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Abstract. We propose efficient algorithms and formulas that improve the performance of side-
channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and
Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.’s recoding to the
GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protec-
tion against simple side-channel and timing attacks. Secondly, we propose an efficient technique that
interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically
found on GLS curves and pairing computations, to improve performance on modern ARM processors.
Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-
GLS curve in twisted Edwards form defined over Fp2 , which supports a four dimensional decomposition
of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance,
using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000
cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our
benchmark results and the proposed techniques contribute to the improvement of the state-of-the-
art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the
cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication
computation to below 10%.

Keywords. Elliptic curves, scalar multiplication, side-channel protection, constant-time computation,
GLV method, GLS method, GLV-GLS curve, x64 processor, ARM processor, NEON instructions.

1 Introduction

Let P be a point of prime order r on an elliptic curve over Fp containing a degree-2 endomorphism φ. The
Gallant-Lambert-Vanstone (GLV) method computes the scalar multiplication kP as k1P + k2φ(P ) [15]. If
k1, k2 have approximately half the bitlength of the original scalar k, one should expect an elimination of
half the number of doublings by using the Straus-Shamir simultaneous multi-scalar multiplication technique.
Thus, the method is especially useful for speeding up the case in which the base point P is variable, known
as variable-base scalar multiplication. Later, Galbraith et al. [14] showed how to exploit the Frobenius
endomorphism to enable the use of the GLV approach on a wider set of curves defined over the quadratic
extension field Fp2 . Since then, significant research has been performed to improve the performance [29, 23]
and to explore the applicability to other settings [19, 34] or to higher dimensions on genus one curves [23, 30]
and genus two curves [7, 8]. Unfortunately, most of the work and comparisons with other approaches have
been carried out with unprotected algorithms and implementations. In fact, little effort has been done to
investigate methods for protecting GLV-based implementations against side-channel attacks. Just recently,
Longa and Sica [30] used the regular windowed recoding by Okeya and Takagi [33] in combination with
interleaving [15, 32] to make their four-dimensional implementation constant time. However, the use of this
? Author became affiliated to University of Campinas at the time of publication.
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standard approach in the GLV paradigm incurs in a high cost in terms of storage and computing performance
because of the high number of required precomputations. This issue worsens for higher dimensions [8].

In this work, we propose a new signed representation, called GLV-based Sign-Aligned Column (GLV-
SAC), that gives rise to a new method for scalar multiplication using the GLV method. We depart from the
traditional approach based on interleaving or joint sparse form and adapt the recoding by Feng et al. [11],
originally intended for standard comb-based fixed-base scalar multiplication, to the computation of GLV-
based variable-base scalar multiplication. The method supports a regular execution and thus provides a first
layer of protection against some simple side-channel (SSCA) attacks such as simple power analysis (SPA) [26].
Moreover, it does not require dummy operations, making it resilient to safe-error attacks [40, 41], and can be
used as a basis for constant-time implementations secure against timing attacks [25, 9, 2, 35]. In comparison
with the best previous approaches, the method improves the computing performance, especially during the
potentially expensive precomputation stage, and allows us to save at least half of the storage requirement for
precomputed values without impacting performance. For instance, the method injects a 17% speedup in the
overall computation and a 78% reduction in the memory consumption for a GLV-GLS curve using a 4-GLV
decomposition (see §5). The savings in memory without impacting performance are especially relevant for the
deployment of GLV-based implementations in constrained devices. Depending on the cost of endomorphisms,
the improvement provided by the method is expected to increase for higher-degree decompositions.

Processors based on the ARM architecture are widely used in modern smartphones and tablets due to their
low power consumption. The ARM architecture comes equipped with 16 32-bit registers and an instruction
set including 32-bit operations, which in most cases can be executed in one cycle. To boost performance in
certain applications, some ARM processors include a powerful set of vector instructions known as NEON. This
consists of a 128-bit Single Instruction Multiple Data (SIMD) engine that includes 16 128-bit registers. Recent
research has exploited NEON to accelerate cryptographic operations [6, 18, 36]. On one hand, the interleaving
of ARM and NEON instructions is a well-known technique (with increasing potential on modern processors)
that can be exploited in cryptography; e.g., see [6]. On the other hand, the vectorized computation using
NEON can be advantageously exploited to compute independent multiplications, as found in operations
over Fp2 ; e.g., see [36]. In this work, we take these optimizations further and propose a technique that
interleaves ARM-based and NEON-based multiprecision operations, such as multiplication, squaring and
modular reduction, in extension field operations in order to maximize the inherent parallelism and hide the
execution latency. The technique is especially relevant for implementing the quadratic extension field layer,
as found in GLS curves [14] and pairing computations [1]. For instance, it injects a significant speedup in
the range 17%-34% in the scalar multiplication execution on the targeted GLV-GLS curve (see §4 and §5).

To demonstrate the efficiency of our techniques, we implement the state-of-the-art twisted Edwards GLV-
GLS curve over Fp2 with p = 2127 − 5997, recently proposed by Longa and Sica [30]. This curve, referred
to as Ted127-glv4, supports a 4-GLV decomposition. Moreover, we also present efficient algorithms for
implementing field and quadratic extension field operations targeting our 127-bit prime on x64 and ARM
platforms. We combine and exploit incomplete reduction [39] and lazy reduction [38], expanding techniques
by [29]. These optimized operations are then applied to state-of-the-art twisted Edwards formulas [3, 22]
to speed up computations in the setting of curves over Fp2 . Our implementations of variable-base scalar
multiplication target modern x64 and ARM processors, and include full protection against timing attacks:
the scalar is decomposed and recoded (in constant time) in a regular pattern using the proposed GLV-SAC
representation, secret-data conditional branches are avoided and memory accesses (over precomputed points)
are performed in constant time.

Notably, we show that the proposed algorithms and formulas reduce dramatically the cost of protecting
against timing attacks and the storage for precomputations, and set a new speed record for protected software.
For instance, a protected variable-based elliptic curve scalar multiplication on curve Ted127-glv4 runs in
96,000 cycles on an Intel Sandy Bridge, using only 512 bytes of memory for precomputed values. This is
30% faster, using almost 1/5 of the storage, than a previous implementation by Longa and Sica [30] also
based on curve Ted127-glv4 that computes the same operation in 137,000 cycles using 2.25KB of memory
for precomputations. Moreover, this result is only 5% slower, using 1/2 of the storage, than the unprotected
computation by the same authors, which runs in 91,000 cycles and uses 1KB of memory. This not only
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represents a new speed record for protected software but also marks the first time that a constant-time
variable-base scalar multiplication computation is performed under 100K cycles on an Intel processor. Similar
results are obtained for ARM processors exploiting the technique that interleaves NEON and ARM-based
operations.

This paper is organized as follows. In §2, we give some preliminaries about the GLV and GLS methods,
and side-channel attacks. In §3, we present the new GLV-based representation and the corresponding scalar
multiplication method. We describe the implementation of curve Ted127-glv4 as well as optimized algorithms
for field, extension field and point operations targeting x64 and ARM platforms in §4. In this section, we also
discuss the interleaving technique for ARM. Finally, in §5, we perform an analysis of the proposed methods
and present benchmark results of scalar multiplication on several x64 and ARM processors.

2 Preliminaries

2.1 The GLV and GLS Methods

In this section, we briefly describe the GLV and GLS methods in a generic, m dimensional framework. Let C
be a curve defined over a finite field Fp equipped with an efficiently computable endomorphism φ. The GLV
method to compute scalar multiplication [15] consists of first decomposing the scalar k into sub-scalars ki
for 0 ≤ i < m and then computing

∑m−1
i=0 kiDi using the Straus-Shamir trick for simultaneous multi-scalar

multiplication, where D0 is the input divisor from the divisor class group of the curve and Di = φi(D0). If
all of the sub-scalars have approximately the same bitlength, the number of required doublings is reduced
to approximately log2 r/m, where r is the prime order of the curve subgroup. Special curves equipped with
endomorphisms which are different to the Frobenius endomorphism are known as GLV curves.

