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ABSTRACT: We study indirect mechanisms in a setting where both objects and privately-
informed buyers arrive stochastically to a market. The seller in this setting faces a sequen-
tial allocation problem, and must elicit the private information of the dynamic popula-
tion of buyers in order to achieve her desired outcome—either an efficient or a revenue-
maximizing allocation. We propose a simple indirect mechanism, the sequential ascending
auction, which yields outcomes identical to those of an efficient dynamic Vickrey-Clarke-
Groves mechanism. We construct equilibria in memoryless strategies where strategic bid-
ders are able to reach the efficient outcome by revealing all private information in every
period, inducing behavior that is symmetric across both incumbent and newly entered
buyers. In contrast to settings with a static population, a sequence of second-price auctions
cannot yield this outcome, as these auctions do not reveal sufficient information to sym-
metrize different cohorts. We also extend our results to revenue-maximization, showing
that the sequential ascending auction with a reserve price is optimal.
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AUCTIONS WITH DYNAMIC POPULATIONS

To an economic theorist, the above auction design is not a difficult
concept. However, experience has shown that even economics Ph.D.
students have trouble understanding the above description.... The
problem is that if people do not understand the payment rules of the
auction then we do not have any confidence that the end result will
be efficient.

Nalebuff and Bulow (1993, p. 29)

1. INTRODUCTION

The role of population dynamics in markets is an under-studied topic that is of great impor-
tance. This is especially true because the vast majority of “real-world” markets are asynchronous:
not all buyers and sellers are available or present at the same time. Rather, agents arrive at the
market at different times, interact with various segments of the population, and then transact at
different times. This fact, in conjunction with the potential arrival or departure of agents from the
market in the future, leads to a trade-off: competition in the future may be higher or lower than at
the present time, and opportunities to trade may arise more or less frequently. Thus, agents must
choose between transacting now or waiting until the (uncertain) future.

In addition to this dynamic trade-off, an additional strategic element arises due to competition
between agents across time. Buyers and sellers may face the same competitors repeatedly, imply-
ing that individuals will want to learn the private information of others. Moreover, each agent
may be concerned about how her competitors will make use of any information that she reveals
about herself.

To make these trade-offs and considerations more concrete, consider for a moment the problem
faced by a buyer searching for a product on an online auction market such as eBay. Upon her
arrival to the market, this buyer will have available to her a variety of auctions to participate
in. Moreover, she can choose to “wait and see,” postponing her participation until a future date.
Supposing that our buyer does, in fact, choose to participate in an auction immediately, she must
then decide how much to bid. However, her willingness to pay will depend on her expectations
about the future. From her perspective, future supply is random—she may not know when the
next auction for a similar item will take place, nor how many such future auctions will occur.
Similarly, future competition—the number of potential competitors, as well as their strength—is
unknown to our buyer.

At the same time, this hypothetical buyer on eBay has available to her a wealth of other informa-
tion. She may observe the prices at which similar items have sold for in previous auctions, as well
as the actual bids submitted by various competitors. While rational bidding behavior requires the
incorporation of such information into a submitted bid, our buyer may also be concerned with
how her bid, given its potential observability, will affect others” behavior. She could, for instance,
try to strategically alter her competitors’ expectations about the future—submitting a relatively

high bid, for example, could serve as a “signal” of high future competition.
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Taking these considerations into account, it is clear that population dynamics can have a sig-
nificant impact on issues such as competition, price determination, efficiency, and revenue. And
given this impact, it is natural to question how this impact varies across different institutions or
market forms. Therefore, in the present work, we are concerned a question of fundamental impor-
tance: how may we achieve efficient or revenue-maximizing outcomes in markets with dynamic
populations of privately-informed buyers?

We answer this question by developing a reasonably general model of a dynamic environment
that reflects some key features of markets where dynamic populations are important. This model
abstracts away many of the details of specific dynamic markets, focusing instead on their essential
features. In particular, demand is not constant, as the set and number of buyers change over time,
with patient buyers entering and exiting the market according to a stochastic process. Similarly,
supply is random. In some periods there may be many units available, while in others none.
Finally, each buyer’s valuation—her willingness to pay—is her private information. Therefore,
a welfare- or revenue-maximizing seller must elicit the buyers’ private information in order to
achieve a desirable allocation.

It is well-known that dynamic variants of the classic Vickrey-Clarke-Groves mechanism may be
used to achieve efficient outcomes in dynamic environments, and that they may also be “tweaked”
for the purpose of revenue maximization. Such mechanisms are direct revelation mechanisms,
requiring buyers to report their values to the mechanism upon their arrival to the market. In prac-
tice, however, direct revelation mechanisms may be difficult to implement. For instance, the multi-
unit Vickrey auction—the (static) multi-unit generalization of the standard VCG mechanism—is
a direct revelation mechanism in which truth-telling is not just equilibrium behavior, but is in fact
a dominant strategy for all participants. Despite this, Ausubel (2004) points out that the Vick-
rey auction lacks simplicity and transparency, explaining that “many [economists] believe it is
too complicated for practitioners to understand.” This echoes a criticism made by Nalebuff and
Bulow (1993) in their proposal to the FCC for the sale of wireless spectrum. As demonstrated
by the quote in the epigraph above, Nalebuff and Bulow expressed concerns that “real-world”
bidders, even reasonably sophisticated ones, would experience difficulties in understanding the
price-determination schemes that form the basis of VCG mechanisms, thereby undermining the
mechanisms’ desirability.

These criticisms are corroborated by experimental evidence. According to Kagel, Harstad, and
Levin (1987), who examined single-unit auctions with affiliated private values, the theoretical
predictions about bidding behavior are significantly more accurate in ascending price-auctions
than in second-price auctions, despite the existence of a dominant-strategy equilibrium in the
second-price (Vickrey) auction. Kagel and Levin (2009) find a similar result in multi-object auc-
tions with independent private values: ascending-type clock auctions significantly outperform
the dominant-strategy solvable Vickrey auction in terms of efficiency. In another study examining
the efficiency properties of several mechanisms in a resource allocation problem similar to the one
we consider here, Banks, Ledyard, and Porter (1989) find that “the transparency of a mechanism
... is important in achieving more efficient allocations.” In their experiments, a simple ascending
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auction dominated both centralized administrative allocation processes as well as decentralized
markets in terms of both efficiency and revenues.

With these criticisms and “real-world feasibility” constraints in mind, we look to design sim-
ple, transparent, and decentralized indirect mechanisms that serve as viable alternatives to their
direct counterparts. In particular, we consider the possibility of achieving efficient or revenue-
maximizing outcomes via a sequence of auctions. Despite the similarity of dynamic VCG-based
mechanisms to their single-unit static counterparts, we show that this resemblance does not hold
for the corresponding auction formats. Recall that, in the canonical static allocation problem, the
analogue of the VCG mechanism is the second-price sealed-bid auction. In an environment with
a dynamic population of buyers, however, a sequence of second-price sealed-bid auctions cannot
yield outcomes equivalent to those of the dynamic VCG mechanism. This is due to the nature of
the “option value” associated with losing in one of a sequence of auctions, as a losing buyer may
win in a future auction. The value of this option depends on expected future prices, which are
in turn determined by the private information of other competitors. Thus, despite an underlying
independent-private-values framework, the strategic environment faced by individual bidders is
more complicated, as the auction market dynamics induce interdependence in (option) values.'

This interdependence implies that a standard second-price sealed-bid auction does not reveal
sufficient information for the determination of buyers” option values, as different “generations”
of buyers have observed different histories and hence have asymmetric beliefs. In contrast, the
ascending auction is a simple open auction format that does allow for the gradual revelation of
buyers’ private information in a way that symmetrizes beliefs across cohorts.” We use this fact to
construct intuitive equilibrium bidding strategies for buyers in a sequence of ascending auctions.
In each period, buyers bid up to the price at which they are indifferent between winning an object
and receiving their expected future contribution to the social welfare. As buyers drop out of the
auction, they (indirectly) reveal their private information to their competitors, who are then able
to condition their current-period bids on this information.

When this process of information revelation is repeated in every period, newly arrived buyers
are able to learn about their competitors without being privy to the events of previous periods.
This information renewal is crucial for providing the appropriate incentives for new entrants to
also reveal their private information. This allows for “memoryless” behavior—incumbent buyers
willingly ignore payoff-relevant information from previous periods, as they correctly anticipate
that it will be revealed again in the course of the current auction. These memoryless strategies
are not the result of an a priori restriction on the strategy space, but are instead the result of fully-
rational optimization on the part of individual buyers, leading to prices and allocations identical to
the truth-telling equilibrium of the efficient direct mechanism. Moreover, these strategies feature
a strong “no regret” property: they form a periodic ex post equilibrium. Given expectations about
future arrivals and behavior, each buyer’s behavior in any period remains optimal even after
having observing her current opponents” actions.

ISimilar phenomena have been noted in auctions with downstream interaction among buyers or with resale opportu-
nities. See, for instance, Jehiel and Moldovanu (2000) or Haile (2003).
2This is in line with findings from the sequential common agency literature (as in Calzolari and Pavan (2006, 2009))
which shows that mechanisms must control not only for the allocations induced, but also the information revealed.
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Similar arguments apply when considering revenue-maximizing indirect mechanisms. When
buyers’ values are drawn from the same distribution, the sequential ascending auction with an
optimally-chosen reserve price admits an equilibrium that is equivalent to truth-telling in the
revenue-maximizing direct mechanism. Thus, the sequential ascending auction is a natural de-
centralized institution for achieving either efficient or optimal outcomes.

The present work contributes to a recent literature exploring dynamic allocation problems and
dynamic mechanism design.’ Bergemann and Vilimaki (2010) develop the dynamic pivot mecha-
nism, a dynamic generalization of the Vickrey-Clarke-Groves mechanism that yields efficient out-
comes when agents’ private information evolves stochastically over time. Athey and Segal (2007)
characterize an efficient dynamic mechanism that is budget-balanced and incentive compatible,
again in the presence of evolving private information. In a similar dynamic setting, Pavan, Segal,
and Toikka (2009, 2010) consider the more general question of characterizing incentive-compatible
mechanisms. While these papers study dynamic mechanisms for a fixed set of buyers whose types
may change over time, we examine a setting where the number and set of buyers may change over
time but types are fixed.* Moreover, our fundamental point of departure from this literature is our
focus on the design of indirect mechanisms.

This paper also relates to recent work on dynamic auctions and revenue management. Li (2009)
and Board and Skrzypacz (2010) consider the efficient and optimal mechanisms, respectively, in
a finite-horizon version of our model with storable goods; Li also finds (as we do) that an open
auction format is required for indirect implementation. Mierendorff (2010) solves for the revenue-
maximizing auction when buyers have privately-known departure times from the market, while
in a more general setting Pai and Vohra (2009) derive the revenue-maximizing mechanism for
allocating a finite number of storable objects to buyers whose arrival to and departure from the
market is also private information. Vulcano, van Ryzin, and Maglaras (2002) also examine optimal
mechanisms for selling identical objects to randomly arriving buyers. When the objects are het-
erogeneous but commonly-ranked, Gershkov and Moldovanu (2009, 2010a) derive efficient and
revenue-maximizing mechanisms. In contrast to the present work, the buyers in these models are
impatient, and there is a fixed number of storable objects to be allocated.

