯ܫ ′ଷݎሺݐ݂݅݁݊݁ܤ , ሻܫ ሺܰభమ′ ܰభమ′ ሻܰ ோאሻݎሺܨܧ

VI. AUTOMATED RECOMMENDATION OF INDEXES TO
DEFRAGMENT

In Section V we introduced “what-if” analysis capability
for index defragmentation, i.e. the functionality of being able
to estimate the impact of defragmenting an index on the I/O
performance of a range scan query. In this section, we
describe how such “what-if” analysis capability can be
leveraged to develop a client tool that can provide automated
recommendations for which indexes to defragment for a given
workload. Such a tool can be useful to DBAs, e.g. to help
decide which indexes to defragment within a given
maintenance batch window.

In Section III.A we outlined the four alternative approaches
to index defragmentation: FULL, RANGE, FULL-W,
RANGE-W (Figure 2). Recollect that RANGE-W is the most
general approach since it uses both workload as well as range-
level defragmentation; the other methods do not use one or
both of these. In this section, we present an algorithm for the
index defragmentation problem (Section III.B). This is an
optimization problem which we showed to be NP-Hard via
reduction to the Knapsack problem (Appendix A). Note that
the algorithm we present below is for the general version of
the problem where range-level defragmentation is allowed.
Due to the above hardness result, and the similarity of our
problem to the Knapsack problem, we use the greedy heuristic
for Knapsack in our algorithm below. We have designed our
algorithm in such a way that turning off or modifying certain
steps in the RANGE-W algorithm will yield solutions for each
of the other three alternatives.

A. Algorithm for Recommending Indexes to Defragment
The algorithm for recommending index ranges to

defragment for a given workload and defragmentation cost
budget (RANGE-W) is shown in Figure 9.

Steps 2-8 are responsible for candidate generation, i.e.

identifying the space of index ranges to defragment. In
particular, we exploit two sources of information for candidate
generation. Steps 2-5 identifies as candidates, ranges scanned
by queries in the workload. Steps 6-10 introduce additional
candidates at a finer granularity than those based on the
workload alone. As an example, consider a query that scans an
entire index. For this case, these additional candidates we

RecommendIndexesToDefragment (W, B)
W is a workload, B is a defragmentation cost budget
1. C = {} // Set of candidate indexes (ranges) to defragment
2. // Identify candidates based on workload
3. For each query Q in W
4. For each range scan r in Q over an index
5. C = C ∪ r // r is the range scanned in query Q
6. // Identify additional candidates based on data
7. For each index I referenced in workload
8. Build equi-depth histogram on leading column of index
9. For each bucket r in histogram that is accessed by workload
10. C = C ∪ r // candidate based on data-only
11. // Compute total benefit of each candidate index range
12. For each range r in C (say r belongs to index I)
13. For each query Q in W that references index I
14. TotalBenefit(r) += wQ×Benefit(Q, I, {r}) // use “what-if”

API
15. // Greedy heuristic for Knapsack
16. BudgetUsed = 0
17. For each range r in C in descending order of

TotalBenefit(r)/ReorgCost(r)
18. If (budgetUsed + ReorgCost(r)) ≤ B)
19. R = R ∪ r ; BudgetUsed += ReorgCost(r)
20. Update benefit of ranges r′∈ C on same index as r //
 handle interactions
21. Return R

Figure 9. Algorithm for recommending index (ranges) to defragment for a
given workload and defragmentation cost budget (RANGE-W).

introduce are important since they can take advantage of
range-level index defragmentation. We identify logical ranges
of approximately equal width for the ranges accessed in the
workload. We use an equi-depth histogram for identifying
these ranges. Such a histogram may already be present in the
database, and if not, we construct one. Note that approximate
equi-depth histograms can be efficiently computed using a
uniform random sample of pages of the index (e.g. [6]).
Optionally, for efficiency purposes only, we can prune out
candidates with very low fragmentation below a threshold.