The GLS method [14, 13] lifts the restriction to special curves and exploits an endomorphism ψ arising
from the p-power Frobenius endomorphism on a wider set of curves C ′ defined over a extension field Fpk
that are Fpn-isogenous to curves C/Fp, where k|n. Equipped with ψ to perform the scalar decomposition,
one then proceeds to apply the GLV method as above. More complex decompositions arise by applying the
GLS paradigm to GLV curves (a.k.a. GLV-GLS curves [14, 30]).

These techniques have received lots of attention recently, given their significant impact in the performance
of curve-based systems. Longa and Gebotys [29] report efficient implementations of GLS curves over Fp2 using
two-dimensional decompositions. In [23], Hu, Longa and Xu explore a GLV-GLS curve over Fp2 supporting a
four-dimensional decomposition. In [7], Bos et al. study two and four-dimensional decompositions on genus
2 curves over Fp. Bos et al. [8] explore the combined GLV-GLS approach over genus 2 curves defined over
Fp2 , which supports an 8-GLV decomposition. In the case of binary GLS elliptic curves, Oliveira et al. [34]
report the implementation of a curve exploiting the 2-GLV method. More recently, Guillevic and Ionica [17]
show how to exploit the 4-GLV method on certain genus one curves defined over Fp2 and genus two curves
defined over Fp; and Smith [37] proposes a new family of elliptic curves that support 2-GLV decompositions.

From all these works, only [30] and [34] include side-channel protection in their GLV-based implementa-
tions.

2.2 Side-Channel Attacks and Countermeasures

Side-channel attacks [25] exploit leakage information obtained from the physical implementation of a cryp-
tosystem to get access to private key material. Examples of physical information that can be exploited are
power, time, electromagnetic emanations, among others. In particular, much attention has been put on tim-
ing [25, 9] and simple power attacks (SPA) [26], given their broad applicability and relatively low costs to be
realized in practice. Traditionally, the different attacks can also be distinguished by the number of traces that
are exploited in the analysis: simple side-channel attacks (SSCA) require only one trace (or very few traces)
to observe the leakage that directly reveals the secret bits, whereas differential side-channel attacks (DSCA)
require many traces to perform a statistical analysis on the data. The feasibility of these attacks depends on
the targeted application, but it is clear that SSCA attacks are feasible in a wider range of scenarios. In this
work, we focus on methods that minimize the risk posed by SSCA attacks such as SPA, and timing attacks.
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In curve-based cryptosystems, the first step to achieve protection against these attacks is to use regular
algorithms for performing scalar multiplication (other methods involve the use of unified formulas, but these
are generally expensive). One efficient approach in this direction is to recode the scalar to a representation
exhibiting a regular pattern. In particular, for the case of variable-base scalar multiplication, the regular
windowed recoding proposed by Okeya and Takagi [33] and further analyzed by Joye and Tunstall [24]
represents one of the most efficient alternatives. Nevertheless, in comparison with the standard width-w
non-adjacent form (wNAF) [20] used in unprotected implementations, the Okeya-Takagi recoding increases
the nonzero density from 1/(w + 1) to 1/(w − 1). In contrast, side-channel protected methods for scalar
multiplication exploiting the GLV method have not been fully studied. Furthermore, we note that methods
typically efficient in the standard case are not necessarily efficient in the GLV paradigm. For example, in [30],
Longa and Sica apply the Okeya-Takagi recoding to protect scalar multiplication on a GLV-GLS curve using
a four-dimensional GLV decomposition against timing attacks. The resulting protected implementation is
about 30% more expensive than the unprotected version. In this work, we aim at reducing that gap, providing
efficient methods that can be exploited to improve and protect GLV and GLS-based implementations.

The comb method [27] is an efficient approach for the case of fixed-base scalar multiplication. However,
in its original form, the method is unprotected against SSCA and timing attacks. An efficient approach to
achieve a regular execution is to recode the scalar using signed nonzero representations such as LSB-set [11],
MSB-set [12] or SAB-set [21]. A key observation in this work is that the basic version of the fixed-base comb
execution (i.e., without exploiting multiple tables) has several similarities with a GLV-based variable-base
execution. So it is therefore natural to adapt these techniques to the GLV setting to achieve side-channel
protection. In particular, the LSB-set representation is a good candidate, given that an analogue of this
method in the GLV setting minimizes the cost of precomputation.

2.3 The Least Significant Bit - Set (LSB-Set) Representation

Feng et al. [11] proposed a clever signed representation, called LSB-set, that is based on the equivalence
1 ≡ 11̄ . . . 1̄ (assuming the notation −1 ≡ 1̄), and used it to protect the comb method [27] in the computation
of fixed-base scalar multiplication (we refer to this method as LSB-set comb scalar multiplication). Next, we
briefly describe the LSB-set recoding and its application to fixed-base scalar multiplication. The reader is
referred to [27] and [11] for complete details about the original comb method and the LSB-set comb method,
respectively.

Let t be the bitlength of a given scalar k. Assume that k is partitioned in w consecutive parts of d =
dt/we bits each, padding k with (dw − t) zeros to the left. Let the updated binary representation of k be
(kl−1, kl−2, . . . , k0), where l = dw. One can visualize the bits of k in matrix form by considering the w pieces
as the rows and arranging them from top to bottom. The LSB-set recoding consists of first applying the
transformation 1 7→ 11̄ . . . 1̄ to the least significant d bits of the scalar (i.e., the first row in the matrix) and,
then, converting every bit ki in the remaining rows in such a way that output digits bi for d ≤ i ≤ (l − 1)
are in the digit set {0, bi mod d}. That is, digits in the same column are 0 or share the same sign. Then, for
computing a comb fixed-base scalar multiplication, one scans the “digit-columns” in the matrix from left
to right. Since every digit-column is nonzero by definition, the execution consists of a doubling-addition
computation at every iteration, which provides protection against certain SSCA attacks such as SPA.

3 The GLV-Based Sign-Aligned Column (GLV-SAC) Representation

In this section, we introduce a variant of the LSB-set recoding that is amenable for the computation of side-
channel protected variable-base scalar multiplication in the GLV setting. The new recoding is called GLV-
Based Sign-Aligned Column (GLV-SAC). Also, we present a new method for GLV-based scalar multiplication
exploiting the proposed representation.

In the following, we first discuss the GLV-SAC representation in a generic setting. In Section 3.2, we
discuss variants that are expected to be more efficient when m = 2 and m ≥ 8. To simplify the descriptions,
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we assume in the remainder that we are working on an elliptic curve. The techniques and algorithms can be
easily extended to other settings such as genus 2 curves.

Let {k0, k1, . . . , kj , . . . , km−1} be a set of positive sub-scalars in the setting of GLV with dimension m.
The basic idea of the new recoding is to have one of the sub-scalars of the m-GLV decomposition, say kJ ,
represented in signed nonzero form and acting as a “sign-aligner”. The latter means that kJ determines the
sign of all the digits of remaining sub-scalars according to their relative position.

The GLV-SAC representation has the following properties:

(i) The length of the digit representation of every sub-scalar kj is fixed and given by l = dlog2 r/me + 1,
where r is the prime subgroup order.

(ii) Exactly one sub-scalar, which should be odd, is expressed by a signed nonzero representation kJ =
(bJl−1, . . . , b

J
0 ), where all digits bJi ∈ {1,−1} for 0 ≤ i < l.

(iii) All the sub-scalars kj , with exception of kJ from (ii), are expressed by signed representations
(bjl−1, . . . , b

j
0) such that bji ∈ {0, bJi } for 0 ≤ i < l.

In the targeted setting, (i) and (ii) guarantee a constant-time execution regardless of the value of the
scalar k and without having to appeal to masking for dealing with the identity element. Item (iii) allows us
to reduce the size of the precomputed table by a factor of 2, while minimizing the cost of precomputation.