Finally, our analysis of indirect mechanisms is linked to the sequential auctions literature. The
seminal work is Milgrom and Weber (2000), which examines the properties of a variety of auction
formats for the (simultaneous or sequential) sale of a fixed set of objects to a fixed set of buyers.
Kittsteiner, Nikutta, and Winter (2004) extend that model to one in which buyers discount the
future. Unlike the present work, however, they assume the presence of all buyers in the initial
period, leading to dramatically different conclusions about the equivalence (or lack thereof) of
second-price and ascending auctions. Said (2010) examines the role of random entry in a model of
sequential second-price auctions when objects are stochastically equivalent; that is, when values
are independently and identically distributed across both buyers and objects. The computer sci-
ence literature, motivated in part by the emergence of online auction sites such as eBay, has also

3Bergemamn and Said (2010) and Parkes (2007) survey much of this literature, with the former focusing primarily on
work in the economics literature, and the latter on the contributions from computer science.
“There is also a recent literature on dynamic allocation problems and mechanism design with an evolving population,
but without money. See, for instance, Kurino (2009) or Unver (2010).
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turned attention towards sequential auctions. Lavi and Nisan (2005) and Lavi and Segev (2009)
examine the “worst-case” performance of sequential ascending auctions with dynamic buyer pop-
ulations. Their prior-free, non-equilibrium analysis provides a lower bound on the efficiency of
the allocations achieved via sequential ascending auctions.

The remainder of this paper is structured as follows. We introduce the general model and
environment in Section 2. In Section 3, we describe the benchmark efficient direct mechanism and
then propose an indirect mechanism, the sequential ascending auction. We demonstrate that it
yields equilibrium outcomes equivalent to the benchmark direct mechanism. Then, in Section 4
we discuss the extension of our results to revenue-maximization (leaving the formal derivation to
an appendix). Finally, we conclude with Section 5.

2. MODEL

We consider an infinite-horizon, discrete-time environment with a single seller; time periods
are indexed by ¢t € IN. In each period ¢, the seller has K; units of a homogenous and indivisible
good available for sale. The number of objects available in each period is a random variable drawn
independently from the distribution y; on the nonnegative integers. We assume that objects are
non-storable: any objects that are not allocated or sold “expire” at the end of each period, and
hence cannot be carried over to future periods.

The beginning of each period ¢ is marked by the arrival to the market of N; buyers from a
countable set Z. As with the number of objects available in each period, the number of arriving
buyers may also vary, with N; an independent draw from the distribution A; on the nonnegative
integers. We denote by 7; the finite subset of buyers that arrive on the market in period t. Each
buyer i present on the market wishes to obtain a single unit of the seller’s good, and is endowed
with a privately-known value v; for that single unit. We assume that v; is an independent draw
from the distribution F; on V := [0, 7.

In addition, we assume that buyers may exogenously depart from the market after each period,
where the (common) probability of any buyer i “surviving” to the following period is denoted by
v € [0,1]. Otherwise, buyers remain present on the market until they are able to obtain an object.
Finally, we assume that buyers are risk neutral, and that their preferences are quasilinear and time
separable. All buyers, as well as the seller, discount the future with the common discount factor
0€(0,1).

As described above, new buyers may arrive to the market (and “old” buyers may depart) at the
beginning of each period. These arrivals and departures yield a stochastic process {a; },.p, Where
at : Z — {0,1} is an indicator function that tracks the presence of each agent on the market at time
t, and

Av:={ieZ:u(i)=1}
is the subset of agents present in period . We assume that buyers cannot conceal their presence,
and so «; (equivalently, .A;) is commonly known to the agents present at time t.> Simultaneously,

SThis assumption is merely for simplicity. As will be discussed later in Section 3.3, the equilibria we construct and
describe remain equilibria in the “larger” game where buyers may conceal their presence. This need not be true,
however, if buyer arrivals are correlated over time—see Gershkov and Moldovanu (2010b).
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new objects arrive, replacing any unallocated objects left over from the previous period. As with
the buyer arrival process, we assume that the arrival of objects is publicly observed, and so K; is
commonly known to those agents present on the market at time ¢. It will be convenient to denote
the “state” of the market at the beginning of each period t by w; := (a4, K;). Note, however, that
buyers arriving in period t do not observe the state of the market in previous periods—buyers
do not know when other buyers arrived on the market or how many objects were allocated in
previous periods. Once the current state is known, the seller then allocates objects to buyers and
makes (monetary) transfers, and we move on to the following period.

3. EFFICIENT IMPLEMENTATION
3.1. A Benchmark Efficient (Direct) Mechanism

We begin by examining the case in which the seller is a benevolent social planner whose goal
is to maximize allocative efficiency; that is, the planner wishes to choose a feasible allocation rule
{x;+} to maximize

Eo

i Y. 5t_1xi,tvi] ,

t=1iel

where x;, is the probability that the seller allocates an object to buyer i in period ¢, and the expec-
tation is taken with respect to the arrival and departure processes, as well as agents” valuations.
An allocation is feasible if

(1) forallt € N, x;; = 0if a;(i) = 0;

(2) Yiezxit < Kiforallt € N;

(3) Lienxiy < 1lforalli € Z;and

(4) x;;is adapted to the seller’s information.

Condition (1) requires that no only buyers that are physically present on the market are allocated
an object. Conditions (2) requires that no more objects be allocated at any time than are actually
available, while condition (3) requires that no no buyer receives more than the single object that
she desires. Finally, condition (4) reflects the fact that the seller is not prescient, and hence cannot
make allocations that are contingent on future information—period-t allocations must be made
based only on the reports of buyers arriving by period t.

Recall that in a static single-object allocation setting, allocative efficiency is equivalent to al-
locating the object to the highest-valued buyer. In our dynamic setting, the structure of the
environment—the nature of the arrival processes and the non-storability of objects—implies that
the socially efficient policy is similarly straightforward. Notice that objects are perishable, imply-
ing that there is no potential benefit to be gained by “withholding” an object or not allocating
as many objects as possible. Note also that buyers’ values are persistent over time and are inde-
pendent of the common departure rate. Therefore, since all buyers discount the future with the
same discount factor, the cost of delaying allocation to any given buyer is symmetric and strictly
increasing in values.

Thus, the efficient allocation rule is akin to an assortative matching: in each period ¢, allocate

all K; objects to the K; highest-valued buyers present on the market. In the event that multiple
6
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buyers have precisely the same value, ties may broken arbitrarily. Notice that this policy is history-
independent—the period-t efficient allocation depends only on the number of objects available
(K¢), the buyers present (indicated by «;), and these agents’ reported values (denoted by v;). Thus,
we will denote this rule by X := {Xj;(w;, v¢) }.

Since buyers’ private information is single-dimensional and values are independent, a dynamic
version of the standard Vickrey-Clarke-Groves mechanism can implement this efficient policy x.°
In particular, we will focus on the dynamic pivot mechanism of Bergemann and Vilimaki (2010).
They show that the dynamic pivot mechanism implements socially efficient policies in a general
dynamic setting with independent private values. The mechanism sets transfers such that, in each
period, agents receive their flow (per-period) marginal contribution to the social welfare. This
payment rule is both periodic ex post incentive compatible and individually rational: in each period,
given expectations about the future, every agent present finds it optimal to participate truthfully
in the mechanism, even after observing all private information up to and including that period.

In order to fully describe the dynamic pivot mechanism in our setting, we require the following
definitions. For any state w; = (&, K;) and reported values v;, let

W(wt, vi) :=E Z; gés_tfj,s(ws/Vs)Uj‘wt]
S= ]6

denote the social welfare (from period t on) when the efficient policy X is implemented. Denoting
by w; ' the state of the market in period s € IN when agent i has been removed from the market
(that is, where we impose a5(i) = 0), we write

[ee]

W_i(wy,vi):=E |} ) (SS’tJ?j,S(ws’i,vs)vj w;!
s=tjeT\{i}

for the social welfare (from period t on) when i is removed from the market and the efficient policy
X is implemented. Agent i’s (total) marginal contribution to the social welfare is then

ZUl‘((IJt,Vt> = W(wt,vt) — W,i(wt, Vt).

Similarly, her flow contribution in period ¢ is simply the difference between her marginal contri-
bution in the present and her expected future marginal contribution, which is given by

Wi(wy, vi) 1= wi(wy, vi) — OFE [wi(Wii1, Vig1)|we, Vi

= W(wy, vi) = W_ij(wy, vi) — OE [W(wis1, Vigr) — Woi(wig1, Vigr) [wr, ve] -

total contribution expected future contribution

Notice that when J?i,t(wt,vt) = 1, buyer i leaves the market, and therefore she has no future
contribution to the social welfare. Similarly, when X; ;(w;, v;) = 0, buyer i’s presence on the market
has no impact on the current-period allocation, and hence her flow contribution is zero. Thus, for
all (wy, v¢) we have

w; (wt, Vt) = J?i,t (wt, Vt)wi (wt, Vt)~

Dolan (1978) was the first to propose the use of VCG-like mechanisms in settings with a dynamic population of buyers.
7
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The dynamic pivot mechanism is then simply the mechanism M = {X, p}, where the payment
rule p is defined by

Pi(wr, vi) := X (wr, vi)v; — Wi(wy, vi)
= X ¢(w, vi) (0; — wiwy, vt)) 1)

for all (wy, v¢). Thus, this mechanism yields a flow payoff to each buyer equal to her flow marginal
contribution (implying a net payoff equal to her total marginal contribution), thereby incentivizing
truthful behavior and allowing the implementation of the efficient policy. Unlike the VCG mecha-
nism in static settings, however, the dynamic pivot mechanism is not dominant-strategy incentive
compatible—even though buyers make only a single report upon their arrival. This is because,
in contrast to static VCG, the payments p;; are not distribution-free, and so beliefs about other
players and their strategies matter for the determination of optimal behavior. However, Berge-
mann and Valiméki (2010, Theorem 1) show that the dynamic pivot mechanism is periodic ex
post incentive compatible and individually rational. We restate their result here for completeness.

LEMMA 1 (Implementability and efficiency of the dynamic pivot mechanism).
Truth-telling in the dynamic pivot mechanism is periodic ex post incentive compatible and individually
rational, thereby implementing the socially efficient policy.”

3.2. Towards an Efficient Indirect Mechanism

The dynamic pivot mechanism described above is a direct revelation mechanism, relying on
a planner to aggregate the reported values of each buyer in order to determine allocations and
payments. This raises an important question: does this efficient mechanism correspond to a fa-
miliar auction format? In the static single-object case, Vickrey (1961) provided a clear answer: the
analogue of the Vickrey-Clarke-Groves mechanism for the allocation of a single indivisible good
is the second-price auction. Both the sealed-bid second-price auction and the ascending (English)
auction admit equilibria that are outcome equivalent to the VCG mechanism and are compelling
prescriptions for “real-world” behavior.®

A reasonable conjecture is that a sequence of auctions would be useful in the context of a se-
quential allocation problem. But what auction format would be desirable? The “standard” ana-
logue of the VCG mechanism in static settings is the second-price sealed-bid auction. In a dynamic
setting where all buyers are present in the initial period, Kittsteiner, Nikutta, and Winter (2004)
show that a sequence of such auctions is, in fact, equivalent to dynamic VCG. When buyers arrive
stochastically as in our model, however, a sequence of second-price auctions does not correspond
to the dynamic formulation of the Vickrey-Clarke-Groves mechanism discussed above.

This failure of equivalence is due to the fact that a buyer participating in a sequence of auctions
has available to her an option: by losing in the current auction, she gains the ability to participate

7Bergemann and Vilimaki (2010) show this result in the context of a fixed agent population. Parkes and Singh (2003)
and Cavallo, Parkes, and Singh (2009) demonstrate that “Online VCG,” another dynamic variant of the VCG mecha-
nism, implements the efficient policy in the presence of an evolving agent population.
8of course, the revenue equivalence theorem applies, and several other standard auction mechanisms are able to yield
efficient outcomes in the single-object static setting. However, they are not outcome equivalent to the VCG mechanism.
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in future elements of the sequence. Let us denote the expected value of this future participa-
tion by 6V. Rational bidding behavior in a second-price sealed-bid auction then requires shading
one’s bid downwards by the value of this option—our bidder chooses her bid b; to maximize her
expected payoff, solving
max {Pr <b1- > max{b]-}> E [vi - ma,x{b]-}} +Pr (bi < max{b]-}> 5V} .

i j#i j#i j#i

1

Since the probability of winning and the probability of losing sum to one, we may rearrange the
above expression into an equivalent optimization problem:

max {Pr (bi > r%?lx{b]}> E [(UZ- —6V) — Tﬁf{b]}] } + V.

