
  

Universal Plug and Play Machine Models 
Modeling with Distributed Abstract State Machines 

Uwe Glässer Margus Veanes 
glaesser@upb.de 

Heinz Nixdorf Institute, Paderborn, Germany 

margus@microsoft.com 

Microsoft Research, Redmond, USA 

Abstract: We present a high-level executable specification for the Universal Plug and 

Play (UPnP) standard illustrating the use of Abstract State Machine (ASM)  

technology as a practical tool for applied systems engineering. The concept of 

distributed real-time ASM allows us to combine both synchronous and 

asynchronous execution models in one uniform model of computation. 

Key words: UPnP, ASM, Real-Time Behavior, TCP/IP networking 



                                                                               Glässer and Veanes  Key words: UPnP, ASM, Real-Time Behavior, TCP/IP networking 

 
1. INTRODUCTION 

We present here some results of using Abstract State Machine (ASM) 

technology [1] in a recent pilot project at Microsoft. This project was done in 

collaboration with a group that has developed the Universal Plug and Play 

Device Architecture (UPnP) [2], a distributed, open networking architecture 

enabling peer-to-peer network connectivity of various intelligent appliances, 

wireless devices and PCs. UPnP is an evolving industrial standard defined 

by the UPnP Forum [3]. 

We have developed a high-level executable specification of the UPnP 

protocol as basis for the communications software forming the core of 

Universal Plug and Play Device Architecture. Serving practical needs, we 

attempt to accurately reflect the abstraction level of the given informal 

requirements specification [2], where we focus on interoperability aspects 

rather than on internal details of UPnP components. The construction of a 

distributed real-time ASM allows us to combine both synchronous as well as 

asynchronous execution models within one uniform model of computation. 

We introduce a discrete notion of global system time for dealing with real 

time behaviour and timing constraints such as delays and timeout events.  

From our abstract ASM model of UPnP we have derived an executable 

version using the ASM Language (AsmL) [7]. An additional GUI serves for 

control and visualization of simulation runs making our abstract executable 

specification a useful practical tool for the UPnP developers and testers. A 

comprehensive description is given in [9]. Closely related to this work are 

ASM behavior models of various programming languages, e.g. Java [12], 

and modeling languages, e.g. SDL [11] and VHDL [5].1  

Section 2 illustrates the UPnP protocol, and Section 3 briefly outlines the 

semantic model used here. Section 4 introduces overall concepts of the 

abstract protocol model, while Section 5 exemplifies the construction of the 

device model in some detail. Section 6 contains some concluding remarks. 

2. THE UPNP PROTOCOL 

UPnP is a layered protocol architecture built on top of TCP/IP networks 

by combining various standard protocols, e.g. such as DHCP, SSDP, SOAP, 

GENA, etc. It supports dynamic configuration of some collection of devices 

offering various kinds of services requested by control points. To perform 

certain control tasks, a control point needs to know what devices are 

available, i.e. reachable over the network, what services a device advertises, 

 
1 An ASM-based formal definition of SDL recently has been approved by the International 

Telecommunication Union (ITU) as part of the current SDL standard [11]. 



Universal Plug and Play Machine Models  

 
and when those advertisements will expire. Services interact with entities in 

the external (physical) world through the actuators and sensors of a device. 

A sample UPnP device is illustrated in Figure 1. 

General Restrictions: In general, the following restrictions apply. 

Control points and devices interact through exchange of messages over a 

TCP/IP network, where the specific network characteristics (like bandwidth, 

dimension, etc.) are left unspecified. Communication is considered to be 

neither predictable nor reliable, i.e. message transfer over the network is 

subject to arbitrary and varying delays, and some messages may never 

arrive. Furthermore, devices may come and go at any time with or without 

prior notice. Consequently, there is no guarantee that a requested service is 

available in a given state or that is will become available in a future state. 

Also, a service that is available need not remain available until a certain 

control task using this service has been completed.  

Protocol Phases: The UPnP protocol defines 6 basic steps or phases. 