Note that we do not impose any restriction on which sub-scalar should be designated as kJ . In some
settings, choosing any of the kj (with the exception of the one corresponding to the base point, i.e., k0)
could lead to the same performance in the precomputation phase and be slightly faster than kJ = k0, if one
takes into consideration the use of mixed point additions. The condition that kJ should be odd enables the
conversion of any integer to a full signed nonzero representation using the equivalence 1 ≡ 11̄ . . . 1̄. To deal
with this restriction during the scalar multiplication, we first convert the selected sub-scalar kJ to odd (if
even), and then make the corresponding correction at the end (more details can be found in Section 3.1).
Finally, the reader should note that the GLV-SAC representation, in the way we describe it above, assumes
that the sub-scalars are all positive. This restriction is imposed in order to achieve the minimum length
l = dlog2 r/me+ 1 in the representation. Note that it is possible to lift this restriction if needed in a certain
setting (the analysis of this case is included in the extended paper version [10]).

An efficient algorithm to recode the sub-scalars to GLV-SAC proceeds as follows. Assume that each sub-
scalar kj is padded with zeros to the left until reaching the fixed length l = dlog2 r/me + 1, where r is the
prime order of the curve subgroup. After choosing a suitable kJ to act as the “sign-aligner”, the sub-scalar
kJ is recoded to signed nonzero digits bJi using the equivalence 1 ≡ 11̄ . . . 1̄. Remaining sub-scalars are then
recoded in such a way that output digits at position i are in the set {0, bJi }, i.e., nonzero digits at the same
relative position share the same sign. This is shown as Algorithm 1.

Algorithm 1 Protected Recoding Algorithm for the GLV-SAC Representation.
Input: m l-bit positive integers kj = (kjl−1, . . . , k

j
0)2 for 0 ≤ j < m, an odd “sign-aligner” kJ ∈ {kj}m, where

l = dlog2 r/me+ 1, m is the GLV dimension and r is the prime group order.
Output: (bjl−1, . . . , b

j
0)GLV-SAC for 0 ≤ j < m, where bJi ∈ {1,−1}, and bji ∈ {0, b

J
i } for 0 ≤ j < m and j 6= J .

1: bJl−1 = 1
2: for i = 0 to (l − 2) do
3: bJi = 2kJi+1 − 1
4: for j = 0 to (m− 1), j 6= J do
5: for i = 0 to (l − 1) do
6: bji = bJi · kj0
7: kj = bkj/2c − bbji/2c
8: return (bjl−1, . . . , b

j
0)GLV-SAC for 0 ≤ j < m.

We highlight that, in contrast to [11, Alg. 4] and [12, Alg. 2], our recoding algorithm is simpler and
exhibits a regular and constant time execution, making it resilient to timing attacks. Moreover, Algorithm 1
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can be implemented very efficiently by exploiting the fact that the only purpose of the recoded digits from
the sub-scalar kJ is, by definition, to determine the sign of their corresponding digit-columns (see details
in Alg. 2 below). Since kJi+1 = 0 and kJi+1 = 1 indicate that the corresponding output digit-column i will
be negative and positive, respectively, Step 3 of Algorithm 1 can be reduced to bJi = kJi+1 by assuming
the convention bJi = 0 to indicate negative and bJi = 1 to indicate positive, for 0 ≤ i < l. Following this
convention, further efficient simplifications are possible for Steps 6 and 7.

3.1 GLV-Based Scalar Multiplication using GLV-SAC

We now present a new method for computing variable-base scalar multiplication using the GLV method and
the GLV-SAC representation (see Algorithm 2). To simplify the description, we assume that k0 is fixed as
the “sign-aligner” kJ (it is easy to modify the algorithm to set any other sub-scalar to kJ). The basic idea
is to arrange the sub-scalars, after being converted to their GLV-SAC representation, in matrix form from
top to bottom, with sub-scalar kJ = k0 at the top, and then run a simultaneous multi-scalar multiplication
execution scanning digit-columns from left to right. By using the GLV-SAC recoding, every digit-column i is
expected to be nonzero and have any of the possible combinations [bm−1i , . . . , b2i , b

1
i , b

0
i ], where b

0
i ∈ {1,−1},

and bji ∈ {0, b0i } for 1 ≤ j < m. Since nonzero digits in the same column have the same sign, one only needs
to precompute all the positive combinations P0 + u1P1 + . . . + um−1Pm−1 with uj ∈ {0, 1}, where Pj are
the base points of the sub-scalars. Assuming that negation of group elements is inexpensive in a given curve
subgroup, negative values can be computed on-the-fly during the evaluation stage.

Algorithm 2 Protected m-GLV Variable-Base Scalar Multiplication using the GLV-SAC Representation.
Input: Base point P0 of order r and (m−1) points Pj for 1 ≤ j < m corresponding to the endomorphisms, m scalars
kj = (kjtj−1, . . . , k

j
0)2 for 0 ≤ j < m, l = d log2 r

m
e+ 1 and max(tj) = d log2 r

m
e.

Output: kP .

Precomputation stage:
1: Compute P [u] = P0 + u0P1 + . . .+ um−2Pm−1 for all 0 ≤ u < 2m−1, where u = (um−2, . . . , u0)2.
Recoding stage:
2: even = k0 mod 2
3: if even = 0 then k0 = k0 − 1
4: Pad each kj with (l− tj) zeros to the left for 0 ≤ j < m and convert them to the GLV-SAC representation using
Algorithm 1 s.t. kj = (bjl−1, . . . , b

j
0)GLV-SAC. Set digit-columns Ki = [bm−1

i , . . . , b2i , b
1
i ] ≡ |bm−1

i 2m−2 + . . .+ b2i 2+ b
1
i |

and digit-column signs si = b0i for 0 ≤ i ≤ l − 1.
Evaluation stage:
5: Q = sl−1P [Kl−1]
6: for i = l − 2 to 0 do
7: Q = 2Q
8: Q = Q+ siP [Ki]
9: if even = 0 then Q = Q+ P0

10: return Q

Since the GLV-SAC recoding requires that the “sign-aligner” kJ (in this case, k0) be odd, k0 is subtracted
by one if it is even in Step 3 of Algorithm 2. The correction is then performed at the end of the evaluation
stage at Step 9. These computations, as well as the accesses to the precomputed table, should be performed in
constant time to guarantee protection against timing attacks. For example, in the implementation discussed
in Section 5, the value P [Ki] required at Step 8 is retrieved from memory by performing a linear pass over
the whole precomputed table using conditional move instructions. The final value siP [Ki] is then obtained
by performing a second linear pass over the points P [Ki] and −P [Ki]. Similarly, to realize Step 9, we always
carry out the computation Q′ = Q + P0 and then perform a linear pass over the points Q and Q′ using
conditional move instructions to transfer the correct value to the final destination.

Note that Algorithm 2 assumes a decomposed scalar as input. This is sufficient in some settings,
in which randomly generated sub-scalars could be provided. However, in others settings, one requires
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to calculate the sub-scalars in a decomposition phase. We remark that this computation should also be
computed in constant time for protecting against timing attacks (e.g., see the details for Ted127-glv4 in §5).

Example 1. Letm = 4, log2 r = 16 and kP = 11P0+6P1+14P2+3P3. Using Algorithm 1, the corresponding
GLV-SAC representation with fixed length l = d16/4e+ 1 = 5 is given by (arranged in matrix form from top
to bottom as required in Alg. 2)


k0
k1
k2
k3

 ≡


0 1 0 1 1
0 0 1 1 0
0 1 1 1 0
0 0 0 1 1

 ≡


1 1̄ 1 1̄ 1
1 1̄ 0 1̄ 0
1 0 0 1̄ 0
0 0 1 1̄ 1


According to Algorithm 2, digit columns are given by K0 = [100] = 4,K1 = [1̄1̄1̄] = 7,K2 = [100] =

4,K3 = [001̄] = 1 and K4 = [011] = 3, and their corresponding si are s0 = 1, s1 = −1, s2 = 1, s3 = −1
and s4 = 1. Precomputed values P [u] are given by P [0] = P0, P [1] = P0 + P1, P [2] = P0 + P2, P [3] =
P0 + P1 + P2, P [4] = P0 + P3, P [5] = P0 + P1 + P3, P [6] = P0 + P2 + P3 and P [7] = P0 + P1 + P2 + P3. At
Step 5 of Alg. 2, we compute Q = s4P [K4] = P [3] = P0 + P1 + P2. The main loop in the evaluation stage is
then executed as follows

i 3 2 1 0

2Q 2P0 + 2P1 + 2P2 2P0 + 2P1 + 4P2 6P0 + 4P1 + 8P2 + 2P3 10P0 + 6P1 + 14P2 + 2P3

Q+ siP [Ki] P0 + P1 + 2P2 3P0 + 2P1 + 4P2 + P3 5P0 + 3P1 + 7P2 + P3 11P0 + 6P1 + 14P2 + 3P3

Cost Analysis. To simplify comparisons, we will only consider a setting in which precomputed points are
left in some projective system. When converting points to affine is convenient, one should include the cost
of this conversion. Also, we do not consider optimizations exploiting cheap endomorphism mappings during
precomputation, since this is dependent on a specific application. The reader is referred to Section 5 for a
more precise comparison in a practical implementation using a GLV-GLS twisted Edwards curve.