1

This, however, is exactly the problem faced by a bidder in a static second-price sealed-bid auction
when her true value is given by v; — §V; standard dominance-type arguments show that it is then
optimal to bid
bz* = 0; — oV.
What, then, is this option value? Since it is an expectation of future payoffs from participating
in the sequence of auctions, it must incorporate the buyer’s expectations of future prices. But these
future prices are determined by the valuations of one’s competitors, and hence the continuation

value V is itself a function of those valuations; that is,
V= V(Z},‘, U_i).

Thus, despite the fact that we have started in an independent private-values framework, market
dynamics (in particular, repeated competition across time) generate interdependence: buyers must
learn their competitors’ values in order to correctly “price” the option of future participation.’
Moreover, this learning is not possible when using a second-price sealed-bid auction (or any other
sealed-bid auction format, for that matter), as the auction format simply does not reveal sufficient
information to market participants, and buyers will have to bid based on their expectations and
beliefs about their competitors; loosely speaking, buyer i will bid

bik =0; — E [(5V(UZ', ’(J,l‘)] ,

1

where the expectation is conditional on her bid being pivotal (conditional on being tied for the K;-
th and (K; + 1)-st highest bids). In sharp contrast, however, to the sequential sealed-bid auctions
of Kittsteiner, Nikutta, and Winter (2004) where all buyers are present throughout the sequence
of auctions, bidders that arrive to the market at different times will have observed different his-
tories. These bidders will therefore have asymmetric beliefs about their competitors, and hence
asymmetric expectations. This leads to asymmetry in bidding behavior, which in turn generates
inefficient outcomes.

1t is well-known (see, for instance, Dasgupta and Maskin (2000) or Jehiel and Moldovanu (2001)) that efficient im-

plementation is not guaranteed when values are interdependent. Note, however, that interdependence arises in our

setting due to the dynamics of the indirect mechanism and the resulting option values—our underlying environment is

a standard independent private values setting, and hence the efficient policy is implementable by the direct mechanism.
9
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A similar problem arises when considering the use of a second-price auction where bids are
revealed each period after the allocation of objects. In particular, in any period in which there are
new entrants, there will be buyers who are uninformed—and about whom incumbent buyers are
uninformed. Again, these two groups will have differential information, and hence differential
beliefs, thereby leading to inefficient outcomes. Note that this occurs despite the fact that bids
are being revealed. Since information revelation is occurring after the auction is over, buyers are
unable to condition their bids on that information. Instead, information revealed in the current
period can be used only in subsequent periods; information revelation is occurring too “slowly”
for information about others to be incorporated into current-period bidding.

These difficulties persist in the face of other attempts to symmetrize beliefs. Another natural
avenue by which to attempt this—in the case when buyers are ex ante symmetric—is to pub-
licly release information about winning bids to both incumbent buyers and new entrants, lead-
ing to conditional beliefs about competing buyers that are truncations of the initial distributions.
However, since buyers do not observe the arrival times of buyers that precede them, members of
different cohorts who have had different experiences will continue to be differentially informed.
Therefore, when buyers condition their bids on being pivotal, they will truncate at different points
and continue to bid asymmetrically.

These asymmetries suggest the need for an open auction format, and in particular the ascending
price auction. In such an auction, a price clock rises continuously and buyers drop out of the
auction at various points. This allows buyers to observe the points at which their competitors exit
the auction and make inferences about their valuations. These inferences can then be incorporated
into current-period bidding, symmetrizing buyers’ beliefs and leading to bids that correctly account
for the interdependence generated by market dynamics: buyers can essentially submit bids

bf = Ui — 5V(Ul',l)_,‘),

1

perfectly accounting for interdependence and thereby allowing for an efficient outcome.

3.3. An Efficient Sequential Auction

To be more formal, we make use of a simple generalization of the Milgrom and Weber (1982)
“button” model of ascending auctions. In particular, we consider a multi-unit, uniform-price vari-
ant of their model. The auction begins, in each period, with the price at zero and with all agents
present participating in the auction. Each bidder may choose any price at which to drop out
of the auction. This exit decision is irreversible (in the current period), and is observable by all
agents currently present. Thus, the current price and the set of active bidders is commonly known
throughout the auction.

When there are K; > 1 objects for sale, the auction ends whenever at most K; active bidders
remain, with each remaining bidder receiving an object and paying the price at which the auction
ended. Note that if there are fewer than K; bidders initially, then the auction ends immediately at
a price of zero. In addition, suppose that several bidders drop out of the auction simultaneously,

leaving k < K; bidders active. The auction ends at this point, and K; — k of the “tied” bidders
10
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are selected uniformly at random to receive an object—along with the remaining active bidders—
paying the price at which the auction closed.'’ With this in mind, each bidder’s decision problem
within a given period is not the choice of a single bid, but is instead the choice of a sequence of
functions, each of which determines an exit price contingent on the (observed) exit prices of the
bidders who have already exited the current auction. Therefore, over the course of the auction,
buyers gradually reveal their private information to their competitors.

This process of gradual information revelation leads to an additional asymmetry, however.
Consider the group of buyers who participated in an auction in period t but lost. At the end
of the auction, they will have observed each others” drop-out prices and inferred each others’ val-
ues, implying that at the beginning of period t + 1, they have essentially perfect and complete
information about one another. But in period t 4- 1, a new group of buyers, about whom nothing
is known, arrives on the market. We therefore have two differentially informed groups of buy-
ers.!! Moreover, if we want to achieve an efficient outcome, these new entrants must be induced
to reveal their private information despite being asymmetrically informed.

This asymmetry may be resolved via a process of information renewal: full revelation of all private
information in every period. This is achieved by using “memoryless” strategies: incumbent buy-
ers disregard their observations and information from previous periods and behave “as though”
they are uninformed. By doing so, all buyers are able to behave symmetrically, thereby allowing
newly arrived buyers to learn about their current competitors without knowledge of the events
of previous periods. All buyers, incumbents and new entrants alike, are thus provided with the
appropriate incentives to participate in the process of information revelation.

Note that this equilibrium in memoryless strategies is not the result of an a priori restriction
on the set of strategies available to buyers. Rather, the use of memoryless strategies is the result
of fully rational and unconstrained optimizing behavior. Buyers have perfect recall of the past,
and also have available to them the option of conditioning on information revealed in previous
periods. Ignoring that information, however, is a best response to their competitors” behavior.

Why would a fully-rational, utility-maximizing buyer “throw away” payoff-relevant informa-
tion from previous periods and behave as though she were uninformed? Recall that bidders en-
gage in the process of information revelation and renewal in every period. Buyers therefore an-
ticipate that (in equilibrium) all private information they may have observed in the past will be
revealed again. In particular, there is no need for buyers to condition their behavior at the outset
of the current period on the past—buyers expect any payoff-relevant information to be revealed
anew as the price clock rises over the course of the current-period auction, allowing them to con-
dition on this information as it is revealed (or re-revealed) during the current period.

10The sequential ascending auction mechanism we propose bears some resemblance to the multi-unit auction mecha-
nism of Demange, Gale, and Sotomayor (1986). In fact, in an environment where all buyers are present in the initial
period and without supply uncertainty, the two mechanisms arrive at equivalent outcomes. Recall, however, that their
mechanism operates by making use of an auctioneer who raises the prices on “over-demanded” sets of objects. This
is precluded in our setting with a dynamic population, as it is impossible to determine which future objects will be
over-demanded before either the objects or the agents who desire them arrive to the market.

HThis is a crucial difference with the scheduling example in Bergemann and Valiméki (2010). Their example has no
population uncertainty, and hence no additional informational asymmetries; therefore, the efficient outcome is also
achievable by a sequence of first- or second-price sealed-bid auctions as in Kittsteiner, Nikutta, and Winter (2004).

11
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With this in mind, we now informally describe the memoryless strategies used by each player
in the sequential ascending auction mechanism. In each period, buyers will bid sincerely, remain-
ing active in the auction until the price reaches the point at which they are indifferent between
winning immediately and participating in future periods. Moreover, these buyers believe that
any future prices they pay will equal the externality that they impose on the market. Equivalently,
they believe that the option value of future participation equals their expected future marginal
contribution to the social welfare:

5V(Ui/ U—i) =JE [wi(wt+1rvt+l)|wh Vi = (Ui/ U—i)] .

As competitors drop out of the auction and reveal their private information, each remaining buyer
recalculates this expected continuation value and redetermines her optimal drop-out point.

To formally describe the strategies, let n; := |A;[ = Y ;7 a:(j) denote the number of buyers
present in period ¢t. In addition, let

yi = (yiw-,y?*)

denote the ordered valuations of all buyers present in period ¢, where y} is the largest value, and
y}" is the smallest. Finally, for eachk = 1,..., 1, let

vk = (3,...,0) € vk andyfk = (ylfﬂz--w]/?t)-

If all buyers use symmetric strictly increasing bidding strategies within a period, the prices at

which buyers exit the auction will reveal their values. Over the course of the current-period auc-

tion, buyers will then observe y,_L> k allowing their bids to be conditioned on this information.
Finally, we define, foreach k = 2,...,n,

w1 (wy, U,yfk) = JE |:w1'((Ut+1,Vt+])|CUt,Vf = (v,...,v,yfk)]

to be the (discounted) expected future marginal contribution of an agent i € A; with value v; = v,
where the expectation is conditional on the period-t presence of k — 1 competitors each with the
same value v and 1; — k buyers ranked below i with values y;*.

With these preliminaries in hand, we may now define the strategies used by each bidder. We
define, foreach k = 2,...,n;,

Bin, (wr,vi, y7¥) 1= v; — 0wy, v, y7F). )

In each period t € IN, each agent i € A; bids according to Efc,nt when she is one of k active com-
petitors in the auction. Thus, each buyer i initially bids up to the point at which she is indifferent
between winning the object at the current price and receiving her discounted expected marginal
contribution in the next period.12 At the outset of the auction, when no other competitors have
dropped out yet, a buyer is only able to win at the current price if the other buyers exit simultane-
ously. Thus, she is pivotal and will win only if she is exactly tied with all other buyers present on
the market. Note that these initial bids depend only upon the current state of the market and each
buyer’s own private information, and not on the past history of the market.

12506 Said (2008) for an explicit closed-form example of these strategies (derived from equilibrium considerations alone)
in a special case of the present model.
12
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Recall that an efficient allocation assigns objects to buyers in decreasing order of their values,
implying that the presence of a buyer i with value v; does not affect the timing of allocation to
buyers j with v; > v;. Furthermore, since ties among buyers may be broken arbitrarily without
affecting the social surplus, there is no trade-off between allocating to i or to any other buyer j
with value v; = v;. Thus, the marginal contribution to the social welfare made by a buyer i with
value v; is independent of the values of any buyers j with v; > v;. As this is true for any state and
any configuration of values (and since v; < 7), this implies that

JE [wi(wt+1rvt+l)‘wtzvt = (vi,---,vi,y?k)} =JE [wi(wt+lrvt+l)’wtrvt = (‘_’k_llvryfk)} ;

that is, the expected future marginal contribution w'*!(w, v;, y7 K of a buyer i with n; — k com-
petitors whose values y; ¥ are less than v; and k — 1 competitors whose values at least as large as
v; does not depend upon the values of those latter competitors.