In Steps 11-14, we compute for each candidate range its
total benefit for all queries in the workload (taking into
account the weight of each query). This step leverages the
“what-if” API described in Section V. Steps 15-20 implement
the greedy heuristic for the Knapsack problem. Note that Step
20 needs to be invoked only if the “what-if” API models
interactions across ranges within an index (e.g. using the
uniformity assumption as described in Section V.B). For
example if the independence assumption is used, then Step 20
can be skipped. The worst case running time of the algorithm
in O(n×m + m×log(m)), where n is the number of queries in
the workload and m is the number of indexes.

We observe that the FULL-W solution can be obtained by
modifying: (a) Step 5 in the above algorithm to add the full
index instead of range r. (b) Omitting Steps 6-10 that
introduce finer grained candidate ranges based on data only.
Similarly, to obtain the RANGE algorithm (which does not
consider the workload) we: (a) Omit Steps 2-5 (b) Modify
Steps 6-11 so as introduce candidates for all indexes rather
than those referenced in the workload. (c) Modify Steps 11-14
so that the TotalBenefit(r) for a candidate range is Benefit(r, I,
{r}), i.e. the benefit obtained for a range scan on r itself (and
not queries in the workload). To obtain FULL, we use the
same modifications as in RANGE, except that we also skip
introducing candidates based on the histogram and only
introduce one candidate per index.

VII. EXPERIMENTS
We have implemented: (1) The range-level index

defragmentation API (Section IV); (2) The “what-if” API
(Section V) in the storage engine of Microsoft SQL Server
2008; (3) A client tool for recommending which indexes to
defragment for a given workload (Section VI). We have
implemented all four approaches: FULL, FULL-W, RANGE,
RANGE-W. In this section, we present the results of our
experimental evaluation on both real world and synthetic
databases.

A. Databases and Workloads
We use a real world database and a synthetically generated

database for our experiments. The real world database (we
will refer to it as REAL) is used by an internal customer, and
is used to track business listings. The database is about 11GB;
we use the largest table which has around 10 million rows
with 16 non-clustered indexes on it. We note that the indexes
were already fragmented to different degrees (and we did not
alter this in our experiments). For these indexes the external

fragmentation varied from around 20% to 90+% and internal
fragmentation varied from around 10%-30%.

We also use the synthetic database (SYNTHETIC) since it
allows us to systematically vary relevant parameters for our
experiments: amount and skew of fragmentation, number of
indexes etc. The size of the database varied between 1GB to
10GB depending on the specific experiment.

Finally, we also generated queries in a controlled manner
so that we could vary the number of queries in the workload,
the width of the ranges (from small ranges to full index scans),
the skew in the workload etc. The experiments were run on a
Windows Server 2008 machine with 4 processors and 8GB
RAM, and an external disk drive. All results reported below
are with a cold buffer.

B. Efficiency and Stability of Range-Level Defragmentation
1) Efficiency

To study the efficiency of our range-level index
defragmentation method (Section IV.A), we selected several
indexes from the real world database. For each index, we
logically partition the index into k logical ranges on the
leading column of the index, i.e. the partitions together cover
the full index. We varied k over the values: 1, 2, 4, 8, 16.
Observe that k = 1 corresponds to full index defragmentation
and k = 16 means we defragment each of the 16 ranges using
range-level index defragmentation. We measured the total
time in each case. We found that the overhead for
defragmenting 16 ranges as compared to the full index was
between 4%-7%. The overheads for defragmenting for fewer
than 16 ranges was even smaller (e.g. for k=4 it is between
2%-5%). This confirms our expectation that our range-level
index defragmentation scheme is efficient, i.e., it takes time
proportional to the size of the range.
2) Stability

On the REAL database, we verified stability (Section IV.A)
of our range-level index defragmentation scheme on several
different indexes. For each index we generated an index range
(say r) at random and defragmented that range. We then
measured the actual number of I/Os required to scan r (say n1).
Next, we selected another range r′ on the same index (also at
random), and defragmented r′. We again measured the actual
number of I/Os required to scan r (say n2). We compared n1
with n2. For each index we repeated this test for different
combinations of (r, r′). We found that in almost all cases n1
and n2 were either identical. In some cases, they differed by
very few I/Os which are due small errors in estimating the
offset using sampling (Section IV.B). This experiment shows
that our scheme satisfies our definition of stability.