The cost of the proposed m-GLV variable-base scalar multiplication using the GLV-SAC representation
(Alg. 2) is given by (l − 1) doublings and l additions during the evaluation stage using 2m−1 points, where
l = d log2 r

m e + 1. Naively, precomputation costs 2m−1 − 1 additions (in practice, several of these additions
might be performed using cheaper mixed additions). So the total cost is given by (l − 1) doublings and
(l + 2m−1 − 1) additions.

In contrast, the method based on the regular windowed recoding [33] used in [30] requires (l−1) doublings
and m · (l− 1)/(w− 1) + 2m− 1 additions during the evaluation stage and m doublings with m · (2w−2 − 1)
additions during the precomputation stage, using m · (2w−2 + 1) points (naive approach without exploiting
endomorphisms). If, for example, r = 256,m = 4 and w = 5 (typical parameters to achieve 128-bit security
on a curve similar to Ted127-glv4), the new method costs 64 doublings and 72 additions using 8 points,
whereas the regular windowed method costs 68 doublings and 99 additions using 36 points. Thus, the new
method improves performance while reduces dramatically the number of precomputations (in this case, to
almost 1/5 of the storage). Assuming that one addition costs 1.3 doublings, the expected speedup is 20%.

Certainly, one can reduce the number of precomputations when using the regular windowed recoding
by only precomputing multiples corresponding to one or some of the sub-scalars. However, these savings in
memory come at the expense of computing endomorphisms during the evaluation stage, which can cost from
several multiplications [7] to approximately one full point addition each (see Appendix A). The proposed
method always requires the minimum storage without impacting performance.

The basic GLV-SAC representation and its corresponding scalar multiplication are particularly efficient
for four-dimensional GLV. In the following section, we discuss variants that are efficient for m = 2 and
m ≥ 8.
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3.2 Windowed and Partitioned GLV-SAC: Case of Dimension 2 and ≥ 8

In some cases, the performance of the proposed scalar multiplication can be improved further by combining
windowed techniques with the GLV-SAC recoding. Given a window width w, assume that a set of sub-
scalars kj has been padded with enough zeros to the left to guarantee that w|l, where l is the expected
length of an extended GLV-SAC representation that we refer to as wGLV-SAC. The basic idea is to join
every w consecutive digits in the wGLV-SAC representation, and precompute all possible values P [u] =
u′P0 +u0P1 + . . .+um−2Pm−1 for 0 ≤ u < 2wm−1 and u′ ∈ {1, 3, . . . , 2w−1} (again, points corresponding to
negative values of u′ can be computed on-the-fly). Scalar multiplication then proceeds by scanning w-digit
columns from left to right.

Conveniently, Algorithm 1 can also be used to obtain wGLV-SAC(kj), with the only change in the fixed
length to l = (dlog2 r/we+ 1) + (dlog2 r/we+ 1) mod w.

Example 2. Let m = 2, log2 r = 8, w = 2 and kP = 11P0 + 14P1. Using Algorithm 1, the corresponding
wGLV-SAC representation with fixed length l = d8/2e+ 1 + (d8/2e+ 1) mod 2 = 6, arranged in matrix form
from top to bottom, is given by[

k0
k1

]
≡
[

0 0 1 0 1 1
0 0 1 1 1 0

]
≡
[

1 1̄ 1̄ 1 1̄ 1
1 1̄ 0 0 1̄ 0

]
(1)

The 2-digit columns are given by K0 = [2̄1̄] = 3,K1 = [01̄] = 1 and K2 = [11] = 2, and their corresponding
si are s0 = −1, s1 = −1 and s2 = 1. Precomputed values P [u] are given by P [0] = P0−P1, P [1] = P0, P [2] =
P0 + P1, P [3] = P0 + 2P1, P [4] = 3P0, P [5] = 3P0 + P1, P [6] = 3P0 + 2P1 and P [7] = 3P0 + 3P1. In the
evaluation stage we first compute Q = s2P [K2] = P [2] = P0 + P1 and then execute

i 1 0

2wQ 4P0 + 4P1 12P0 + 16P1

Q+ siP [Ki] 3P0 + 4P1 11P0 + 14P1

Since the requirement of precomputations, given by 2wm−1, increases rapidly as w and m grow, windowed
GLV-SAC is especially attractive for 2-GLV implementations. In this case, by fixing w = 2 the number of
precomputed points is only 8. At the same performance level (in the evaluation stage), this is approximately
half the memory requirement of a method based on the regular windowed recoding [33] 1.

Whereas joining columns in the representation matrix is amenable for small m using windowing, for large
m it is recommended to join rows instead. We illustrate the approach with m = 8. Given a set of sub-scalars
kj for 0 ≤ j < 8, we first partition it in c consecutive sub-sets k′i such that c|8, and then convert every
sub-set to the GLV-SAC representation (using Alg. 1). In this case, every column in the matrix consists of
c sub-columns, each one corresponding to a sub-set k′i. Scalar multiplication then proceeds by scanning c
sub-columns per iteration from right to left. Thus, with this “partitioned” GLV-SAC approach, one increases
the number of point additions per iteration in the main loop of Alg. 2 from one to c. However, the number of
required precomputations is reduced from 2m−1 to c · 2m

c −1. For example, for m = 8, this approach reduces
the number of points from 128 to only 16 if c is fixed to 2 (each sub-table corresponding to a sub-set of
scalars contains 8 points). At the same performance level (in the evaluation stage), this is approximately
half the memory requirement of a method based on the regular windowed recoding [33], as discussed by the
recent work by Bos et al. [8]. Performance is also expected to improve since the number of point operations
for precomputation is significantly reduced. Note that, if one only considers positive sub-scalars and the
endomorphism mapping is inexpensive in comparison to point addition, then sub-tables can be computed by
simply applying the endomorphism to the first sub-table arising from the base point P0. In some instances,
such as the 8-GLV in [8], this approach is expected to reduce further the cost of precomputation. Although an

1 However, in some cases one can afford the reduction of precomputations from 16 to 8 when using the windowed
recoding if endomorphisms are cheap and can be computed on-the-fly during the evaluation stage; e.g., see [34].
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issue arises when sub-scalars can also be negative, this can be dealt with by adding one extra bit containing
the sign to the representation. We give the full details in the extended paper version [10].

4 High-Speed Implementation on GLV-GLS Curves

In this section, we describe implementation aspects of the GLV-GLS curve Ted127-glv4. We present op-
timized algorithms for prime field, extension field and point arithmetic. We also present the technique of
interleaving NEON and ARM-based multiprecision operations over Fp2 . Although our techniques are espe-
cially tuned for the targeted curve, we remark that they can be adapted and exploited in other scenarios.