This observation implies that, for any v; > v/, the difference w N (wy, v;) — W (wy, v}) equals

JE [W(wt+1/vt+1)|wf/vt == (‘_/nt_llvi)] —J0E [W—i(wt+1lvt+1)|wtlvt = (vnt_llvi)]

— OB [W(wt i1, Vigr)|wr, vi = (¥4, 00)] 4+ 6B [W_j(wi i1, vigr) lwr, vi = (3971, 0))]

= OE[W (w1, Vi) |wy, v = (Vnhlzvz’)] — OSE[W(wyi1, Vi) |wr, vi = (V”‘H,vﬁ)],

since the social welfare when i is not present on the market does not depend upon i’s value (and
hence the second and fourth terms are equal). Moreover, it is easy to find an upper bound for this
difference. In particular, note that the second term is the social welfare when taking the efficient
policy for the case where i’s value is v}. By definition, this is no smaller than the social welfare
when i’s value is v} but she is treated as though it is v;. Therefore, we have

OE [W(wt+1rvt+1)|wtl Vi = (vnt_llvi)] —0E [W(wt+1/vt+1)|wi’/vt = (vnt_llv;)]

(o)
SE| ) 0 '%is(ws, vs)|wp, v = (V”f_l,vi)] (v; — o).
s=t+1
Thus, v; > v} implies that
- - o0
Bhyn (Wi, 0) — Bl o (i, 0)) > [ 1=E | Y &% 5(ws, vs) |wp, vi = (3L 0) | | (vi —0)).
s=t+1

This difference is, of course, strictly positive since the expected discounted probability of receiving
an object in the future is bounded above by é < 1. Thus, if all buyers follow the bidding strategies
described in Equation (2), the buyer who is, in fact, the lowest-ranked buyer present in period t
will be the first to drop out of the period-t auction, publicly revealing her value.

At this point, each remaining buyer i bids until she is indifferent between winning the object at
the current price and receiving her discounted expected marginal contribution, conditional on the
knowledge that the lowest-ranked buyer present has value y;" < v;. As before, the buyer is pivotal
and can win only if she is exactly tied with the remaining buyers. Thus, buyer i will remain active
until she is indifferent between winning and continuing on to the future. So suppose that buyer j

13
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with value v; was the first to exit the auction. Then yn = vj < v; implies

t+1( t+1(

W' (wr, v, 0)) — W

= 5<IE [W(wt+1/ Vt+1)|(Ut, Vi = (vnt_zl i, U])] —E [W(wt+1/vt+1)|wh Vi = (‘_/nt_ll v])])

wt, vj)

- 5(]}3 [W_i(wr1, vien) i, vi = (¥772,0,0))] — E[W_j(wps1, visr)|wr, vi = (v"t—l,vj)]).
However, we may rewrite the second difference term above may be as
- 5(115 [W_i(wrs1, Vi) |w, vi = (372,05, 07)] — E[W_i(wrs1, viia)|wp, vi = (372,05, vi)]>
— 5<]E [W_ (w1, i) |wr, vi = (72, 0;,0;) ] — E[W_j(wps1, Vi) |wr, vi = (V”"l,vj)]).

Thus, the difference in future expected contributions w! ™! (wy, v;, vj) — w1 (wy, vj) is the sum
of three differences: the first is the change in social welfare when i’s value increases from v; to
7; the second is the change in social welfare—with i removed from the market—when j’s value
increases from v; to v;; and finally, the third is the change in social welfare—with j removed from
the market—when i’s value decreases from 0 to v;. However, since v; < v;, the presence or absence
of j from the market has no influence on when the efficient policy allocates to 7, regardless of
whether i’s value is v; or 0. Therefore, the gain from the first difference exactly offsets the loss
from the third, implying that

wt—i—l(

wi, v, v;) — W' (wy, v))
- 5(]E (W_i(wr 1, Vi) lws, vi = (972,03, 0;) | — B [W_j(wrs1, Vi) ws, vi = (‘_’"ﬁzzvifvj)])'

A bounding argument similar to the one applied above with v; and v} may then be used to show
that the difference in bids
Bl (w1, 03,0)) = By, (01, 0))

is positive. Thus, there is “continuity” at the first drop out point, in the sense that the exit of the
lowest-valued buyer j does not induce the immediate exit of any buyer with a (strictly) higher
value. Therefore, if Bﬁzt—Z,nt (wy, v;, vj) is increasing in v;, the price at which the second exit occurs
fully reveals the value of the second-lowest ranked buyer. Similar logic may be used to show that
Btk,m(wt, v;,y7¥) is strictly increasing in v; for all k, and that the “continuity” property described
above holds after every exit from the auction. We summarize these facts in the following lemma.

LEMMA 2 (Bids are fully separating).
Forallk=1,...,1ny, Efc nt(“’f' v;, yt>k) is increasing in v;. Moreover, if v; > y’t‘“, then

ﬁtk—l,l’lf (wt’ vl' Yt>k) > ﬁ;{,}’lt (wt’ Yt>k)'

PROOF. The proof may be found in Appendix A. 0

Since the bids are fully separating, the efficient allocation is achieved when all buyers follow
the prescribed strategies. If these strategies form an equilibrium of the sequential ascending auc-
tion (an assumption we will shortly verify in Theorem 2), a standard revenue-equivalence result

implies that expected payments by buyers in this mechanism must be the same, up to a constant,
14
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as those in the dynamic pivot mechanism. We may prove, however, a stronger equivalence re-
sult: the prices paid by bidders who follow the strategies described in Equation (2) are exactly
equal to the prices they would pay in the truthful equilibrium of the dynamic pivot mechanism.
To understand why this is the case, it is helpful to consider the externality imposed by a buyer i
who receives an object. If that buyer i is removed from the market, a lower-ranked buyer j will
instead be allocated an object, yielding an immediate gain in the surplus equal to her value v;.
However, buyer j will no longer be available for allocations in future periods, implying that her
future marginal contribution is lost. This difference, however, is exactly the bid being made by
buyer j in the ascending auction. Therefore, the higher-ranked buyer i pays a price equal to the
externality she imposes on the market, yielding a payoff equal to her marginal contribution to the

social welfare.'

THEOREM 1 (Outcome equivalence of direct and indirect mechanisms).
Following the bidding strategies Etk,nt in every period t in the sequential ascending auction mechanism is
outcome equivalent to the dynamic pivot mechanism.

PROOF. The proof may be found in Appendix A. 0

Therefore, following the memoryless bidding strategies prescribed in Equation (2) leads to an
outcome that is identical to that of truth-telling in the dynamic pivot mechanism. Moreover, we
know from Lemma 1 that truth-telling is an equilibrium of the dynamic pivot mechanism. It
remains to be shown, however, that the bidding strategies described in Equation (2) form an equi-
librium of the sequential ascending auction mechanism.

This follows from two main observations. First, the use of memoryless strategies by a buyer’s
opponents incentivizes sincere bidding, as the competitors’ future behavior is not contingent on
information revealed in the current period. Thus, there is no value to be found in trying to alter
others’ beliefs about one’s own private information. Secondly, buyers” marginal contributions to
the social welfare are sufficiently well-behaved to guarantee that the induced interdependence
due to downstream interaction still satisfies standard single-crossing conditions, thereby admit-
ting an efficient equilibrium in the ascending auction. Thus, sincere bidding in accordance with
Equation (2) is an equilibrium of the sequential ascending auction mechanism.

THEOREM 2 (Equilibrium in the sequential ascending auction).
Suppose that in each period, buyers bid according to the memoryless strategies described in Equation (2).
This strategy profile, combined with the system of beliefs described above, forms a (periodic ex post) perfect
Bayesian equilibrium of the sequential ascending auction mechanism.

PROOF. The proof may be found in Appendix A. [l

13Marginal contributions and externalities were first used to construct efficient bidding equilibria by Bergemann and
Vilimaki (2003, 2006) in complete-information settings with first-price auctions.
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Theorems 1 and 2 jointly imply that the sequential ascending auction admits an efficient equi-
librium that also yields prices identical to those of the dynamic pivot mechanism.'* The sequential
ascending auction is therefore a natural, intuitive institution that yields efficient outcomes.

It is interesting to note several additional properties of this equilibrium. First, the proof shows
that deviations from the bidding strategies ,B\f(,m are not rational for any agent, even when condi-
tioning on competitors’ values in the current period. Thus, the strategy profile specified in Equa-
tion (2) forms a periodic ex post equilibrium—the strong “no regret” property of the ascending
auction in static settings is inherited here. Since agents essentially “re-report” their values in each
auction, the extensive-form structure of the indirect mechanism allows for a much larger number
of potential deviations from truthful behavior as compared to the direct mechanism discussed
earlier. Despite this, however, there is no loss in the “strength” of implementation: equilibrium in
both the direct and indirect mechanisms involves the same notion of periodic ex post equilibrium.

Furthermore, observe that in the sequential ascending auction, buyers have the ability to drop
out immediately once an auction begins. Since the bidding strategies discussed above form a
periodic ex post equilibrium, buyers do not wish to take advantage of this possibility, even if they
know their opponents’ values. Thus, although we have assumed that buyers cannot conceal their
presence when arriving to the market, we may conclude that, in equilibrium, they would not take
advantage of that opportunity were it afforded to them—the equilibrium we have constructed

remains an equilibrium in the “larger” game where buyers may conceal their presence.'

4. REVENUE MAXIMIZATION

In the static setting, Myerson (1981) provided an optimal mechanism for selling a single indivis-
ible unit. Essentially, Myerson’s optimal auction simply uses the standard Vickrey-Clarke-Groves
mechanism to maximize virtual surplus instead of social surplus. When agents report their values
v;, the mechanism computes their virtual values ¢;(v;) and applies the VCG mechanism to these
virtual values. This yields an allocation (the buyer with the highest non-negative virtual value)
and a “virtual price” such that the winning buyer’s virtual value less the virtual price equals her
marginal contribution to the virtual surplus. A large literature building upon the Myersonian tra-
dition has shown more generally that, in the presence of single-dimensional private information,
optimal mechanisms are often just efficient mechanisms acting on virtual values.

Notice that in our setting, while the objects are individual units of a homogeneous good, they
are differentiated products from the perspective of an individual buyer. To make this clear, con-
sider a buyer i with value v; who is present at period t. If this buyer receives an object in period
t, this yields her utility v;. However, if she anticipates receiving an object in period t 41, her
valuation for that object is 5v;. Thus, she does not value the two objects identically.'®

4we should point out that this equilibrium is not unique among efficient equilibria. Analogous to the multiplicity
of symmetric separating equilibria described by Bikhchandani, Haile, and Riley (2002), there exists a continuum of
outcome-equivalent equilibria that differ only in the “speed” of information revelation within each period, among
which the equilibrium we describe is the “slowest.”
15The independence of arrivals across time periods is crucial here, as there are no informational externalities from
arrivals that can induce additional interdependence. For more on this, see Gershkov and Moldovanu (2010b).
16This is similar to the heterogeneity in advertising slots in the keyword auction of Edelman and Schwarz (2010). There,
slots are differentiated by their click-through-rates, whereas here objects are distinguished by their arrival times.
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Notice, however, that buyers’ preferences are additively separable across time and risk-neutral,
implying that buyers’ preferences over the temporally differentiated objects may be summarized
by their expected discounted probability of receiving an object and their single-dimensional value
for that object. This implies that the problem faced by a revenue-maximizing seller (who fully
commits to a mechanism at time 0) may be solved by application of an efficient mechanism to
virtual values. In particular, the mechanism we propose is the dynamic virtual pivot mechanism,
the dynamic pivot mechanism discussed above applied to virtual values. Under the standard as-
sumption that virtual values are monotone, this mechanism maximizes revenues and inherits the
incentive compatibility and individual rationality properties of the efficient dynamic pivot mech-
anism. This is summarized by the following lemma (which is developed in detail in Appendix B).

LEMMA 3 (Revenue maximization via the dynamic virtual pivot mechanism).
Suppose that virtual values are increasing. Then the dynamic virtual pivot mechanism is periodic ex post
incentive compatible and individually rational. Moreover, this mechanism maximizes the seller’s revenue.