Initially, these steps are invoked one after the other in the order given below, 

but may arbitrarily overlap afterwards. (0) Addressing is needed for 

obtaining an IP address when a new device is added to a network. (1) 

Discovery informs control points about the availability of devices and their 

services. (2) Description allows control points to retrieve detailed 

information about a device and its capabilities. (3) Control provides 

mechanisms for control points to access and control devices through well-

defined interfaces. (4) Eventing allows control points to receive information 

about changes in the state of a service at run time. (5) Presentation enables 

users to retrieve additional vendor specific information.  

 

.

7

6

5

4

3

2

1

.

.

.

.

CurrentSlot

DeviceSlots

DoorIsOpen

DoorIsStuck

Occupied

Slots

.

7

6

5

4

3

2

1

.

.

.

.

CurrentSlot

DeviceSlots

DoorIsOpen

DoorIsStuck

Occupied

Slots

 
 

 

Figure 1. A generic CD player as a sample UPnP device. The picture illustrates the state 

information associated with one of the services, called ChangeDisc, associated with the CD 

player. This service provides functionality to add or remove discs from the CD player, to 

choose a disc to be placed on the tray, and to toggle (open/close) the door. 



                                                                               Glässer and Veanes  Key words: UPnP, ASM, Real-Time Behavior, TCP/IP networking 

 
3. ABSTRACT STATE MACHINES 

This section briefly outlines the model of distributed real-time ASM at an 

intuitive level of understanding and in a rather informal style. For a rigorous 

mathematical definition,  we refer to the theory of ASMs [4,5]. 

The Basic ASM Model. An abstract machine model A is defined over a 

fixed vocabulary V, some finite collection of function names and relation 

names. Formally, relations are treated as Boolean valued functions, i.e. 

predicates. States of A are structures2 defining interpretations of V over a 

common base set. Starting from a given initial state, machine runs abstractly 

model executions of a system under consideration through finite or infinite 

sequences of state transitions.  

The behavior of A is defined by its program P. Intuitively, P consists of 

one or more state transition rules specifying the runs of A. Each execution 

step computes some finite set of local function updates over a given state of 

A and fires all these updates simultaneously in one atomic action. We define 

the rules of P inductively as composition of basic update instructions by 

means of simple rule constructors as illustrated in the subsequent sections. 

The canonical rule constructor is the do in-parallel, which allows 

for the synchronous parallel composition of rules. In the below rule, the 

update set computed by R is defined to be the union of the individual update 

sets as associated with R1 and R2 respectively. The ’do in-parallel’ is 

optional (and usually is omitted). 

R = do in-parallel R1 R2 

Concurrency. A distributed ASM is a generalization of the basic model. 

It consists of several autonomous ASM agents interacting with each other by 

reading and writing shared locations of global machine states. The under-

lying semantic model regulates such interactions so that potential conflicts 

are resolved according to the definition of partially ordered runs [4]. Agents 

come as elements of a dynamically growing and shrinking domain AGENT, 

where each agent has a program defining its behavior. The elements from a 

static domain PROGRAM collectively represent the distributed ASM program. 

Real Time. Time values are modeled as real numbers by the elements of 

a linearly ordered domain Time. We define the relation “” on time values 

by the corresponding relation on real numbers. Another domain Duration 

represents finite time intervals as differences between time values. 

 
domain Time, domain Duration 

 

 
2 We refer here to the notion of structure as it is used in first-order logic. 



Universal Plug and Play Machine Models  

 
Global system time, as measured by some discrete clock, is represented 

by a monitored, nullary function now taking values in Time. A monitored 

function is an abstract interface to the system environment; as such, it 

changes its values depending on external actions and events. That is, one can 

only observe, but not control, how physical time evolves. 

monitored now : TIME 

As another integrity constraint on runs, we assume that agents react 

instantaneously, i.e. they fire a rule as soon as they reach a state in which the 

rule becomes enabled. 

