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ABSTRACT 
An outline and general design of an integrated-multilingual 
speech recognizer is presented, focusing on its key novelty 
of cross-language portability. This recognizer extends the 
one described in [5] in that the overlapping features de- 
signed originally for American English are improved, gen- 
eralized, and need only a slight expansion to cover Man- 
darin/Cantonese Chinese and Canadian Rench. It also 
enhances the recognizer of [6] in that the object of dy- 
namic modeling is moved from the observable acoustic do- 
main to the hidden production-affiliated variables defined 
in the task-dynamic model of speech production [15]. Ma- 
jor components of the recognizer and the related training 
and recognition algorithms are described. 

1. INTRODUCTION 
We have in the past several years pursued the development 
of a comprehensive framework for speech recognition based 
on statistical and computational models of the phonological 
and physical processes of speech production [4, 5,6, 71. Al- 
though these previous efforts have been exclusively limited 
to American English, our framework is ideally suited for 
integrated-multilingual speech recognition since the phono- 
logical and phonetic uniformities across languages are a nat- 
ural consequence of the structure of our recognizer. Cen- 
tral to the concept of the integrated-multilingualism is the 
recognizer’s cross-language portability - it enables the rec- 
ognizer to train ody  on the first N languages’ speech data 
and to perform recognition directly on any new (N + 1)th 
(target) language with no requirements to re-design and 
to re-train the recognizer.’ The integrated-multilingual 
recognition approach is substantially different from the con- 
ventional approach to multilingual speech recognition (rf. 
[8, lo]), where a large amount of training data specific to 
the target language had to be collected and be labeled be- 
fore building and fine-tuning the recognizer for the target 
language. 

At the heart of our integrated-multilingual speech recog- 
nition framework is a global and functional model (intro- 
duced in [4] first) of the top-down human speech commu- 

For satisfactory speech recognition performance, the recog- 
nizer for a target language may prove necessary to subject to 
an adaptation process. But the initid recognizer built according 
to our integrated-multilingual framework will not require speech 
data from the target language. 

nication process cast firmly in a statistical framework. The 
global model starts from careful specification of a full set 
of universal phonological features across languages. This 
feature-specification process takes into account the cross- 
language commonality in the possible articulatory, acoustic, 
and auditory consequences arising from implementation of 
the features in speech utterances. These top-level phonolog- 
ical features are then passed to control a statistical version 
of the classic task-dynamic model of speech production [15]. 
The statistical model in our recognizer has most of its pa- 
rameters trainable from language-independent speech data. 
The statistical nature of our task-dynamic model permits 
computation of likelihoods for arbitrary sequences of acous- 
tic observations, thus enabling speech recognition to per- 
form in a conventional topdown fashion without recourse to 
direct acoustic-to-articulatory and further inversions which 
have proved difficult due to the well known non-uniqueness 
and mismatched degree-of-freedom problems. The purpose 
of this paper is to present the general structure of the vari- 
ous components of the integrated-multilingual speech recog- 
nition framework introduced above. 

2. PHONOLOGICAL FEATURES ACROSS 

The new feature-specification system generalizes and ex- 
pands the system published in [5, 61. In contrast to the 
features of [5,6] which formed hierarchically organized five- 
tupled bundles after an asynchronous overlapping process 
and then were mapped directly to acoustics,2 the current 
features are made explicitly to associate with the (statisti- 
cal) control parameters governing dynamic properties of the 
tract uariablesdefined in the model of [15,12]). The new set 
of features exploit relations and similarities of feature com- 
ponents across languages, thereby offering opportunities to 
share observation data among languages and to generalize 
the observations from source language(s) to a target one in 
training the integrated-multilingual speech recognizer. 

Once a full set of features are specified (for potentially 
all languages in the world’), we need to represent the 
possible feature sequences with their temporal evolution 
which are responsible for producing speech utterances cor- 

This mapping was accomplished via stationary-state HMMs 
in [5] and via nonstationary-state HMMs in [6]. 

3At the time of this writting, a complete feature specification 
system for American English, Mandarin and Cantonese Chinese, 
and for Canadian French has been worked out. 
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responding to words or word sequences (for any arbitrary 
language). We have accomplished this by using a set of 
feature-overlapping rules to construct finitastate automa- 
tons whose states are indexed by component features. Im- 
proving upon the earlier feature-overlapping rules derived 
from phonemic transcription [5, 61, the current recognizer 
also exploits syllable structures and intonation patterns in 
formulating the rules. 