The dynamic virtual pivot mechanism is, of course, a direct mechanism. Again, the question of
indirect implementation arises: is it possible to achieve the outcomes of the dynamic virtual pivot
mechanism using a transparent and decentralized auction mechanism? In light of the mechanism’s
relationship to the (efficient) dynamic pivot mechanism, as well as the results of Section 3, a natural
candidate for a revenue-maximizing indirect mechanism is the sequential ascending auction.

It is well-known that in a static setting with k units of a homogenous good to be allocated, effi-
ciency is achievable by a Vickrey-Clarke-Groves mechanism. This mechanism is outcome equiva-
lent to a (k + 1)-st-price sealed-bid or ascending auction. As established by Myerson (1981) in the
case of a single object, and by Maskin and Riley (1989) with multiple units of a homogenous good,
the revenue-maximizing mechanism when values are independently and identically drawn from
the same distribution F is a pivot mechanism with a reserve price equal to 7, the solution to

L 1-FE)
A 1)

Such a mechanism is outcome equivalent to a (k + 1)-st-price sealed-bid or ascending auction

=0. 3)

with a reserve price equal to 7. In our dynamic setting with randomly arriving and departing
buyers, the dynamic pivot mechanism is efficient. Moreover, the outcome of the dynamic pivot
mechanism may be implemented via a sequence of ascending auctions. Reasoning by analogy, we
may conclude that, since the dynamic virtual pivot mechanism is revenue-maximizing and corre-
sponds (when buyers are ex ante symmetric) to the dynamic pivot mechanism with a reserve of
7, a sequence of ascending auctions with reserve price 7 is the corresponding revenue-maximizing
auction.'” More formal arguments similar to those of Theorem 1 and Theorem 2 (which we discuss
in detail in Appendix B) yield the following result.

7In the case where buyers are not ex ante symmetric, a sequence of ascending auctions will again be equivalent to the
dynamic virtual pivot mechanism, with the proviso that buyers’ price clocks run asynchronously at speeds correspond-
ing to the rate of change in their virtual value functions. Such an auction corresponds to the Myerson (1981) optimal
auction for asymmetric bidders—see Caillaud and Robert (2005, Proposition 1).
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THEOREM 3 (Revenue maximization via sequential ascending auctions).

Suppose that F; = F for all i € T and that ¢ is strictly increasing. Then the sequential ascending auction
with reserve price 7 := @~ 1(0) admits a (periodic ex post) perfect Bayesian equilibrium that is outcome
equivalent to the dynamic virtual pivot mechanism.

Thus, analogous to the case of Section 3.3, we find that a seller who wishes to maximize rev-
enues via a transparent, decentralized mechanism may do so by using a sequence of ascending
auctions with an appropriately chosen reserve price.

5. CONCLUSION

In this paper, we examine a private-values, single-unit-demand environment where buyers and
objects arrive at random times. We discuss the implementation of the efficient allocation policy
via the dynamic pivot mechanism, a dynamic variant of the classic Vickrey-Clarke-Groves mech-
anism. Moreover, by extending the static Myerson (1981) payoff- and revenue-equivalence results
to our dynamic setting, we are able to derive an optimal direct mechanism. This mechanism suc-
ceeds in maximizing the seller’s profits in this dynamic environment by applying the efficient
mechanism to buyers’ virtual values.

While direct mechanisms are useful theoretical devices, there is much evidence demonstrating
that they may be of limited value in practice. We therefore consider indirect mechanisms in this
setting and propose using a sequence of one-shot auctions instead. We show that a sequence of
ascending auctions serves as a simple, natural, and intuitive institution that corresponds to the
dynamic Vickrey-Clarke-Groves mechanism. Unlike the standard second-price auction, this open
auction format allows each buyer to learn her competitors” values, and hence determine her own
marginal contribution to the social welfare. When each buyer exits each auction at the price such
that she is indifferent between winning the object and obtaining her future marginal contribution,
we obtain a decentralized price discovery mechanism that yields equilibrium outcomes identi-
cal to those of the centralized direct mechanism. Moreover, this equilibrium behavior behavior
is memoryless—buyers rationally ignore payoff-relevant information from previous periods, cor-
rectly anticipating that it will be revealed anew.

These results set the stage for several additional avenues of inquiry. For instance, suppose
that buyers demand multiple units of potentially complementary goods. This introduces addi-
tional intertemporal tradeoffs in any auction mechanism, as expected future payoffs in individual
valuations are no longer identical functions of individual values when buyers have differential
demands or are faced with multi-unit “exposure” risks. While informational asymmetries may be
resolved via information renewal and memoryless strategies, such approaches cannot resolve the
fundamental asymmetry in preferences and objectives that arise when some buyers have already
satisfied a portion of their demand. Therefore, different institutional forms will be required. An
alternative line of research relaxes the assumption that buyer entries and exits are exogenous, in-
stead allowing buyers to condition their participation on market conditions. Such a model would
provide an important building block to an understanding of competing marketplaces and plat-
forms. We leave these questions, however, for future work.
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APPENDIX A. OMITTED PROOFS

PROOF OF LEMMA 2. Fix an arbitrary period t € IN, and let w; := (a;, K¢) denote the state of the
market at time t. Consider an agent i € A; with value v;, and suppose that n; — k buyers have
dropped out of the period-t auction, revealing values y;” k, wherek € {1,...,n;}. We wish to show

first that v; > v} > y¥*! (where we take y" ™' := 0 by convention) implies that

Bin (wt, 01, y7*) = v — w0 (wr, 03, y7¥) > 0f — w0 (@i, 0],y ¥) =2 B (@i, 0], y7 )

Notice that

t+1< t+1(

1>k >k
w (W, v,y ) —w T (w03, Y7 )

= O [W(wys1, Vig1)|wr, vi = (v, v, Y?k)} — OE[W_j(wts1, Vis)|wr, vi = (v, v, Yt>k)]
— OB [W(wts1, vi1)lwr, vi = (V75,0 y79)] + SE[W_i(wri1, Vi) [wn, ve = (v 5, 0, y77)]

_nt—k’ v;, Y?k)] ,

=JE [W(wt+1lvt+1)|wtl Vi = (v”lt—k, ’0;1 Y?k)} —J0E [W(wt+1lvf+1)|wf/ Vi = (V

since the social welfare when i is not present on the market does not depend upon her value (and
hence the second and fourth terms are equal). Moreover, by treating buyer i with value v} as
though her true value were v;, we can provide a bound on the difference above. In particular, we

have

SE[W (i1, Vi) lwi, vi = (975, 0f, y7 )] = SE[W (Wi, visr) i, ve = (975, 03, y7)]

[e0]
2 E Z (Ss_tfi,s(wS/ VS)‘th Vi = (‘_’m_k/ i, Y?k)] (’U; - vi)'

s=t+1

Thus, if v; > v/, then
A k Qi k
Bl (Wi, 01, y7%) = Biy, (wr, 07, y77°)

> (v; — v) (1 —E Z 5 7IR; o (ws, Vi) |wy, vi = (¥, vi,yfk)]> >0,

s=t+1

as the discounted expected probability of receiving an object in the future is bounded above by
6 < 1. Thus, :B\tk,n, (wt, vi, y7 k ) is strictly increasing in v;.

Also, note that if v; > v; = yE then w!t! (wy, vj, yo ) — wtt (wy, vy, v}, yo ) =
S(E[W(wis1, vir)|wr, vi = (¥, 0, y7 5] — B [W(wrs1, Vi) [ws, vi = (7, 01,07, y75)])

— §(B[W_i(wis1, visr) |wr, vi = (V5,05 0, y7 5] = E[W_j(wis1, Vi) [wr, v = (VT 0, y 7K.

However, the second difference above may be rewritten as

E[W_i(wit1, vip1)|ws, v = (75,05, 0, y7 ] = E[W_i(wiy1, Vi) [wr, vi = (75,05, 0, y7 5]
+E[W_ (Wi, Vi) ws, ve = (905,05, y7 ) ] = E[W_j (@i, Vi) |ws, v = (957, 05, y751)].

Thus, the difference in expected future contributions w'™ (wt, v;, y7¥) — w1 (wr, vy, v;, y7* !

the sum of three differences. The first is the expected gain in social welfare when increasing i’s
value from v; to @. The second is the expected gain in social welfare (when i is not on the market)

) is
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from increasing j’s value from v; to v;. Finally, the third difference is the expected loss in social
welfare (when j is not present) from decreasing i’s value from o to v;. However, since v; < v;, the
presence or absence of j from the market has no influence on when the efficient policy allocates to
i, regardless of whether i’s value is v; or @. Therefore, the gain from the first difference equals the
loss from the third difference, implying that w!*! (cwy, vj, yo ) — w1 (wy, vy, vj, yo ) =

5(IE [W—i(wt+1/ Vt+1) |(Ut, Vi = (‘_/k/ i, Uj/ y¢>k+l)] —E [W—i(wt+1/ Vt+1) ’wtl Vi = (‘_’k/ 0i,0i, yfk+l)i| ) .

Moreover, by treating buyer j as though her true value were v; (as we did above with v, and v;),
we can provide a bound on the difference above, which may be used to show that

:B;(—l,nt(wtl Ui, Uj, Yt>k+1) - :B;c,n,(wfl Oj, Yt>k+1) > 0.

Thus, the exit of the buyer with rank (k + 1) does not induce the immediate exit of any buyer with

a higher value. Therefore, since 5i,nt (wt, 03, vj, y il

this exit occurs fully reveals the value of the (k + 1)-st highest-ranked buyer.

) is strictly increasing in v;, the price at which

Since k was arbitrary, we may conclude that bids are fully separating. O

PROOF OF THEOREM 1. We established with Lemma 2 that following the bidding strategies ,/B\ﬁmt
prescribed in Equation (2) leads to an efficient allocation. To see that these strategies also lead to
payments equal to those of the dynamic pivot mechanism, fix an arbitrary period ¢t € IN, and let
K; denote the number of objects present, and n; := | A;| denote the number of agents present. As
shown by Lemma 2, the auction allocates the K; objects to the group of buyers with the K; highest
values. (Recall that the total and flow marginal contributions are equal for buyers who receive an
object.) If K; > ny, the auction ends immediately, and all buyers present receive an object for free.
Similarly, in the dynamic pivot mechanism, each buyer i receives an object, and makes a payment
pi+ given by
Pit(wt, vi) = v; — wi(wy, Vi),

where w; is the agent’s marginal contribution to the social welfare. However, since there are
sufficient objects present for each agent to receive one, i does not impose any externalities on the
remaining agents; thus, w;(w;, vi) = @;(w;, vi) = v;, implying that p;;(ws, v;) = 0. In this case,
then, the allocation and payments of the sequential auction and the dynamic pivot mechanism are
the same.

Suppose instead that K; < n; that is, there are more agents present than objects. Denote by i
the bidder with the k-th highest value. Then each agent who receives an object pays the price at
which buyer ik, 11 drops out of the auction, which is given by

t+1(

at — . ‘ .
B, 1., (Wt Vi 17+ - Vi, ) = Vigpn — W (W, Vi, Uiy )

In the dynamic pivot mechanism, on the other hand, each agent i who receives an object pays
ﬁi,t(wt, Vt) =0 — wi(wt, Vt)

=0, —E |} Y &% (ws,ve)o | + B |Y Y 8% (w; 7, vs)y;
s=tjel S:tjeI\{i}
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Expanding the summation terms above yields

5 z(s“@,sws,vavj])

s=t+1jeT

Ki
ﬁi,t(wtlvt) =0 — (Z Um + E
m=1

K
+ Z Om + (viKt+1 —
m=1

Z Z(ss tx]s —i, —1K¢+1’vs)vj]>

s=t+1jel
_ = 5S—t’\ 55 t= —i 71Kt+1
=i —E | ) ) 0 Ts(ws vs)oy DI 5)0j
s=t+1jel s=t+1jel
— . _ onttl . .
- let+1 w (wtl vlktﬂ’ ceey vlnt )/

where the final equality follows from the fact that wt“(a)t, Vi, 417+ - ’Uim) is defined to be the
expected future marginal contribution of the agent with the (K; + 1)-st highest value, conditional
on agents with higher values (which includes i) receiving an object today.