4. ABSTRACT PROTOCOL MODEL 

A reasonable choice for the construction of an abstract UPnP model is a 

distributed real-time ASM consisting of a variable number of concurrently 

operating and asynchronously communicating components. Intuitively, a 

component either represents a device, a control point or some fraction of the 

underlying communication network. Components have interfaces so that any 

interaction between a component and any other component is restricted to 

actions and events as observable at these interfaces. 

The external world, i.e. the environment into which the system under 

consideration is embedded, affects the system behavior in various ways. For 

instance, the transport of messages over the communication network is 

subject to arbitrary delays and some messages may never arrive. Also, the 

system configuration itself changes as components come and go. Those 

external actions and events are basically unpredictable and as such they are 

modeled through a GUI allowing for user-controlled interaction with the 

external world. The overall organization of the model is illustrated in Fig. 2. 

 

 

 

 

 

 
 

 

 

Figure 2.  Overall organization of the distributed ASM model of UPnP. 

 

Controller Model

(synchronous)

Device Model

(synchronous)

Network Model (asynchronous)

Abstraction of TCP/IP networks

Interface

GUI

External World

(Visual Basic)

Controller Model

(synchronous)

Device Model

(synchronous)

Network Model (asynchronous)

Abstraction of TCP/IP networks

Interface

GUI

External World

(Visual Basic)



                                                                               Glässer and Veanes  Key words: UPnP, ASM, Real-Time Behavior, TCP/IP networking 

 
4.1 Components and Interfaces 

We formulate behavioral properties of UPnP protocol entities in terms of 

component interactions, where components are agents of a distributed ASM 

as identified by a given system configuration. 

Conceptually, any interaction between the model and the external world 

involves two different categories of agents: (1) explicit agents of the model, 

namely control point agents, device agents or network agents, and (2) 

implicit agents living in the environment. The non-deterministic nature of 

environment agents faithfully reflects the system view of the environment.  

At the component level, control points and devices are modeled as 

parallel compositions of synchronously operating machine models. Each 

component further decomposes into a collection of parallel ASMs, one for 

each protocol phase. In contrast, network components internally are based on 

an asynchronous model with decentralized control as explained below. 

Communication Infrastructure. We define an abstraction of TCP/IP 

networks based on standard network terminology [8]. Our network model is 

based on a distributed execution model with asynchronous communication 

according to the view that a complex communication network usually 

consists of some (not further specified) collection of interconnected physical 

networks. The network model is described in greater detail in [10]. 

Transport Protocols. User level processes, or application programs, 

interact with each other by exchanging messages using the standard transport 

level protocols UDP and TCP. There may be several application programs 

running on a single host. Thus the address of an application program is 

given by the IP address of its host in conjunction with a unique protocol port 

number on this host. In our case, several control point programs may run on 

the same host. Devices, however, are considered as individual hardware 

units; therefore they are identified with the hosts on which they run. 

Collectively, we refer to control points and devices as applications. 

DHCP Server Interface. The Dynamic Host Configuration Protocol 

(DHCP) enables automatic configuration of IP addresses when adding a new 

host to a network. We model interaction between a DHCP server and the 

DHCP client of a device explicitly only as far as the device side is concerned 

(cf. Section 5). The server side is implicitly given by one or more external 

DHCP server agents whose behavior is left abstract. In our model, a DHCP 

server represents another type of application program. 



Universal Plug and Play Machine Models  

 
4.2 Basic Agent Types 

We can now define AGENT as a derived domain, where we assume the 

four underlying domains COMMUNICATOR, CONTROLPOINT, DEVICE 

and DHCPSERVER to be pairwise disjoint. 

AGENT  APPLICATION  COMMUNICATOR 

APPLICATION  CONTROLPOINT  DEVICE  DHCPSERVER 

Depending on its type, agents either execute the program 

RunControlPoint, RunDevice, or RunNetwork. The behavior of DHCP 

server agents is not explicitly defined in terms of a program; rather it is 

determined by the respective actions of the external world. 

domain PROGRAM  {RunControlPoint,RunDevice,RunNetwork} 

4.3 Abstract Data Structures 

Mathematical modeling of complex system behavior requires appropriate 

abstractions for coping with the complexity and diversity of real-life 

systems. To simplify the formal representation of our model, we assume a 

rich background structure for sets and maps with sets of integers, maps from 

integers to strings, or even sets of such maps, etc. Both maps and sets may 

be viewed as aggregate entities and may be updated point-wise. We 

exemplify our approach below. 