4.1 The Curve

For complete details about the four-dimensional method using GLV-GLS curves, the reader is referred to [14]
and [31]. We use the following GLV-GLS curve in twisted Edwards form [30], referred to as Ted127-glv4:

E′TE/Fp2 : −x2 + y2 = 1 + dx2y2, (2)

where Fp2 is defined as Fp[i]/(i2 − β), β = −1 is a quadratic non-residue in Fp and u = 1 + i is a
quadratic non-residue in Fp2 . Also, p = 2127 − 5997, d = 170141183460469231731687303715884099728 +
116829086847165810221872975542241037773i and #E′TE(Fp2) = 8r, where r is the 251-bit prime 2251 −
255108063403607336678531921577909824432295. E′TE is isomorphic to the Weierstrass curve E′W /Fp2 :
y2 = x3 − 15/2 u2x − 7u3, which is the quadratic twist of a curve isomorphic to the GLV curve
EW /Fp : y2 = 4x3 − 30x − 28 (see [30, Section 5]). E′TE/Fp2 is equipped with two efficiently computable
endomorphisms Φ and Ψ defined over Fp2 , which enable a four-dimensional decomposition for any scalar
k ∈ [1, r− 1] in the subgroup generated by a point P of order r and, consequently, enable a four-dimensional
scalar multiplication given by

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ), with max
i

(|ki|) < C r1/4

where C = 179 [30]. Let ζ8 = u/
√

2 be a primitive 8th root of unity. The affine formulas for Φ(x, y) and
Ψ(x, y) are given by

Φ(x, y) =

(
− (ζ38 + 2ζ28 + ζ8)xy2 + (ζ38 − 2ζ28 + ζ8)x

2y
,

(ζ28 − 1)y2 + 2ζ38 − ζ28 + 1

(2ζ38 + ζ28 − 1)y2 − ζ28 + 1

)
and Ψ(x, y) =

(
ζ8x

p,
1

yp

)
,

respectively. It can be verified that Φ2 + 2 = 0 and Ψ2 + 1 = 0. The formulas in homogeneous projective
coordinates can be found in Appendix A.

Note that Ted127-glv4 has a = −1 (in the twisted Edwards equation; see [3]), corresponding to the
most efficient set of formulas proposed by Hisil et al. [22]. Although GLV-GLS curves with suitably chosen
parameters when transformed to twisted Edwards form offer roughly the same performance, as discussed
in [30], there are certain differences in the cost of formulas for computing the endomorphisms Φ and Ψ .
Curve Ted127-glv4 exhibits relatively efficient formulas for computing the endomorphisms in comparison
with other GLV-GLS curves from [30]. On the other hand, our selection of the pseudo-Mersenne prime
p = 2127− 5997 enables efficient field arithmetic by exploiting lazy and incomplete reduction techniques (see
the next section for details). Also, since p ≡ 3 (mod 4), −1 is a quadratic non-residue in Fp, which minimizes
the cost of multiplication over Fp2 by transforming multiplications by β to inexpensive subtractions.

4.2 Field Arithmetic

For field inversion, we use the modular exponentiation ap−2 (mod p) ≡ a−1 using a fixed and short addition
chain. This method is simple to implement and is naturally protected against timing attacks.

In the case of a pseudo-Mersenne prime of the form p = 2m − c, with c small, field multiplication can be
efficiently performed by computing an integer multiplication followed by a modular reduction exploiting the
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special form of the prime. This separation of operations also enables the use of lazy reduction in the extension
field arithmetic. For x64, integer multiplication is implemented in product scanning form (a.k.a Comba’s
method), mainly exploiting the powerful 64-bit unsigned multiplier instruction. Let 0 ≤ a, b < 2m+1. To
exploit the extra room of one bit in our targeted prime 2127−5997, we first computeM = a·b = 2m+1MH+ML

followed by the reduction step R = ML+2cMH ≤ 2m+1(2c+1)−2. Then, given R = 2mRH+RL, we compute
RL + cRH (mod p), where RL, cRH < 2m. This final operation can be efficiently carried out by employing
the modular addition proposed by Bos et al. [7] to get the final result in the range [0, p− 1]. Note that the
computation of field multiplication above naturally accepts inputs in unreduced form without incurring in
extra costs, enabling the use of additions without correction or operations with incomplete reduction (see
below for more details). We follow a similar procedure for computing field squaring. For ARM, we implement
the integer multiplication using the schoolbook method. In this case, and also for modular reduction, we
extensively exploit the parallelism of ARM and NEON instructions. The details are discussed in Section 4.4.

Let 0 ≤ a, b < 2m − c. Field subtraction is computed as (a − b) + borrow · 2m − borrow · c, where
borrow = 0 if a ≥ b, otherwise borrow = 1. Notice that in practice the addition with borrow · 2m can be
efficiently implemented by clearing the (m+ 1)-th bit of a− b.

Incomplete Reduction. Similar to [29], we exploit the form of the pseudo-Mersenne prime in combination
with the incomplete reduction technique to speedup computations. We also mix incompletely reduced and
completely reduced operands in novel ways.

Let 0 ≤ a < 2m − c and 0 ≤ b < 2m. Field addition with incomplete reduction is computed as (a +
b) − carry · 2m + carry · c, where carry = 0 if a + b < 2m, otherwise carry = 1. Again, in practice the
subtraction with carry · 2m can be efficiently implemented by clearing the (m+ 1)-th bit of a+ b. The result
is correct modulo p, but falls in the range [0, 2m−1]. Thus, this addition operation with incomplete reduction
works with both operands in completely reduced form or with one operand in completely reduced form and
one in incompletely reduced form. A similar observation applies to subtraction. Consider two operands a
and b, such that 0 ≤ a < 2m and 0 ≤ b < 2m − c. The standard field subtraction (a − b) mod (2m − c)
described above will then produce an incompletely reduced result in the range [0, 2m − 1], since a − b with
borrow = 0 produces a result in the range [0, 2m − 1] and a − b with borrow = 1 produces a result in the
range [−2m+c+1,−1], which is then fully reduced by adding 2m−c. Thus, performance can be improved by
using incomplete reduction for an addition preceding a subtraction. For example, this technique is exploited
in the point doubling computation (see Steps 7-8 of Algorithm 8). Note that, in contrast to addition, only
the first operand is allowed to be in incompletely reduced form for subtraction.

To guarantee correctness in our software, and following the previous description, incompletely reduced
results are always fed to one of the following: one of the operands of an incompletely reduced addition, the
first operand of a field subtraction, a field multiplication or squaring (which ultimately produces a completely
reduced output), or a field addition without correction preceding a field multiplication or squaring.

In the targeted setting, there are only a limited number of spots in the curve arithmetic in which in-
completely reduced numbers cannot be efficiently exploited. For these few cases, we require a standard field
addition. We use the efficient implementation proposed by Bos et al. [7]. Again, let 0 ≤ a, b < 2m − c. Field
addition is then computed as ((a+ c) + b)− carry · 2m − (1− carry) · c, where carry = 0 if a+ b+ c < 2m,
otherwise carry = 1. Similar to previous cases, the subtraction with carry·2m can be efficiently carried out by
clearing the (m+1)-th bit in (a+c)+b. As discussed above, this efficient computation is also advantageously
exploited in the modular reduction for multiplication and squaring.

4.3 Quadratic Extension Field Arithmetic

For the remainder, we use the following notation: (i) I,M, S,A and R represent inversion, multiplication,
squaring, addition and modular reduction over Fp, respectively, (ii)Mi and Ai represent integer multipli-
cation and integer addition, respectively, and (iii) i,m, s, a and r represent analogous operations over Fp2 .
When representing registers in algorithms, capital letters are used to allocate operands with “double preci-
sion” (in our case, 256 bits). For simplification purposes, in the operation counting an integer operation with
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double-precision is considered equivalent to two integer operations with single precision. We assume that
addition, subtraction, multiplication by two and negation have roughly the same cost.

Let a = a0+a1i ∈ Fp2 and b = b0+b1i ∈ Fp2 . Inversion over Fp2 is computed as a−1 = (a0−a1i)/(a20+a21).
Addition and subtraction over Fp2 consist in computing (a0 + b0) + (a1 + b1)i and (a0 − b0) + (a1 − b1)i,
respectively. We compute multiplication over Fp2 using the Karatsuba method. In this case, we fully exploit
lazy reduction and the room of one bit that is gained by using a prime of 127 bits. The details for the x64
implementation are shown in Algorithm 3. Remarkably, note that only the subtraction in Step 3 requires a
correction to produce a positive result. No other addition or subtraction requires correction to positive or
to modulo p. That is, ×, + and − represent operations over the integers. In addition, the algorithm accepts
inputs in completely or incompletely reduced form and always produces a result in completely reduced form.
Optionally, one may “delay” the computation of the final modular reductions (by setting reduction = FALSE
in Alg. 3) if lazy reduction could be exploited in the curve arithmetic. This has been proven to be useful to
formulas for the Weierstrass form [1], but unfortunately the technique cannot be advantageously exploited
in the most efficient formulas for twisted Edwards (in this case, one should set reduction = TRUE ). Squaring
over Fp2 is computed using the complex method. The details for the x64 implementation are shown in
Algorithm 4. In this case, all the additions are computed as integer operations since, again, results can be
let to grow up to 128 bits, letting subsequent multiplications take care of the reduction step.