Thus, bidding according to Ei/nt leads to the allocations and prices identical to those of the
dynamic pivot mechanism. O

PROOF OF THEOREM 2. As the sequential ascending auction is a dynamic game of incomplete
information, we use perfect Bayesian equilibrium as our solution concept. This requires that be-
havior be sequentially rational with respect to agents’ beliefs, and that agents” beliefs be updated
in accordance with Bayes’ rule wherever possible. Since all buyers use the strictly increasing bid-
ding strategies Ei,ny behavior along the equilibrium path is perfectly separating, implying that
Bayesian updating fully determines beliefs. To determine optimality off the equilibrium path,
however, we need to consider the beliefs of bidders after a deviation. Such post-deviation his-
tories are zero probability events, and so we are free to choose arbitrary off-equilibrium beliefs.
Therefore, we will suppose that, after a deviation, buyers disregard their previous observations,
believing that the deviating agent is currently behaving sincerely in accordance with Etk,nt'

Note that these beliefs are consistent with Bayes’ rule even after probability zero histories.'®
This follows immediately from the fact that, generally, this system of beliefs consists of point-
mass beliefs about the types of other agents. The only agents about whom beliefs do not take this
form are those that have yet to arrive to the market and those who win an object in the period of
their arrival—these agents reveal only a lower bound on their value.

Moreover, this property is equivalent to preconsistency of beliefs in an extensive form game of
incomplete information, a condition put forth by Hendon, Jacobsen, and Sloth (1996) and shown
by Perea (2002) to be both necessary and sufficient for the one-shot-deviation principle to hold."
Since perfect Bayesian equilibrium need not satisfy the one-shot deviation principle, this observa-
tion allows us to use the principle in our proof.

18These off-equilibrium beliefs also satisfy the “no-signaling-what-you-don’t know condition” in Fudenberg and Tirole
(1991). This suggests that (aside from measurability issues) one could construct a conditional probability system for
this equilibrium that satisfies Fudenberg and Tirole’s conditions for perfect extended Bayesian equilibrium. The set of
all such equilibria coincides, in finite games, with the set of sequential equilibria.
19This condition is called updating consistency by Perea (2002), and is also equivalent to part 3.1(1) of Fudenberg and
Tirole (1991)’s definition of a reasonable assessment.
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Consider any period with n; := | A;| buyers on the market and K; objects present. Suppose that
all bidders other than player i are using the conjectured equilibrium strategies. We must show
that bidder i has no profitable one-shot deviations from the collection of cutoff points { Bfmt}
More specifically, we must show that i does not wish to exit the auction earlier than prescribed,
nor does she wish to remain active later than specified.

Once again labeling agents such that buyer i1 has the highest value and buyer i,, has the low-
est, note that if v; < v;, bidding according to B\i,nt implies that i does not win an object in the
current period. Therefore, exiting earlier than specified does not affect i’s current-period returns.
Moreover, since the bidding strategies are memoryless, neither future behavior by i’s competitors
nor i’s future payoffs will be affected by an early exit. Suppose, on the other hand, that i has one
of the K; highest values; that is, that v; > Vi, - As established by Theorem 1, i receives an object,
paying a price such that her payoff is exactly equal to her marginal contribution to the social wel-
fare. Deviating to an early exit, however, leads to agent ik, 1 winning an object instead of buyer
i. Moreover, i’s expected payoff is then witl (wy, v;, Vig, 27+ - - Vi, ), which we defined as i’s future
expected marginal contribution. This is a profitable one-shot deviation for i if, and only if,

t+1 0. , . _ gt , :
w (W 0y Vig 4y -+ 0iy,) 2 Vi = By (W Vi s, iy )
Rearranging this inequality yields

t+1(

~ _ pt i .
B 41, (W8 Vg 1o, 04 ) 2 08 — W (W iy Vi s+, 0i, ) = By (W i Vi s+ -0, ),

where the equality comes from the definition of Bﬁ@ +1,1, in Equation (2). Since v; > vj, ,, this
contradicts the efficiency property established by Lemma 2. Thus, i does not wish to exit early.

Alternately, if v; > v;, , then planning to remain active in the auction longer than specified does
not change i’s payoffs, as i will win an object regardless. If, on the other hand, v; < v;, then
delaying exit from the period-t auction can affect i’s payoffs. Since bids in future periods do not
depend on information revealed in the current period, this only occurs if i remains in the auction
long enough to win an object. If i wins, she pays a price equal to the exit point of ig,, whereas if
she exits, she receives as her continuation payoff her marginal contribution to the social welfare.
So, suppose that i = i, for some k > K;. Then a deviation to remaining active in the auction is
profitable if, and only if,

ot t+1
U — ,BKerLnt(wt,viKt, R 2R P .,vint) >w' " (wy, v, .. ,Uint).
Rearranging this inequality yields

t+1(

~ ‘ ‘ . . ‘ ‘ ‘ Sy ‘ ‘
’[%Kt+1/nt (wtl let/ oo Ivlk,y Z)lkJrll sy Z)lnt) S vlk —w Wi, vlk/ sy vlnt) - ,Bk,nt(wt/ vlk/ ceey vlnt )/

where the equality comes from the definition of Efmt in Equation (2). As above, the fact that
v;, < vj,, contradicts the efficiency property established by Lemma 2. Therefore, i does not desire
to remain active in the auction long enough to receive an object.

Thus, we have shown that no player has any incentive to deviate from the prescribed strategies
when on the equilibrium path. In particular, using the bidding strategies B\fmt is sequentially ra-
tional given players’ beliefs along the equilibrium path. Recall, however, that we have specified
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off-equilibrium beliefs such that buyers “ignore” their past observations when they observe a de-
viation from equilibrium play, updating their beliefs to place full probability on the valuation that
rationalizes the deviation; they believe that the deviating agent is currently being truthful with re-
gards to the strategies Ef(’nt. The argument above then implies that continuing to bid according to
the specified strategies remains sequentially rational with respect to these updated beliefs. Thus,
bidding according to the cutoffs in Equation (2) is optimal along the entire game tree: this strat-
egy profile forms a perfect Bayesian equilibrium of the sequential ascending auction mechanism.
Moreover, observe that the arguments above consider the ex post profitability of deviations; the
lack of profitable deviations even when there is no uncertainty about the valuations of current-
period competitors implies that this equilibrium is, in fact, a periodic ex post equilibrium. H
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APPENDIX B. OPTIMAL MECHANISMS

In this appendix, we formally present the results relating to revenue-maximization. In partic-
ular, we derive a revenue-maximizing direct mechanism (the dynamic virtual pivot mechanism)
and then show that an identical outcome may be achieved as an equilibrium of a sequence of
ascending price auctions with an appropriately chosen reserve price.

B.1. Preliminaries

It is straightforward to see that, with full commitment power, the revelation principle applies
directly in this setting. Therefore, we may restrict attention to direct mechanisms without loss of
generality. Since buyers’ private information is persistent, a dynamic direct mechanism asks each
agent i to make a single report v; € V, upon arrival to the market, of her type v;. A dynamic direct
mechanism is then a collection

M =Xt pitticrren
where x;; and p;; are mappings from reported valuations and observed states to the probability

of allocation to agent i in period t and her payment in that period, respectively. A mechanism is
feasible if

(1) forallt € N, x;; =0and p;y = 0if a;(i) = 0;

(2) Yiczxir < Kiforallt € N;

B) Yienwxir <1lforalli € Z;and

(4) x;; and p;; are adapted to the seller’s information.

When a buyer i € Z; arrives on the market in period ¢, we assume that she observes only the
current state of the market wy; that is, the set A; of agents present on the market and the number
K} of objects available. The agent does not observe the history of past arrivals and departures in
previous periods or the history of allocative decisions, nor does she observe the reports of agents
who have arrived before her. Thus, she chooses a report v, to maximize her expected payoff

Ui (v}, v, wi) :=E | Y 6 (xis (0], v_i)vi — pis (v}, v_j)) ‘wt] , (B.1)
s=t

where the expectation is taken with respect to the arrival and departure processes of buyers and

objects, as well as the reports of all other agents that may be present on the market. A mechanism

M = {x;j;, pit} is incentive compatible if buyers prefer to report their type truthfully (that is,

choose v} = v;), and M is individually rational if a buyer’s expected utility is nonnegative.
Notice that, due to the agents’ risk neutrality and the quasilinearity of payoffs, we may rewrite

the payoff functions U; as

ui(vgl i, CL)t) = qi(v;/ wt)vi - kl’(v;/ wt)/
where

(e )
Y 8 xis(v), Vi)
s=t
24
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is the expected discounted sum of object allocation probabilities, and

m; (v}, wi) :==E

i 5sftpi,s(7);, V_l') ] (B3)

s=t

is the expected discounted sum of payments. Since buyers ultimately care only about the ex-
pected discounted probability of receiving an object and their expected discounted payment, the
seller can restrict attention to these two functions when designing incentive schemes—the incen-
tive problem faced by a seller in this setting is simplified by reducing the problem to a single-
dimensional allocation problem.

Standard arguments as found in Myerson (1981, Lemma 2) and Mas-Colell, Whinston, and
Green (1995, Proposition 23.D.2) may be used to characterize incentive compatible allocation
rules. Moreover, we arrive immediately at a standard integral utility representation and revenue-
equivalence result. The following summarizes (without proof) these standard preliminaries:

LEMMA B.1 (Incentive Compatibility, Individual Rationality, and Revenue Equivalence).
Fix a feasible dynamic direct mechanism M = {x;, pi+}. M is incentive compatible and individually
rational if, and only if, for all buyers i € T and all states wy,

(1) the induced expected discounted probability of allocation q;(v;, w;) is nondecreasing in v;; and
(2) the induced expected discounted payment by the lowest-possible type m; (0, w;) is nonpositive.

Moreover, the expected discounted payment of a buyer i € Iy with value v; in state wy is given by
0j
m;(vi, wi) = m;(0,wy) + qi(vi, wi)v; — /0 gi(v}, wy) dol. (B.4)

B.2. A Benchmark Optimal (Direct) Mechanism

We now make the additional assumptions, for ease of exposition, that the distribution of each
buyer i’s values F; has a strictly positive and continuous density f; and that each buyer’s virtual

valuation function
1 1 1 fj (Ui)

is strictly increasing in v;.%

Consider a single monopolist seller who commits, at time zero, to a dynamic direct mechanism
M = {xit,pit}. The seller’s expected revenue from this mechanism is the expected discounted
sum of payments made by each buyer. Recall that the expected discounted payment of a buyer i,
conditional on entry, is denoted by m;(v;, w;). We may use Lemma B.1 and integrate Equation (B.4)
by parts to write the seller’s expected profits as

Zzyl (i)m; (0, wy)

t=1ieZ;

+Eo ZZ‘St ! i)qi(vi, wi) @i(vi) |, (B.5)

t=1iel;

where the expectation is taken with respect to the arrival and departure processes, as well as
buyers’ values.

201f these assumptions are violated, one may use the procedure of Monteiro and Svaiter (2010) to generate an “ironed”
generalized virtual value that may be used in place of ¢; whenever it is not-well defined (when the assumptions on the
densities f; are violated) or is decreasing.
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The seller’s objective function above is the sum of two terms: the first term is a discounted sum
of expected payments by agents who report value zero, while the second is a discounted sum of
weighted virtual values. Since individual rationality requires that (0, w;) < 0 for all i and all wy,
the first term is maximized by setting m;(0,w;) = 0 for all i € 7 and all w;.