Messaging. Assume a static universe ADDRESS of IP addresses extended 

by protocol port numbers to refer to the global TCP/UDP address space and 

a unary function address associating with each application some element 

from ADDRESS. A distinguished address, called thisDevice, serves as a 

source address for devices that do not yet have an IP address. 

address : APPLICATION  ADDRESS 

Messages are uniformly represented as elements of a domain MESSAGE. 

Each message is of a certain type from the static domain MSGTYPE. The 

message type determines whether a message is transmitted using UDP or 

TCP, though we do not make this distinction explicit. Further, a message 

identifies a sender, a receiver, and the actual message content, or payload. 

An agent has a local mailbox for storing messages until these messages 

will actively be processed. The mailbox of an application represents its local 

input port as identified by the respective port number for this application. 

mailbox : AGENT  Set of MESSAGE initially empty 

Timeout Events. Agents have several distinct timers for different 

purposes. Each individual timer t has its own default duration effectively 



                                                                               Glässer and Veanes  Key words: UPnP, ASM, Real-Time Behavior, TCP/IP networking 

 
determining the expiration time when setting t. In a given state, a timer t is 

active if and only if its expiration time time(t) is greater than the value 

of now; otherwise, t is called expired. 

duration : AGENT  Map of TIMERTYPE to DURATION 

time : AGENT  Map of TIMERTYPE to TIME 
 

For a given timer t of agent a, the operation of setting t is defined as 

follows:  SetTimer(a,t)   time(a)(t) :=  now + duration(a)(t). 

 

In a given state, a predicate Timeout indicates for given timer instance t 

and agent a whether the timer instance is active or has expired. 

Timeout : AGENT  Map of TIMERTYPE to BOOL, 

Timeout(a,t) = now  time(a)(t) 

5. DEVICE MODEL 

We define the device model as parallel composition of six synchronously 

operating component ASMs, each of which runs a different protocol phase. 

For illustrating the approach, we restrict here on Addressing and refer to [9] 

for a comprehensive definition of the complementary protocol parts. 

Device Status. In a given device state, [2] distinguishes three basically 

different situations: inactive–the device is not connected to a network; alive–

the device is connected and may remain connected for some time; byebye–

the device is connected but is about to be removed from the network. The 

device status is affected by actions and events in the external environment as 

expressed by an externally controlled function status defined on devices.  

monitored status : DEVICE  { inactive, alive, byebye } 

In the device model defined below, me refers to a device agent 

performing the program RunDevice. The component behavior is defined 

by the respective ASM rule macros specifying parallel operations of me. 
 

RunDevice = 

  if status(me)  inactive then 

    RunAddressing   //Component ASM for Addressing phase 

    RunDiscovery    //Component ASM for Discovery phase 

    RunDescription  //… 

    RunControl 

    RunEventing 

    RunPresentation 

 



Universal Plug and Play Machine Models  

 
Addressing.  IP address management requires a DHCP server to assign 

an IP address when some new device (for which no IP address is specified 

manually) is added to the network. As reply to a DHCPDISCOVER message 

from a device’s DHCP client, the server broadcasts a DHCPOFFER message 

identifying the IP address as well as the hardware address of the device. 

When no DHCP server is available, a host may obtain a temporary IP 

address through auto IP addressing. This address can then be used until a 

DHCPOFFER message eventually is received (see [9] for details).  