Algorithm 3 Multiplication in Fp2 with reduction (m = 3Mi + 9Ai + 2R) and without reduction (mu =
3Mi + 9Ai), using completely or incompletely reduced inputs (x64 platform).
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ≤ a0, a1, b0, b1 ≤ 2127 − 1, p = 2127 − c, c small.
Output: a · b (mod p) ∈ Fp2 .

1: T0 ← a0 × b0 [0, 2254 >
2: T1 ← a1 × b1 [0, 2254 >
3: C0 ← T0 − T1 < −2254, 2254 >
4: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
5: if reduction=TRUE, then c0 ← C0 mod p [0, p >
6: t0 ← a0 + a1 [0, 2128 >
7: t1 ← b0 + b1 [0, 2128 >
8: T2 ← t0 × t1 [0, 2256 >
9: T2 ← T2 − T0 [0, 2256 >
10: C1 ← T2 − T1 [0, 2256 >
11: if reduction=TRUE, then c1 ← C1 mod p [0, p >
12: return if reduction=TRUE then a · b = (c0 + c1i), else a · b = (C0 + C1i) .

Algorithm 4 Squaring in Fp2(s = 2M + 1A+ 2Ai), using completely reduced inputs (x64 platform).
Input: a = (a0 + a1i) ∈ Fp2 , where 0 ≤ a0, a1 ≤ p− 1, p = 2127 − c, c small.
Output: a2 (mod p) ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: c0 ← t0 × t1 mod p [0, p >
4: t0 ← a0 + a0 [0, 2128 >
5: c1 ← t0 × a1 mod p [0, p >
6: return a2 = (c0 + c1i).

4.4 Extension Field Arithmetic on ARM: Efficient Interleaving of ARM-Based and
NEON-Based Multiprecision Operations
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Algorithm 5 Double 128-bit integer product with ARM and NEON interleaved (double_mul_neonarm).
Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, i ∈ {0, . . . , 3}.
Output: (F,G)← (a× b, c× d).
1: (F,G)← (0, 0)
2: for i = 0 to 1 do
3: (C0, C1, C2)← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Fi+j+2)← (Fi+j + aibj + C0, Fi+j+2 + ai+2bj + C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2, Gi+j)← Gi+j + cjdi + C2 {done by ARM}
8: (Fi+4, Fi+6, Gi+4)← (Fi+4 + C0, C1, C2)
9: for i = 2 to 3 do
10: for j = 0 to 3 do
11: (C2, Gi+j)← Gi+j + cjdi + C2 {done by ARM}
12: Gi+4 ← C2

13: return (F,G)

Algorithm 6 Triple 128-bit integer product with ARM and NEON interleaved (triple_mul_neonarm).
Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, e = {ei}, f = {fi}, i ∈ {0, . . . , 3}.
Output: (F,G,H)← (a× b, c× d, e× f).
1: (F,G,H)← (0, 0, 0)
2: for i = 0 to 3 do
3: (C0, C1, C2)← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Gi+j)← (Fi+j + ajbi + C0, Gi+j + cjdi + C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2, Hi+j)← Hi+j + ejfi + C2 {done by ARM}
8: (Fi+4, Gi+4, Hi+4)← (C0, C1, C2)
9: return (F,G,H)

Algorithm 7 Double modular reduction with ARM and NEON interleaved (double_red_neonarm).
Input: A prime p = 2127 − c, a = {ai}, b = {bi}, i ∈ {0, . . . , 7}.
Output: (F,G)← (a mod p, b mod p).

1: (Fi, Gi)← (ai, bi)i∈{0,...,3}
2: (C0, C1, C2)← (0, 0, 0)
3: for j = 0 to 1 do
4: (C0, Fj , C1, Fj+2)← (Fj + aj+4c+ C0, Fj+2 + aj+6c+ C1) {done by NEON}
5: for j = 0 to 3 do
6: (C2, Gj)← Gj + bj+4c+ C2 {done by ARM}
7: (F2, F4, G4)← (F2 + C0, C1, C2)
8: (F0, G0)← (F4c+ F0, G4c+G0)
9: return (F,G)

The potential performance gain when interleaving ARM and NEON operations is well-known. This feature
was exploited in [6] to speed up the Salsa20 stream cipher. On the other hand, Sánchez and Rodríguez-
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Henríquez [36] showed how to take advantage of NEON instructions to perform independent multiplications
in operations over Fp2 . In the following, we go a step further and show how to exploit the increasingly
efficient capacity of modern ARM processors for executing ARM and NEON instructions “simultaneously”
to implement multiprecision operations, such as multiplication, squaring and modular reduction, over Fp2 .
In other words, we exploit the fact that when ARM code produces a data hazard in the pipeline, the NEON
unit may be ready to execute vector instructions, and vice versa. Note that loading/storing values from
ARM to NEON registers still remains relatively expensive, so in order to achieve an effective performance
improvement, one should carefully interleave independent operations while minimizing the loads and stores
from one unit to the other. Hence, operations such as multiplication and squaring over Fp2 are particularly
friendly to this technique, given the availability of internal independent multiplications in their formulas.
Thus, using this approach, we implemented:

– a double integer multiplier (double_mul_neonarm) detailed in Algorithm 5, which interleaves a single
128-bit multiplication using NEON and a single 128-bit multiplication using ARM,

– a triple integer multiplier (triple_mul_neonarm) detailed in Algorithm 6, which interleaves two single
128-bit multiplication using NEON and one single 128-bit multiplication using ARM, and

– a double reduction algorithm (double_red_neonarm) detailed in Algorithm 7, that interleaves a single
modular reduction using NEON and a single modular reduction using ARM.

Note that integer multiplication is implemented using the schoolbook method, which requires one multi-
plication, two additions, one shift and one bit-wise AND per iteration. These operations were implemented
using efficient fused instructions such as UMLAL, UMAAL, VMLAL and VSRA [28], which add the result
of a multiplication or shift to the destination register in one single operation, reducing code size.

To validate the efficiency of our approach, we compared the interleaved algorithms above with standard
implementations using only NEON or ARM. In all the cases, we observed a reduction of costs in favor of
our novel interleaved ARM/NEON implementations (see Section 5 for benchmark results).

Triple_mul_neonarm is nicely adapted to the computation of multiplication over Fp2 , since this operation
requires three integer multiplications of 128 bits (Steps 1, 2 and 8 of Algorithm 3). For the case of squaring
over Fp2 , we use double_mul_neonarm to compute the two independent integer multiplications (Steps 3 and
5 of Algorithm 4). Finally, for each case we can efficiently use a double_red_neonarm. The final algorithms
for ARM are shown as Algorithms 10 and 11 in Appendix B.

4.5 Point Arithmetic

In this section, we describe implementation details and our optimized formulas for the point arithmetic. We
use as basis the most efficient set of formulas proposed by Hisil et al. [22], corresponding to the case a = −1,
that uses a combination of homogeneous projective coordinates (X : Y : Z) and extended homogeneous
coordinates of the form (X : Y : Z : T ), where T = XY/Z.