Moreover, the second term is identical to the efficiency-oriented social planner’s objective func-
tion in Equation (B.5), except that values have been replaced with virtual values. Therefore, the
insights of Myerson (1981) carry over from the static world to this context: maximizing revenue
is equivalent to maximizing the virtual surplus. As was the case with the efficient allocation rule
X, the perishability of objects combined with the persistence of values across time immediately
yields the optimal allocation rule x: in each period ¢, allocate all K; objects to the buyers with the
K; highest (nonnegative) virtual values.”!

It should be clear that the revenue-maximizing allocation rule X is incentive compatible. The op-
timal policy x allocates an object to i after a given history if, and only if, i’s virtual value is positive
and among the highest virtual values of buyers present at that history. Since we have assumed
the standard regularity condition that the virtual valuation function is strictly increasing, x;; is
nondecreasing in v;, given the values of the other agents present on the market. Since this prop-
erty holds for any arbitrary history and realization of competitors’ values, it is straightforward to
show that the induced expected discounted probability of receiving an object, denoted by g;, is
also nondecreasing in v;. Thus, by choosing an appropriate payment rule, it is possible to design
an incentive compatible mechanism that implements the revenue-maximizing allocation policy.

In particular, the payment rule we propose is the dynamic virtual pivot mechanism, the dynamic
pivot mechanism discussed above applied to virtual values. This parallels the relationship, in the
static single-object setting, between the Myerson (1981) optimal auction and the Vickrey-Clarke-
Groves mechanism. Just as the optimal (static) auction yields buyers their marginal contribution
to the virtual surplus, the dynamic virtual pivot mechanism will provide each buyer with her flow
marginal contribution to the virtual surplus.

So, for each i € 7, we denote by

7i:= ;' (0)
the lowest value that agent i can report and still potentially receive an object under the revenue-
maximizing allocation policy. Furthermore, for all i € Z, we define for any state w; = (a4, K;) and
reported values v; the function

o

Hi(wt/ vi):=E E Z 5s_tfj,s(ws/ Vs) <§01'_1 (@j(vj)) _71> ‘wt] . (B.6)
s=tjel

This expression is the same as the virtual surplus in the seller’s objective function in Equation (B.5),

except that it measures the virtual surplus in units determined by F;, the distribution from which

i’s value is drawn.”> Since we have assumed that ¢; is increasing for all buyers i, @; ! is also

increasing; therefore, transforming the virtual values of all agents by qo;l preserves their ordering.

2INotice that, as in the classic intertemporal price discrimination problem of Stokey (1979), a revenue-maximizing

monopolist will commit to never sell to buyers with negative virtual values.

22Note that when all buyers are ex ante symmetric, 7; = 7]», (pi_l ((pj(vj)) = vj,and IT (wt,vi) =T (wt, vy) foralli,j € Z.
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Moreover, q)i’l((pj(vj)) —7; > 0if, and only if, ¢;(v;) > 0. Therefore,

3 %6 (07 (9y(00) —'r:-)] };

Xjt t=1 jGIt

X € argr{na>}< {IEO

that is, the optimal policy X is an “efficient” allocation rule for an environment in which a “plan-
ner” wishes to maximize the virtual surplus (as evaluated from the perspective of agent i).
Recalling that w;# denotes that buyer i has been removed from the market in period s, we write

[ee]
T (wy,vt) :=E Z Z 55_t97j,s(ws_l,vs) ((pi_l (@j(v)) —'17,-) ‘wt_l
s=tjeI\{i}
for the virtual surplus (in i’s “units”) when i is removed from the market. Thus, the presence of
agent i on the market when the state is w; and reported values are given by v; yields an expected
marginal contribution to the virtual surplus equal to

ni(wt, Vt) = Hi(wt, Vt) — Hii(wt, Vf).
Similarly, her flow marginal contribution to the virtual surplus—again, in i’s units—equal to
7wy, Vi) = 70wy, Vi) — O [7i(wri, Vi) |wy, ve] -

Notice that, as with the efficient policy, a buyer’s flow contribution is zero if they are not allocated
an object in the current period, and equals their entire marginal contribution if they are.

The dynamic virtual pivot mechanism is then simply defined as the mechanism M = {x,p},
where the payment rule p is defined by

Pit(wt, vi) = Xj(wy, vi)vi — T (wy, Vi)

= fi,t(wt, Vt) (Ul' — ﬂi(wt,vt)) (B7)

for all (wy, v¢). This mechanism provides each agent flow payoffs equal to her flow contribution
to the virtual surplus. It is simple to show that it implements the revenue-maximizing policy.

LEMMA B.2 (Implementability and optimality of the dynamic virtual pivot mechanism).
Suppose that virtual values @; are increasing for all i € Z. Then the dynamic virtual pivot mechanism M
is periodic ex post incentive compatible and individually rational, thereby implementing the optimal policy.

PROOF. Since g;(v;, w;) is nondecreasing in v;, the virtual dynamic pivot mechanism is incentive
compatible. This is not sufficient, however, for the claim that M is periodic ex post incentive com-
patible. To show that this is indeed the case, fix an arbitrary agent i € Z; for any t € IN, and
suppose that i knows the reported values v, of all agents other than i who are also on the market
at time t. Then, by reporting a value v§ upon her arrival in state wy, agent i’s payoff is

(fi,t(wt, (W, vi))+E

Y R (0 Vi) \wt] ) (07— v}) + Ti(wr, (v, v "))

s=t+1

Y Y6 e (an, (0,5 (97 gy(ep) — ) \wt] — I (wr, v ),

s=tjel

=E
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where the expectation is taken with respect to the true distributions of values for agents arriving in
periods s > t. Since X is an efficient policy for maximizing the above sum of “transformed” virtual
values, the first term above is maximized by reporting v/ = v;. Moreover, the second term does
not depend on v;. Hence, i’s expected payoff is maximized by truthful reporting of her value,
regardless of the reports of the other agents present or the state upon i’s arrival; that is, given
the truth-telling behavior of agents arriving in every future period, truthful reporting is optimal
regardless of the realizations of all other agents already present on the market.

Finally, recall that an incentive compatible mechanism is individually rational if m;(0, w;) < 0
for all i and all w;. However, the payments defined in Equation (B.7) are such that

Pit(w, (O, Vt_i)) = —Xj(wy, (0, Vt_i))ﬂz‘(wt, (0, Vt_i)) <0,

since the optimal allocation rule only allocates to agents with nonnegative contributions to the
virtual surplus, and hence 7;(v;, v, i) > 0 for all v; and v, i, Since m; is the expected discounted
sum of payments p;;, we have (as desired) m;(0, w;) < 0. O

B.3. An Optimal Sequential Auction

We now make the additional assumptions that buyers are ex ante symmetric; that is, we assume
that F; = F; = F for all i,j € Z. We will show that a sequence of ascending auctions with reserve
price 7 := ¢~1(0) is equivalent to the dynamic virtual pivot mechanism.”

We again make use of the multi-unit, uniform-price variant of the Milgrom and Weber (1982)
button auction, but now with a reserve price equal to 7. For simplicity, we assume that the price
clock starts at zero and rises continuously.”* When there are K; > 1 units available in a given
period, the auction will end whenever there are at most K; bidders still active and the price is at
least 7. At that time, each remaining bidder receives an object and pays the price at which the
auction ended. As before, ties are broken fairly.

Recall that we denote by 7; the number of buyers present in period t, and that y; := (y},...,y}")
denotes the ordered valuations of all buyers present in period ¢, where y; is the largest value and

yff is the smallest. As before, we let

v :=(3,...,0) € VFand y* := ("1, y") foreachk = 1,...,n;.

Finally, we define, foreachk =1, ..., 1,

ﬁf“ (wt,Ui,Yfk) = 0E [ﬂi(wt+1,Vt+1)|wt/Vt = (Ui,-n,vi,yfk)} .

This is the (discounted) expected future marginal contribution of an agent i € A; to the virtual
surplus, conditional on the period-t presence of k — 1 competitors with the same value v; and
n; — k buyers ranked below i with values y;¥. Notice that this is exactly i’s expected contribution
to the social welfare over a replacement agent with value 7, conditional on being pivotal in the

23 As mentioned in Section 4, it is straightforward to show that a sequence of ascending auctions with asynchronous
clocks is optimal when buyers are not ex ante symmetric.
240ne could equivalently model each auction as a two-stage game in which buyers make a participation decision for
the current-period auction, followed by the price clock starting at 7.
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t“(wt, Vi, Vi Ky = 0 for all buyers with values v; < 7,

current period. Moreover, observe that 7T
regardless of the realization of y;*
In each period t € IN, each agent i € A; bids up to the cutoffs ,Ef{ », whenever she has k active

competitors in the auction, where

Efc,nt (CUt, Ui’ Yt>k) = Ui T[H—l (wt/ vl/ yt )- (B.S)

These (symmetric across agents) cutoffs are strictly increasing in v;, implying that buyers can infer
the values of those competitors that have already exited the auction. Note that when buyer i is
active and knows the values y;* of her inactive opponents, the price at which she is indifferent
between winning an object and receiving her discounted marginal contribution in the next period
is exactly Bfmt We may then use arguments similar to those of Theorems 1 and 2 to prove the
following result.

THEOREM B.1 (Revenue maximization via sequential ascending auctions).

Suppose that F; = F for all i € T and that ¢ is strictly increasing. Bidding according to {Bfm} in every
period of the sequential ascending auction with reserve price ¥ := ¢~ 1(0) is a (periodic ex post) perfect
Bayesian equilibrium that is outcome equivalent to the dynamic virtual pivot mechanism.

PROOF. The proof of this theorem parallels the developments of Section 3.3. In particular, we
will first show, as in Lemma 2, that bids are fully separating. Then we will show that, analogous
to Theorem 1, following the postulated bidding strategies leads to an identical outcome as the
dynamic virtual pivot mechanism. Finally, we will show, as in Theorem 2, that these strategies
form a (periodic ex post) perfect Bayesian equilibrium of the sequential auction mechanism.

CLAIM. The bid functions L, (@t i, y;¥) are increasing in v; for all k = 1,...,n;. Moreover, if v; >
Yk then

7 k 7 k
;chfl,nf(wt/viIY? ) > ﬁi,m(wh}lf )

PROOF OF CLAIM. Fix an arbitrary period t € IN, and let a; and K; indicate the set of agents and
objects present on the market, respectively. Consider an agent i € A; with value v;, and suppose
that n; — k buyers have dropped out of the period-t auction, revealing values y; ¥, where n; := | A;|
is the number of agents present, and k € {1,...,1;}. We wish to show first that v; > v/ > y*!
implies that

t+1( / t+1(

Blon, (wi, 01, y75) i= 0 — T (wy, 05, y7F) > 0f — T (wy, 0], y7F) =1 B, (w1, 0], y75).
Notice that

t+1(

7Tt+l(wtr v, Y7 ) wy, i, y§ )

=JE [H(wt+1fvt+1)\wt, vi = (v K 0, yfk)] —JE [Hfi(wt—&—livt—&-l)’wt/ vi = (v, 0, yfk)}

—J0E |:H((Ut+1,Vt+1)‘CUt, Vy = (‘—,i’ltfk’ i, Yt>k)i| + JE |:]___[_1'((Ut+1,Vt+1>‘CL)t, Vi = (‘_/ntikl i, Y?k)} .
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This, however, is equal to
JE [H(wt+1rvt+l)|wt1 Vi = (‘_’n’_k, v§, y?k)} —J0E [H(wt+1lvt+1) |wt,Vt = (an_k/ 0i, yfk)} ’

since the virtual surplus when i is removed from the market does not depend upon her value
(and hence the second and fourth terms are equal). Moreover, by treating buyer i with value v/ as
though her true value were v;, we can provide a bound on the difference above. In particular, we
have

O [H(wt+1zvt+1)|wtth = (v K, v, Y?k)] —0E [H(wtﬂr"tﬂ)’% vi = (v K0, Y?k)]

Z 557tfi,s<wsr VS)“Uf/ Vi = <‘7ntik1 i, Y?k)] (U; - Ui)-
s=t+1

> E

Thus, if v; > v}, then
ﬁ;{,l’lt (wt' Ui, Yt>k) - :B;c,nt ((Ut, Ui, Yt>k)

> (v; — v}) (1—IE

[ee]

Y R s (ws, Vi) [wr, vi = (VK 05, y77F)
s=t+1

) =0

since the discounted expected probability of receiving an object in the future is bounded above by
0 < 1. Thus, Ei/nt (wt, v, y7F) is strictly increasing in v;.