C. Evaluation of “What-If” API
In this experiment we evaluate the accuracy of the “what-if”

API by comparing the I/Os estimated by the API against the
actual number of I/Os. For 4 indexes each on REAL and
SYNTHETIC, we generate several different range scan
queries by selecting ranges at random (total of 32 queries).
For each such query, we estimate the number of I/Os if the
index is defragmented using the API in Section V). We then

defragment the index and measure the actual number of I/Os
for the query. The scatter plot in Figure 10 shows that the
estimated number of I/Os vs. actual number of I/Os for each
query. The line fit on the chart using linear regression has an
R2 value of 0.98, indicating that our API is able to model the
actual number of I/Os reasonably accurately. In particular, this
experiment suggests that our API can be used effectively to
compare benefits of defragmentation between different range
scans.

Next, we drill-down into the specific issue of accuracy of

estimating the internal fragmentation of a given range using
uniform random sampling over the leaf pages of the B+-Tree
in that range (Section IV.B.2). Recollect that this method is
necessary for range-level defragmentation (to estimate the
offset), as well as for the “what-if” API to estimate the number
of I/Os if an index is defragmented. Figure 11 shows that the
accuracy of estimating internal fragmentation using sampling
improves rapidly as the sampling percentage is increased. In
particular, at 1% sampling, the estimation error becomes very
small (<1%). This experiment shows that sampling is an
effective approach for estimating the internal fragmentation of
a range of leaf pages in a B+-Tree.

D. Comparison of Approaches for Automated Index
Defragmentation

1) Varying Budget
For the REAL database, we generate a workload of 8 queries
where the ranges are selected at random. We fix the number of
indexes scanned by the workload to 4. We vary the budget

(measured in units of ReorgCost cost model as described in
Section III) for defragmenting indexes from 2K units to 100K
units and measure the I/O benefit for each method.

Figure 12 shows that RANGE-W performs the best across all
budgets; and in particular is significantly better than all other
alternatives for small defragmentation cost budget values.
Also, note that the percentage reduction in I/Os is very
significant (up to 60%). We see that between RANGE and
FULL-W there is no clear winner: as the budget increases
FULL-W starts performing better since it is able to select
more (full) indexes to defragment which help improve
workload performance. In contrast RANGE picks index
ranges that have no benefit for the workload. Nevertheless, at
lower budgets, RANGE can still be more effective than
FULL-W, since some ranges picked do help the workload.
Not surprisingly, all techniques perform as well or better than
FULL; thus we do not consider FULL in other experiments.

2) Varying Number of Indexes referenced
We generated 8 workloads (W1..W8), where workload Wi

performs full scans over i indexes. We fix a small defrag
budget (8K units). Thus as the number of indexes referenced
increases, the fixed budget becomes smaller as a percentage
of the total cost of defragmenting all indexes referenced. Thus
we expect the % benefits to decrease as number of indexes
referenced increases. Figure 13 shows that across all points,
RANGE-W gives the largest percentage reduction in I/Os.
FULL-W performs better than RANGE when a small subset
of indexes (e.g. for W1) is referenced because it is able to pick

0

1000

2000

3000

4000

0 1000 2000 3000A
ct

ua
l I

/O
s

af
te

r
de

fr
ag

m
en

ta
ti

on

Estimated I/Os after defragmentation

0%

10%

20%

30%

40%

50%

0.01 0.1 1 2 5

Es
ti

m
at

io
n

Er
ro

r
re

la
ti

ve
 t

o
no

sa

m
pl

in
g

Sampling Percentage

I1

I2

I3

0%
10%
20%
30%
40%
50%
60%
70%

20
00

30
89

47
71

73
68

11
38

0

17
57

5

27
14

4

41
92

3

64
74

8

I/
O

 B
en

ef
it

 fo
r

W
or

kl
oa

d

Defragmentaton cost budget

RANGE-W

FULL-W

RANGE

FULL

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8

I/
O

 B
en

ef
it

Number of Indexes scanned by workload

RANGE-W

FULL-W

RANGE

Figure 10. Accuracy of “what-if” API in estimating I/Os after
defragmentation.