The basic algorithms for computing point doubling and addition are shown in Algorithms 8 and 9, respec-
tively. In these algorithms, we extensively exploit incomplete reduction (denoted by with ⊕,	), following
the details given in Section 4.2. To ease coupling of doubling and addition in the main loop of the scalar
multiplication computation, we make use of Hamburg’s “extensible” strategy and output values {Ta, Tb},
where T = Ta · Tb, at every point operation, so that a subsequent operation may compute coordinate T if
required. Note that the cost of doubling is given by 4m+ 3s+ 5a. We do not apply the usual transformation
2XY = (X + Y )2 − (X2 + Y 2) because in our case it is faster to compute one multiplication and one in-
complete addition than one squaring, one subtraction and one addition. In the setting of variable-base scalar
multiplication (see Alg. 2), the main loop of the evaluation stage consists of a doubling-addition computation,
which corresponds to the successive execution of Algorithms 8 and 9. For this case, precomputed points are
more efficiently represented as (X + Y, Y −X, 2Z, 2T ) (corresponding to setting EXT_COORD = TRUE in
Alg. 9), so the cost of addition is given by 8m+ 6a.



14 A. Faz-Hernández, P. Longa, A.H. Sánchez

Algorithm 8 Twisted Edwards point doubling over Fp2 (DBL = 4m+ 3s+ 5a).
Input: P = (X1, Y1, Z1).
Output: 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

1: Ta ← X2
1 (X2

1 )
2: t1 ← Y 2

1 (Y 2
1 )

3: Tb ← Ta ⊕ t1 (X2
1 + Y 2

1 )
4: Ta ← t1 − Ta (Y 2

1 −X2
1 )

5: Y2 ← Tb × Ta (Y2 = (X2
1 + Y 2

1 )(Y
2
1 −X2

1 ))
6: t1 ← Z2

1 (Z2
1 )

7: t1 ← t1 ⊕ t1 (2Z2
1 )

8: t1 ← t1 	 Ta (2Z2
1 − (Y 2

1 −X2
1 ))

9: Z2 ← Ta × t1 (Z2 = (Y 2
1 −X2

1 )[2Z
2
1 − (Y 2

1 −X2
1 )])

10: Ta ← X1 ⊕X1 (2X1)
11: Ta ← Ta × Y1 (2X1Y1)
12: X2 ← Ta × t1 (X2 = 2X1Y1[2Z

2
1 − (Y 2

1 −X2
1 )])

13: return 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

Algorithm 9 Twisted Edwards point addition over Fp2 (ADD = 8m+ 6a, mADD = 7m+ 7a or 8m+ 10a).
Input: P = (X1, Y1, Z1) and {Ta, Tb} such that T1 = Ta · Tb. If EXT_COORD=FALSE then Q = (x2, y2), else
Q = (X2 + Y2, Y2 −X2, 2Z2, 2T2).
Output: P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

1: T1 ← Ta × Tb (T1)
2: if EXT_COORD=FALSE then T2 = x2 ⊕ x2, T2 = T2 × y2 (2T2)
3: t1 ← T2 × Z1 (2T2Z1)
4: if Z2 = 1 then t2 ← T1 ⊕ T1 else t2 ← T1 × 2Z2 (2T1Z2)
5: Ta ← t2 − t1 (Ta = α = 2T1Z2 − 2T2Z1)
6: Tb ← t1 ⊕ t2 (Tb = θ = 2T1Z2 + 2T2Z1)
7: t2 ← X1 ⊕ Y1 (X1 + Y1)
8: if EXT_COORD=TRUE then Y3 = Y2 −X2, else Y3 = y2 − x2 (Y2 −X2)
9: t2 ← Y3 × t2 (X1 + Y1)(Y2 −X2)
10: t1 ← Y1 −X1 (Y1 −X1)
11: if EXT_COORD=TRUE then X3 = X2 + Y2, else X3 = x2 ⊕ y2 (X2 + Y2)
12: t1 ← X3 × t1 (X2 + Y2)(Y1 −X1)
13: Z3 ← t2 − t1 β = (X1 + Y1)(Y2 −X2)− (X2 + Y2)(Y1 −X1)
14: t1 ← t1 ⊕ t2 ω = (X1 + Y1)(Y2 −X2) + (X2 + Y2)(Y1 −X1)
15: X3 ← Tb × Z3 (X3 = βθ)
16: Z3 ← t1 × Z3 (Z3 = βω)
17: Y3 ← Ta × t1 (Y3 = αω)
18: return P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

5 Performance Analysis and Experimental Results

In this section, we carry out the performance analysis of the proposed GLV-based scalar multiplication
method using the GLV-SAC representation, and present benchmark results of our constant-time imple-
mentations of curve Ted127-glv4 on x64 and ARM platforms. We also assess the performance improvement
obtained with the proposed ARM/NEON interleaving technique. For our experiments, we targeted a 3.4GHz
Intel Core i7-2600 Sandy Bridge processor and a 3.4GHz Intel Core i7-3770 Ivy Bridge processor, from the
Intel family, and a Samsung Galaxy Note with a 1.4GHz Exynos 4 Cortex-A9 processor and an Arndale
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Board with a 1.7GHz Exynos 5 Cortex-A15 processor, from the ARM family, both equipped with the NEON
vector unit. The x64 implementation was compiled with Microsoft Visual Studio 2012 and ran on 64-bit
Windows (Microsoft Windows 8 OS). In our experiments, we turned off Intel’s hyperthreading and Turbo
Boost technologies; we averaged the cost of 104 operations which were measured with the timestamp counter
instruction rdtsc. The ARM implementation was developed and compiled with the Android NDK (ndk8d)
toolkit. In this case, we averaged the cost of 104 operations which were measured with the clock_gettime()
function and scaled to clock cycles using the processor frequency.

First, we present timings for all the fundamental operations of scalar multiplication in Table 1. Imple-
mentation details for quadratic extension field operations and point operations over Fp2 can be found in
Section 4. “IR” stands for incomplete reduction and “extended” represents the use of the extended coordi-
nates (X + Y, Y −X, 2Z, 2T ) to represent precomputed points. The four-dimensional decomposition of the
scalar follows [30]. In particular, a scalar k is decomposed in smaller ki s.t. max(|ki|) < C r1/4 for 0 ≤ i ≤ 3,
where r is the 251-bit prime order and C = 179 for our case (see §4.1). In practice, however, we have found
that the bitlength of ki is at most 63 bits for our targeted curve. The decomposition can be performed as a
linear transformation by computing ki =

∑3
j=0 round(Sjk) ·Mi,j for 0 ≤ i < 4, whereMi,j and Sj are integer

constants. We truncate operands in the round() operation, adding enough precision to avoid loss of data.
Thus, the computation involves a few multi-precision integer operations exhibiting constant-time execution.

Table 1. Cost (in cycles) of basic operations on curve Ted127-glv4.

Operation
ARM ARM Intel Intel

Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

Fp2

ADD with IR 20 19 12 12

ADD 39 37 15 15

SUB 39 37 12 12

SQR 223 141 59 56

MUL 339 185 78 75

INV 13,390 9,675 6,060 5,890

ECC

DBL 2,202 1,295 545 525

ADD 3,098 1,831 690 665

mADD (Z1 = 1) 2,943 1,687 622 606

Φ endomorphism (Z1 = 1) 3,118 1,724 745 712

Ψ endomorphism (Z1 = 1) 1,644 983 125 119

Misc

8-point LUT (extended) 291 179 83 79

GLV-based LSB-set recoding 1,236 873 482 482

4-GLV decomposition 756 430 305 290

Next, we analyze the cost of GLV-based variable-base scalar multiplication on curve Ted127-glv4. Based
on Algorithm 2, this operation involves the computation of one Φ endomorphism, 2 Ψ endomorphisms, 3
additions and 4 mixed additions in the precomputation stage; 63 doublings, 63 additions, one mixed addition
and 64 protected table lookups in the evaluation stage; and one inversion and 2 multiplications over Fp2 for
converting the final result to affine. In total, the cost is given by 1i+833m+191s+769a+64LUT8+4M+9A.
This operation count does not include other additional computations, such as the recoding to the GLV-SAC
representation or the decomposition to 4-GLV, which are relatively inexpensive (see Table 1).