>k+1

Additionally, note that if v; > v; = yi ™!, then ! (wy, v}, y7 ") — T TRl =

i wtlvi/vj/Yt
5 (B [T (wrr, vin)lwr vi = (W1, 05, y75) | — B[M(@rr, visn) wp, v = (7,01,07,y75) )
+1, Vt+1 tr Vt ’ ]/Yt t+1, Vi+1 tr Vit rYis ]/Yt

-0 (IE |:Hfl' (wt—‘rl/ VH—l) ‘(Ut, Vi = (‘_/k/ i, 7}]‘, Yt>k+1>:| —E [H,]’(UJH_L vt+1) |wti Vi = (‘7k+1/ U]‘, y;f>k+1):| ) .
However, the second difference above may be rewritten as

E {Hfi(wt—i-lrvt-i-l”wtrvt = (v, 0,0, Yt>k+1)] —E |:H7i(wt+lzvt+l)‘Wt/ vi = (V5 03,05, yt>k+1)}

+IE [H*j(wt+lxvt+1)|wt/ vi = (V05,05 Yt>k+1)] —E [Hfj(wt-i-lzvt—&-l)’CUt/ vi = (vFTl o, yt>k+1)].

>k+1

Thus, ﬁ'f+1 (wt, v,y ) o ﬁt—i—l ( >k+1

i (wr,v;,05,y77 ) is the sum of three differences. The first is the
expected gain in virtual surplus when increasing i’s value from v; to 9. The second is the expected
gain in virtual surplus (when i is not on the market) from increasing j’s value from v; to v;. Finally,
the third difference is the expected loss in virtual surplus (when j is not present) from decreasing
i’s value from 0 to v;. However, since v; < v;, the presence or absence of j from the market has
no influence on when the optimal policy allocates to i, regardless of whether i’s value is v; or @.
Therefore, the gain from the first difference equals the loss from the third difference, implying that

T wy, 0j, y7 ) = T (wy, v, 05,y ) =6 (]E [H_i(wm,vm) |wt, v = (3%, 03,0), 57 "“)}

—E [Hfi(wt+1rvt+1)|wt/ vi = (v%,0;, Ui,yka)D.
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Moreover, by treating buyer j as though her true value were v; instead of v; (as we did above with
Z); and v;), we can provide a bound on the difference above, which may be used to show that

B;cfl,nt(wf' UZ/U]/Y?kH) - Bgc,nt(wf/ U]rYt>k+1) > 0.

Thus, the exit of the buyer with rank (k + 1) does not induce the immediate exit of any buyer with
a higher value. Therefore, since Ef{,nt (wt, i, v, y; kH) is strictly increasing in v;, the price at which
this exit occurs fully reveals the value of the (k + 1)-st highest-ranked buyer.

Since m was arbitrarily chosen, this implies that the drop-out points of buyers bidding accord-

ing to the strategy described by Equation (B.8) are fully revealing of the buyers’ values. O

CLAIM. Following the bidding strategies Bf( n, i1 every period t in the sequential ascending auction mech-
anism is outcome equivalent to the dynamic virtual pivot mechanism.

PROOF OF CLAIM. Fix an arbitrary period t € IN, and let K; denote the number of objects present,
and n; := | A;| denote the number of agents present. As shown above, the bidding strategies Bg@m
are strictly increasing; therefore, the auction allocates the K; objects to the group of buyers with
the K; highest values greater than the reserve. Recall that if K; > n;, the auction ends immediately
upon the price reaching the reserve value 7, and all buyers present receive an object at that price.
Similarly, in the direct mechanism, each buyer i with v; > 7 receives an object and pays

ﬁi,t(wt, Vt) =0 — 7Ti(wt, Vt),

where 7; is the agent’s marginal contribution to the virtual surplus. However, since there are
sufficient objects present for each agent with a non-negative virtual value to receive one, i does
not impose any externalities on the remaining agents; thus, 7;(w;, v¢) = v; — 7, implying that
Pit(wy, vi) = 7. In this case, then, the direct and indirect mechanisms yield the same outcome.
Suppose instead that K; < ny; that is, there are more agents present than objects. Denote by iy
the bidder with the k-th highest value. Then each agent who receives an object pays the greater of
the reserve price 7 and the price at which buyer i, 1 drops out of the auction, which is given by

t+1(

ot _ . ,
B, 11, (wt,viKtH, i) = Vig o — TG (Wt Z’thw“-/vzn,)-

If Vig, 1 < 7, then the situation is identical to the previous case. Therefore, assume that Vig, 11 > 7.
In the direct mechanism, on the other hand, an agent i who receives an object pays

Pit(ws, vi) = vj — mi(wy, Vi)

Y Y6 wa,ve) (0 — )| +

=v;—E E Yo &R ( wil,v vs)(0j —7)
S:tjEI S= t]EI\{z}
t
:vi—< (o —7)+E Z Z(Ss tx]s ws, Vs ) ( ]—7)]>
k=1 s=t+1jel

K;
Z Uk_A)—i_ le+1_

Z Z(SS tx]s ZKtH/Vs)(Uj _?)]) )

s=t+1jel
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This may be rewritten as

Pit(wt, vi) = vjg ., — E

i Z ‘55437]}5 (ws, vs) (Uj - 7)]

s=t+1jez

[ee]

Y Y (w0 - 7)]

s=t+1jel

+E

. =t . .
= Vg, — 7T (wf’ Vig, 117+ -1 Uiy, )l

where the final equality follows from the fact that 77/

(wy, Vi a7+ -7 Uint) is defined to be the ex-
pected future marginal contribution to the virtual surplus of the agent with the (K; + 1)-st highest
value. Therefore, following the bidding strategies Bfmt leads to period-t prices and allocations
identical to those of the dynamic pivot mechanism. Since the period ¢ was arbitrary, as was the

state wy, this holds after each history. Thus, the two mechanisms are outcome equivalent. O

Finally, it remains to be seen that the bidding strategies in Equation (B.8) do, in fact, form an
equilibrium. As in the case of the sequential ascending auction with no reserve, the bidding strate-
gies B};’nt are strictly increasing. Behavior along the equilibrium path is therefore perfectly sepa-
rating, implying that Bayesian updating fully determines beliefs. In order to determine optimality
off the equilibrium path, we again suppose that, after a deviation, buyers ignore their past obser-
vations and the history of the mechanism, and instead believe that the deviating agent is currently
truthfully revealing her value in accordance with the bidding strategies Bi,n,'

CLAIM. Suppose that in each period, buyers bid according to the cutoff strategies given in Equation (B.8).
This strategy profile, combined with the system of beliefs described above, forms a perfect Bayesian equilib-
rium of the sequential ascending auction mechanism with reserve price 7.

PROOF OF CLAIM. We prove this claim by making use of the one-shot deviation principle. Con-
sider any period with n; := |A;| buyers on the market and K; objects present. Suppose that all
bidders other than player i are using the conjectured equilibrium strategies. We must show that
bidder i has no profitable one-shot deviations from the collection of cutoff points { Ef{’nt}. More
specifically, we must show that i does not wish to exit the auction earlier than prescribed, nor
does she wish to remain active later than specified.

Once again labeling agents such that buyer i1 has the highest value and buyer i,,, has the lowest,
note that if v; < max{v;,7}, bidding according to { ,Ef{’nt} implies that i does not win an object
in the current period. Therefore, exiting earlier than specified does not affect i’s current-period
returns. Moreover, since the bidding strategies are memoryless, neither future behavior by i’s
competitors nor i’s future payoffs will be affected by an early exit.

Suppose, on the other hand, that v; > 7 and that i has one of the K; highest values; that is,
that v; > max{v;,7}. As established above, i receives an object, paying a price such that her
payoff is exactly equal to her marginal contribution to the virtual surplus. Deviating to an early
exit, however, leads either to agent ik, 1 winning an object (if Vig, 11 > ) instead of buyer i, or to

~t+1

an object being discarded. Moreover, i’s expected payoff is then TT; (wt, v, Vig, 17+ -+ 1 Vi, ), which

we defined as i’s future expected marginal contribution to the virtual surplus. This is a profitable
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one-shot deviation for i if, and only if,

~t+1 R . . pt . .
7T1' (wt/ Ul/UlKH_z/- . ‘Ivlnt) Z & ,BKt,nt(wt/ let+1/- . 'lvlm)~

Rearranging this inequality yields

~t+1

AB%[,I’M (CUt, vil(t+1’ 4 Uint) 2 Ui — 7_(1 (wt’ vl’ UiKﬁ»Z’ e ’vint) = ﬂ%t,nt (wt’ Ui, viKﬁ»Z’ crt vi11t )’

where the equality comes from the definition of B}hnt in Equation (B.8). Since v; > vj ,, this
contradicts the conclusion of the first claim above. Thus, i does not wish to exit the auction early.

Alternately, if v; > max{viKr]}, then planning to remain active in the auction longer than
specified does not change i’s payoffs, as i will win an object regardless. If, on the other hand,
v; < max{v; 7}, then delaying exit from the period-t auction can affect i’s payoffs. Since bids
in future periods do not depend on information revealed in the current period, this only occurs
if i remains in the auction long enough to win an object. If i wins, she pays a price equal to the
larger of 7 and the exit point of ik,, whereas if she exits, she receives as her continuation payoff
her marginal contribution to the virtual surplus. So, suppose that i = iy for some k > K;. Then a

deviation to remaining active in the auction is profitable if, and only if,
at ) . ) ) ~i+1 . .
Ok — B, (wt,v,Kt,...,vlk*l,v,kﬂ,...,v,nt) > T (wy, v,k,...,vlnt).

Rearranging this inequality yields

ﬁt}(hn[ ((Ut, Uil(t’ ey Uik,]/ Uik+1/ ey Ui,,t) S Uik - ﬁf+1 (wtl Uik/ ey vin[) - ﬁtk,nt (wti Uik/ ey Uint )I

where the equality comes from the definition of B;c », in Equation (B.8). As above, the fact that v;, <
vj, contradicts the conclusion of the claim above regarding the monotonicity of bids. Therefore, i
does not desire to remain active in the auction long enough to receive an object.

Thus, we have shown that no player has any incentive to deviate from the prescribed strate-
gies when on the equilibrium path. In particular, using the bidding strategies Eﬁmt is sequentially
rational given players’ beliefs along the equilibrium path. Recall, however, that we have speci-
tied off-equilibrium beliefs such that buyers “ignore” their past observations when they observe
a deviation from equilibrium play, updating their beliefs to place full probability on the valu-
ation that rationalizes the deviation. The argument above then implies that continuing to bid
according to the specified strategies remains sequentially rational with respect to these updated
beliefs. Thus, bidding according to the cutoffs in Equation (B.8) is optimal at all histories: this
strategy profile forms a perfect Bayesian equilibrium of the sequential ascending auction mecha-
nism. Moreover, observe that the arguments above consider the ex post profitability of deviations;
the lack of profitable deviations even when there is no uncertainty about the valuations of current-
period competitors implies that this equilibrium is, in fact, a periodic ex post equilibrium. 0

Thus, bidding in each period according to the strategy described in Equation (B.8) forms a
perfect Bayesian equilibrium of the sequential ascending auction with reserve price 7; moreover,
this equilibrium is outcome equivalent to the dynamic virtual pivot mechanism. ]
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