We abstract from any specific algorithms used for auto IP addressing by 

making a nondeterministic choice to determine a temporary IP address. For 

checking the validity of a chosen address, i.e. for testing whether this choice 

causes any conflicts, we assume to have some externally controlled decision 

procedure as represented by the predicate ValidAutoIPAdr.  

monitored ValidAutoIPAdr : DEVICE  ADDRESS  BOOL 

 

In the Addressing ASM below, RunDHCPclient models the interaction 

between the local DHCP client and the DHCP server. The client uses a timer 

for reissuing its IP address request repeatedly until it eventually receives a 

response from a server. The first timeout event also triggers the calculation 

of a temporary IP address in parallel to the execution of the DHCP client. 
 

RunAddressing  
if address(me) = thisDevice or AutoConfiguredAdr(me) 

  then RunDHCPclient 

  if address(me) = thisDevice and DhcpOfferRcvd and 

     Timeout(me,dhcpClientTimer)then 

    choose adr  ADDRESS: ValidAutoIPAdr(me,adr) do 

      address(me):= adr 

    AutoConfiguredAdr(me):= true 

where  

  DhcpOfferRcvd   m  mailbox(me): DhcpOffer(m) 

6. CONCLUSIONS 

We illustrate here the construction of an abstract operational model of the 

Universal Plug and Play (UPnP) protocol. The concept of distributed real-

time ASM allows us to combine synchronous and asynchronous execution 

models in one uniform model of computation. A notion of global system 

time allows for dealing with timing constraints.  

For a comprehensive description of a fully executable model, including a 

GUI for control and visualization of simulation runs, sample control points 

and sample devices, see our technical report [9]. A more specific discussion 



                                                                               Glässer and Veanes  Key words: UPnP, ASM, Real-Time Behavior, TCP/IP networking 

 
on the role of the executable language AsmL as a domain-specific language 

for rapid prototyping in the UPnP project can be found in [10]. 

Conceptually, the abstract ASM model complements the informal 

requirements specification [2] serving as technical documentation, e.g. for 

further development, whereas the executable Asml model provides a basis 

for experimental validation, e.g. rapid prototyping and conformance testing.  

REFERENCES 

1. Abstract State Machine Web site. URL: http://www.eecs.umich.edu/gasm/  

2. UPnP Device Architecture V1.0. Microsoft Universal Plug and Play Summit, 

Seattle 2000, Microsoft Corporation, Jan. 2000. 

3. Official Web site of the UPnP Forum. URL: http://www.upnp.org  

4. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. Specification and 

Validation Methods, ed. E. Börger, Oxford University Press, 1995, 9-36. 

5. E. Börger, U. Glässer and W. Müller. Formal Definition of an Abstract 

VHDL'93 Simulator by EA-Machines. In C. Delgado Kloos and Peter T. Breuer, 

editors, Formal Semantics for VHDL, Kluwer Academic Pub., 1995, 107-139. 

6. Y. Gurevich. Sequential Abstract State Machines Capture Sequential 

Algorithms. ACM Trans. on Computational Logic, 1 (1): 77-111, July 2000.  

7. AsmL Web site. URL: http://www.research.microsoft.com/fse/asml/ 

Foundations of Software Engineering, Microsoft Research. 

8. D. E. Comer. Internetworking with TCP/IP, Principles, Protocols, and 

Architectures. Prentice Hall, 2000. 

9. U. Glässer, Y.Gurevich and M. Veanes, Universal Plug and Play Machine 

Models, Foundations of Software Engineering, Microsoft Research, Redmond, 

Technical Report,  MSR-TR-2001-59, June 15, 2001. 

10. U. Glässer, Y. Gurevich and M. Veanes. High-level Executable Specification of 

the Universal Plug and Play Architecture. In Proc. of 35
th

 Hawaii International 

Conference on System Sciences, Software Technology Track, IEEE 2002. 

11. R. Eschbach, U. Glässer, R. Gotzhein, M. von Löwis and A. Prinz. Formal 

Definition of SDL-2000 – Compiling and Running SDL Specifications as ASM 

Models. Journal of Universal Computer Science, 7 (11): 1025-1050, Springer 

Pub. Co., 2001. 

12. R. Stärk, J. Schmid and E. Börger. Java and the Java Virtual Machine: 

Definition, Verification, Validation. Springer, 2001. 