Figure 11. Estimation error for internal fragmentation vs. Sampling
percentage

Figure 13. Benefit vs. Number of indexes scanned(fixed defrag budget)

Figure 12. Benefit for workload vs. defragmentation cost budget.

within the small budget the index that is referenced, whereas
RANGE selects indexes based purely on fragmentation
statistics. However, as the number of indexes referenced
increases, the ranges selected by RANGE start to benefit some
of the queries in the workload. Since FULL-W can only pick a
few full indexes to defragment (due to small budget), RANGE
does better in some cases (e.g. W8). This experiment shows
that while RANGE-W is the best alternative, both RANGE
and FULL-W can be effective in certain cases, and neither is
always better than the other.

3) Importance of Range-Level Index Defragmentation
In our next experiment, we use the SYNTHETIC database,

and generate indexes with the following property: in index Ik a
logical range that covers k% (k=30,70, 90) of the pages in the
index is injected with a very large amount (EF = 0.99) of
external fragmentation. Thus, smaller the k value, the more
localized (“skewed”) is the fragmentation. For each index, we
generate a workload consisting of a single query that scans the
entire index.

From Figure 14 we see that when the fragmentation is most

localized (k=30), the percentage reduction in I/Os for the
workload is significant even for low budget values. Note that
since the workload is a scan of the full index, in this case the
candidates based on workload alone (Steps 2-5 in Figure 9)
are not adequate. Thus, this experiment shows that RANGE-
W’s strategy of identifying candidates based on data (Steps 6-
10) helps significantly since it is able to take advantage of
range-level index defragmentation. We observe similar results
for other values of k as well.

E. Scalability of RANGE-W Algorithm
In our final experiment, we evaluate the scalability of

RANGE-W algorithm with increasing workload size (on the
REAL database). We generate different workloads of size 50,
100, 250, 500 distinct queries; and measure the running time
and number of “what-if” API calls issued by the algorithm.
We plot these numbers as a ratio relative to the 50 query
workload case. We observe from Figure 15 that the running
time and number of “what-if” API calls made by RANGE-W
both grow sub-linearly with the number of queries. The
number of “what-if” API calls increases by a factor of about
8.5 (between 50 and 500 queries), and the running time
increases by only a factor of 4. This confirms our expectation

that RANGE-W scales well in practice. Finally, we note that
even in absolute terms the running time is reasonable (e.g. for
the 500 query case the running time is 967 seconds, and the
number of API calls is 740).

VIII. RELATED WORK
The authors of [9] show that fragmentation can have a

significant impact on I/O performance of range scan queries,
which are common in decision support workloads. These
results can be viewed as motivation for our work. All
commercial DBMSs support APIs to collect fragmentation
statistics about a B+-Tree index including measures of
internal and external fragmentation. These are aggregate
statistics over the full B+-Tree. They also support the ability
to defragment (rebuild and reorganize) an existing B+-Tree.
However, we are not aware of any DBMS that supports range-
level index defragmentation in a B+-Tree (Section IV).
Similarly, no DBMSs today support an API for estimating the
impact of defragmentation on I/O performance (Section V).

The state-of-the-art approaches for index defragmentation
rely on using fragmentation statistics of an index. As we have
shown in this paper, workload driven approaches can perform
significantly better. We have also shown that using range level
defragmentation can greatly increase effectiveness.