Compared to [30], which uses a method based on the regular windowed recoding [33], the optimized
GLV-SAC method for variable-base scalar multiplication allows us to save 181 multiplications, 26 squarings
and 228 additions over Fp2 . Additionally, it only requires 8 precomputed points, which involve 64 protected
table lookups over 8 points (denoted by LUT8) during scalar multiplication, whereas the method in [30]
requires 36 precomputed points, which involve 68 protected table lookups over 9 points. For example, this
represents in practice a 17% speedup in the computation and a 78% reduction in the memory consumption
of precomputation on curve Ted127-glv4.
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Finally, in Table 2 we summarize our benchmark results for scalar multiplication and compare them
with other constant-time implementations in the literature. The results for the representative variable-base
scenario set a new speed record for protected curve-based scalar multiplication on x64 and ARM processors. In
comparison with the previously fastest genus one implementation on x64 by Longa and Sica [30], which runs
in 137,000 cycles, the presented result injects a cost reduction of 30% on a Sandy Bridge machine. Likewise,
in comparison with the state-of-the-art genus 2 implementation by Bos et al. [7], our results are between
21%-24% faster on x64 processors. It is also between 17%-19% faster than the very recent implementation
by Oliveira et al. [34] based on a binary GLS curve using the 2-GLV method4, and about 2 times faster
than Bernstein et al.’s implementation using a Montgomery curve over Fp [4]. Moreover, our results also
demonstrate that the proposed techniques bring a dramatic reduction in the overhead for protecting against
timing attacks. An unprotected version of our implementation computes a scalar multiplication in 87,000
cycles on the Sandy Bridge processor, which is only 9% faster than our protected version. In the case of ARM,
our implementation of variable-base scalar multiplication on curve Ted127-glv4 is 27% and 32% faster than
Bernstein and Schwabe’s [6] and Hamburg’s [18] implementation (respect.) of curve25519 on a Cortex-A9
processor. Note, however, that comparisons on ARM are particularly difficult. The implementation of [6]
was originally optimized for Cortex-A8, and [18] does not exploit NEON.

To put our results in perspective, note that the original GLS paper [14] reported a scalar multiplication
that ran in 0.76 the time of the best available implementation on x64 (Core 2 Duo) at that time, namely a
Montgomery curve over Fp [16]. However, the former implementation is not protected against timing attacks
whereas the latter is protected. If, optimistically, one assumes a 10% overhead to protect [14], the ratio above
would increase to at least 0.83. Our software, on the other hand, runs in only 0.63 and 0.49 the time of two
contemporary implementations also based on the same Montgomery curve, namely [18] and [4], respectively,
on another x64 processor (Sandy Bridge). Although a precise comparison is difficult (ratios are obtained on
different x64 architectures, GLS implementation [14] and ours exploit different prime forms, have different
endomorphism and precomputation costs, etc.) and part of the increase in the speedup can be attributed to
moving from 2 to 4-GLV decomposition, there is a wide margin that makes clear the improvement obtained by
using the proposed techniques. A similar experimental comparison for ARM is not available in the literature.
To our knowledge, we report the first implementation of a GLV-based GLS curve on an ARM processor.

Finally, in our experiments to assess the improvement obtained with the proposed ARM/NEON inter-
leaving technique on the Cortex-A9 processor, we observed speedups close to 17% and 24% in comparison
with implementations exploiting only ARM or NEON instructions, respectively. Remarkably, for the same
figures on the Cortex-A15, we observed speedups in the order of 34% and 35%, respectively. These experi-
mental results confirm the significant performance improvement enabled by the proposed technique, which
exploits the increasing capacity of the latest ARM processors for parallelizing ARM and NEON instructions.

Table 2. Cost (in 103 cycles) of implementations of variable-base scalar multiplication with protection against timing-
type side-channel attacks at approximately 128-bit security level. Results are approximated to the nearest 103 cycles.

Work ARM ARM Intel Intel

Curve Precomputations Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

Ted127-glv4 (this work) 512 bytes (8 points) 417 244 96 92

Ted127-glv4, Longa-Sica [30] 2.25 KB (36 points) - - 137 -

Binary GLS E/F2254 , Oliveira et al. [34] 512 bytes (8 points) - - 115 113

Genus 2 Kummer C/Fp, Bos et al. [7] 0 - - 126 (*) 117

Curve25519, Bernstein et al. [4] 0 - - 194 (*) 183 (*)

Curve25519, Bernstein et al. [6] 0 568 (*) - - -

Montgomery curve E/Fp, Hamburg [18] 0 616 - 153 -

(*) Source: eBACS [5].

4 In the case of unprotected software on x64, Oliveira et al. [34] hold the current speed record with 72,000 cycles on
an Intel Sandy Bridge. Their protected version is significantly more costly and runs in about 115,000 cycles.
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A Formulas for Endomorphisms Φ and Ψ on Curve Ted127-glv4

Let P = (X1, Y1, Z1) be a point in homogeneous projective coordinates on a twisted Edwards curve with
eq. (2), u = 1 + i be a quadratic non-residue in Fp2 , and ζ8 = u/

√
2 be a primitive 8th root of unity. Then,

we can compute Φ(P ) = (X2, Y2, Z2, T2) as follows

X2 = −X1

(
αY 2

1 + θZ2
1

) [
µY 2

1 − φZ2
1

]
, Y2 = 2Y1Z

2
1

[
φY 2

1 + γZ2
1

]
,

Z2 = 2Y1Z
2
1

[
µY 2

1 − φZ2
1

]
, T2 = −X1

(
αY 2

1 + θZ2
1

) [
φY 2

1 + γZ2
1

]
,

where α = ζ38 + 2ζ28 + ζ8, θ = ζ38 − 2ζ28 + ζ8, µ = 2ζ38 + ζ28 − 1, γ = 2ζ38 − ζ28 + 1 and φ = ζ28 − 1.



Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 19

For curve Ted127-glv4, we have the fixed values

ζ8 = 1 +Ai, α = A+ 2i, θ = A+Bi,

µ = (A− 1) + (A+ 1)i, γ = (A+ 1) + (A− 1)i, φ = (B + 1) + i,

whereA = 143485135153817520976780139629062568752, B = 170141183460469231731687303715884099729.
Computing an endomorphism Φ with the formula above costs 12m + 2s + 5a or only 8m + 1s + 5a if

Z1 = 1. Similarly, we can compute Ψ(P ) = (X2, Y2, Z2, T2) as follows

X2 = ζ8X
p
1Y

p
1 , Y2 = Zp

2

1 , Z2 = Y p1 Z
p
1 , T2 = ζ8X

p
1Z

p
1 .

Given the value for ζ8 on curve Ted127-glv4 computing an endomorphism Ψ with the formula above
costs approximately 3m+ 1s+ 2M + 5A or only 1m+ 2M + 4A if Z1 = 1.

B Algorithms for Quadratic Extension Field Operations exploiting
Interleaved ARM/NEON Multiprecision Operations

Below are the algorithms for multiplication and squaring over Fp2 , with p = 2127 − c, for ARM plat-
forms. They exploit functions interleaving ARM/NEON-based operations, namely double_mul_neonarm,
triple_mul_neonarm and double_red_neonarm, detailed in Algorithms 5, 6 and 7, respectively.

Algorithm 10 Multiplication in Fp2 using completely or incompletely reduced inputs, m = 3Mi+ 9Ai+ 2R
(ARM platform).
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ≤ a0, a1, b0, b1 ≤ 2127 − 1, p = 2127 − c, c small.
Output: a · b ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← b0 + b1 [0, 2128 >
3: (T0, T1, T2)← triple_mul_neonarm(a0, b0, a1, b1, t0, t1) [0, 2256 >
4: C0 ← T0 − T1 < −2254, 2254 >
5: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
6: T2 ← T2 − T0 [0, 2256 >
7: C1 ← T2 − T1 [0, 2256 >
8: return (c0, c1)← double_red_neonarm(C0, C1) [0, p >

Algorithm 11 Squaring in Fp2 using completely reduced inputs, s = 2M + 1A+ 2Ai (ARM platform).
Input: a = (a0 + a1i) ∈ Fp2 , where 0 ≤ a0, a1 ≤ p− 1, p = 2127 − c, c small.
Output: a2 ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: t2 ← a0 + a0 [0, 2128 >
4: (C0, C1)← double_mul_neonarm(t0, t1, t2, a1) [0, p2 >
5: return a2 = double_red_neonarm(C0, C1) [0, p >