The idea of leveraging the workload for performance
tuning problems such as physical database design (e.g.
[1][9][13]), statistics selection (e.g. [7][10]), histogram
refinement and cardinality estimation (e.g. [1][13]) etc. has
been studied previously. However, techniques for studying
how to exploit workload information for the index
defragmentation problem have not been studied previously.

Our technique for estimating the number of I/Os for a range
scan query over a B+-Tree index (Section V) leverages
information in the index pages of the B+-Tree. This technique
can be viewed as an adaptation of previous work (e.g.
[3][4][5]) which used information in the index nodes of a B+-
Tree for estimating the cardinality of a range predicate.

IX. CONCLUSION AND FUTURE WORK
We have presented novel techniques relating to index

defragmentation: a “what-if” analysis API in the database
engine for estimating the impact of defragmenting an index on
I/O performance; range-level index defragmentation;
formalization and hardness of the index defragmentation

0%

20%

40%

60%

80%

100%

I/
O

 B
en

ef
it

 fo
r

W
or

kl
oa

d

Defragmentation cost budget

k=30

k=70

k=90

0

2

4

6

8

10

0 100 200 300 400 500

Ra
ti

o
re

la
ti

ve
 t

o
50

qu

er
y

w
or

kl
oa

d

Number of queries in workload

Running
Time

#What-
if API
calls

Figure 15. Scalability of RANGE-W with workload size.

Figure 14. Benefit vs. budget for varying amount of fragmentation

problem, and a scalable algorithm for the problem. Our
experiments on real and synthetic databases in Microsoft SQL
Server demonstrate the promise of our techniques.

In this paper we have adopted an offline model where the
DBA needs to specify a workload and decide when to
implement the recommendations. The problem of online index
defragmentation, i.e. “closing the loop” automatically, is an
interesting area of future work. Finally, the question of how
index fragmentation affects performance for other forms of
stable storage besides disks also remains unanswered.

ACKNOWLEDGMENT
We thank Nico Bruno, Surajit Chaudhuri, Raghav Kaushik,

Christian König, David Lomet and Ravi Ramamurthy for
valuable feedback.

APPENDIX A
We show hardness for a special case of the Index

Defragmentation problem (defined in Section III.B), where: (a)
ReorgCost(I) = NI, the number of pages in index I. (b) The
reduction in I/O cost is obtained by eliminating internal
fragmentation only, i.e.,(there is no external fragmentation) .
Thus Benefit(Q, I) = (1 – CR(I)). NumPagesScanned(Q, I),
where CR(I) (0 < CR(I) ≤ 1) is the compaction ratio for index
I, and NumPagesScanned(Q, I) is the number of pages of
index I scanned by query Q.
Claim: The Index Defragmentation Problem is NP-Hard.
Proof: By reduction from the Knapsack problem.
Knapsack problem: Given a set of n items S, where each

element s ∈ S has Value(s), Weight(s), and a knapsack size B;
pick a subset K ⊆ S such that ∑s∈K Weight(s) ≤ B and ∑s∈K
Value(s) is maximized.

Given an instance of the Knapsack Problem, we generate
an instance of the Index Defragmentation Problem as follows.
For each item s ∈ S, we create a table with a single column,
and we define a clustered index on that column. We also
generate one query per item s, which performs a full scan of
the clustered index. We insert data into the table such that the
number of pages in the index is Weight(s). We ensure that the
compaction ratio C of the index and weight w of the query that
scans the index, are set such that the following equation is
satisfied. ܸ݈ܽ݁ݑሺݏሻ ൌ ݓ ൈ ሺ1 െ ሻܴܥ ൈ ሻݏሺݐ݄ܹ݃݅݁

In general there are multiple solutions of w and CR that can
satisfy the above equation. One such solution is as follows: If
the ratio ௨ሺ௦ሻௐ௧ሺ௦ሻ 1 , we set w = 1and CR = ሺ1 െ ௨ሺ௦ሻௐ௧ሺ௦ሻሻ. If ௨ሺ௦ሻௐ௧ሺ௦ሻ 1, we set w = 2 ൈ ቒ ௨ሺ௦ሻௐ௧ሺ௦ሻቓ, and

CR = ௨ሺ௦ሻௐ௧ሺ௦ሻൈଶൈቒ ೇೌೠሺೞሻೈሺೞሻቓ . Observe that in both cases we

ensure 0 < CR ≤ 1.
By the above construction, the defragmentation cost of the

index Is corresponding to item s = NumPages(Is) = Weight(s).
Note also that the Benefit(Qs, Is) = w.(1 – CR).
NumPagesScanned(Qs, Is) = w. (1-CR) . NumPages(Is) =
Value(s).

Thus, solving the above instance of the Index
Defragmentation problem with a defragmentation budget B is
a solution to an arbitrary instance of the Knapsack problem.

APPENDIX B
Lemma: For any range level index defragmentation scheme

S that satisfies the equivalence and efficiency properties to be
stable, when defragmenting any range r on index I, it must use
an offset equal to the number of pages in p(r) in the fully
defragmented index.

Proof: We show this by using an adversary argument. The
adversary constructs an index where there is external
fragmentation but no internal fragmentation. Defragmenting
requires only reordering pages but no compaction. In this case,
the number of pages in the index is the same before and after
defragmentation (let this value be N). The adversary first
picks a range r1 for defragmentation such that |p(r1)| = |s(r1)| =
k; i.e. there are k pages in the prefix as well as suffix of range
r. Observe that due to the above construction, k is the number
of pages in p(r) after I is defragmented as well. Now, suppose
the scheme S uses offset k’ (≠ k) when defragmenting r. If
k’<k, the adversary chooses the next range to defragment as
p(r). Since there k pages in p(r) are at least one page
belonging to r is in the first k pages of the B+-Tree, this
means that at least one page of r will be swapped out of its
location when p(r) is defragmented. This violates stability
since because is S efficient, it cannot correct such
fragmentation by reorganizing r. Similarly, if k’>k, the
adversary chooses s(r) to defragment, and once again this
violates stability.

REFERENCES
[1] Aboulnaga A., Chaudhuri S. Self-Tuning Histograms: Building

Histograms without Looking at Data. In SIGMOD 1999.
[2] S. Agrawal et al. Database Tuning Advisor for Microsoft SQL Server.

In Proceedings of VLDB 2004.
[3] M. J. Anderson et.al. Index Key Range Estimator. U. S. Patent

4,774,657, IBM Corp., Armonk, NY, Sep. 1988. Filed June 6, 1986.
[4] G. Antoshenkov. Random sampling from pseudo-ranked B+ trees. In

Proceedings of the 19th Very Large Data Bases, pages 375–382.
Morgan Kaufmann, 1992.

[5] P.M. Aoki. Generalizing “Search” in Generalized Search Tree. In
IEEE ICDE, 1998.

[6] S. Chaudhuri, R. Motwani, V.Narasayya. Random Sampling for
Histogram Construction: How much in enough? In SIGMOD 1998.

[7] S. Chaudhuri, V. Narasayya. Automating Statistics Management for
Query Optimizers. In Proceedings of ICDE 2000.

[8] W.G. Cochran. Sampling Techniques. John Wiley & Sons, New York,
third edition, 1977.

[9] B. Dageville et al. Automatic SQL Tuning in Oracle 10g. In
Proceedings of VLDB 2004.

[10] A. El-Helw et al. Collecting and Maintaining Just-in-Time Statistics. In
Proceedings of ICDE 2007.

[11] M.R. Garey, and D.S. Johnson. Computers and Intractability. A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[12] M. Ruthruff. Microsoft SQL Server 2000 Index Defragmentation Best
Practices. February 2003. Microsoft TechNet.
http://technet.microsoft.com/en-us/library/cc966523.aspx

[13] M. Stillger et al. LEO – DB2’sLEarning Optimizer. In VLDB 2001.
[14] Zilio et al. DB2 Design Advisor: Integrated Automated Physical

Database Design. In Proceedings of VLDB 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