Mandarin Chinese is a syllabic language and syllable is a 
most natural unit to use for organizing feature overlapping 
for describing speech utterances. Syllables are countably 
small, totaling to only 1254 distinct ones (derived from 408 
toneless base-syllables). For American English, the syllable 
count is large but each syllable has a well defined inter- 
nal structure consisting of onset and rhyme (nucleus plus 
coda) as its constituents [l, 161. The feature overlaps within 
consonant clusters of onset and of coda are rather regular, 
so are the overlaps between onset and nucleus, and those 
between nucleus and coda. Our current rule set disallows 
spreads in Tongue features between onset and coda (i.e. 
cross nucleus) within a syllable. For Velum and Lips fea- 
tures, the cross-nucleus feature spreads are constrained to 
be from coda to onset only and not from onset to coda. F e a  
ture spreads are permitted, with constraints determined by 
the prosodic constituent boundaries, between adjacent syl- 
lables; i.e. between coda (or nucleus if coda is null) of the 
preceding syllable and onset (or nucleus if onset is null) of 
the following syllable. Once a syllable is broken down to 
its constituents, the size of the constituents becomes count- 
ably small and hence they are enumerated exhaustively as 
we have done in implementing the recognizer. 

3. INTERFACE OF OVERLAPPING 

In our integrated-multilingual recognizer, each feature is as- 
sociated with a set of parameters characterizing dynamic 
properties of the tract variables. We use a subset of the 
13 tract variables in the latest version of the task-dynamic 
model [14], where each tract variable, z ,  is modeled by a 
critically damped second order system: 

FEATURES TO “TASK” VARIABLES 

- d2z(t) + 2 a t  dz(t) + K ( z ( t )  - ZO) = 0, (1) dt2 

which is characterized by the feature-dependent (normal- 
ized) stiffness ( K L ,  K F ,  or K D ,  non-random) and by 
the feature-dependent statistical distribution on the point- 
attractor (Zo as a random variable) of the dynamical syt+ 
tem. The form of the distribution is chosen according to 
the physical properties of the tract variable. In the current 
implementation, closure-constriction-degree attractors (as- 
sociated with oral or nasal stop consonants), Zi, $, and 
ZL, are zero or positively valued random variables follow- 
ing an exponential distribution (characterized by parame- 
ters PL, PF, and P D ) .  Critical-stricture-degree attractors 
(associated with fricatives) are strict positively valued ran- 
dom variables following an inverse Gaussian distribution 
[2] (characterized by parameters XF. and p ~ .  or by AD and 
p ~ )  with the mode centered (initialized during training) 
at low, critical constriction-degree values appropriate for 
generating frications. Open-constriction-degree (vocalics 
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Figure 1. Inverse Gaussian distribution for the at- 
tractor of vocal tract constriction degree or con- 
striction location in arbitrary unit. 

mainly) attractors are also strict positively valued inverse- 
Gaussian random variables with the mode a t  the constric- 
tion sizes appreciably greater than the critical ones. The 
remaining constriction-degree attractors ( Z t ,  2;) and all 
the constriction-location attractors (21, Z;, 2;) are again 
inverse-Gaussian random variables, whose respective distrj- 
bution parameters X and p are trained with initial values 
set at  the nominal ones according to speech production data 
or principles. 

The probability distribution function (pdf) of the inverse 
Gaussian distribution is 

with p as the mean of the distribution and X as the scale 
(skewness) factor. The choice of this distribution for de- 
scribing the statistical behavior for the attractors in most 
of the tract variables is mainly motivated by its flexibfity to 
represent the possible ranges of vocal-tract constriction de- 
grees and locations (which are all positively valued).’ Fig- 
ure 1 shows the pdf of the inverse Gaussian distribution for 
a fixed parameter p = 1 and with a varying parameter X 
from 0.2 to 20 (0.3 as increment). For small values of A, the 
pdf’s are highly skewed with the mode moving towards zero. 
When this distribution is used for oral constriction-degree 
attractors, then fricatives will be automatically trained to 
associate with small values of X (thereby the mode becomes 
close to zero), approximants with the mode away from zero, 
and vowels with the mode further away from zero. The ah 
tractor of the glottal-aperture (velic-aperture) variable will 
also have the mode in the inverse Gaussian pdf far away 
from zero for aspiration (nasal) sounds, while that for voiced 
(non-nasal) sounds will have the mode close to zero. 

‘It is also motivated by well established results (21 for this 
distribution in parameter estimation, Bayesian inference, signifi- 
cance test, and in regression analysis (both linear and nonlinear), 
all of which are important in our development of training and 
recognition algorithms used for the recognizer. 
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One significant advantage that arises from interfacing the 
ph6nological features to the task-dynamic model is that a 
mechanism similar to that of gesture blending or “parme- 
ter tuning” described in [15] can be developed to merge the 
tract-variable attractors’ distributions associated with over- 
lapping features (correlated with “co-produced” articula- 
tory gestures) into a single distribution defined on the same 
tract-variable coordinate system? Therefore, the technique 
for Cartesian-product construction of finite-state automata 
[5] is no longer needed. The total number of primitive 
(iverse-Gaussian) distributions for characterizing the rela- 
tionship between the symbolic features and the tract vari- 
ables for entire American English is as small as forty‘. This 
number is increased only up to forty five when hench is 
added, and to only fifty some when Mandarin Chinese is 
further added into the language pool. 

4. FROM TASK VAFUABLES TO ACOUSTICS 
VIA MODEL-ARTICULATORS 

Given the time varying tract variables produced from the 
task-dynamic model, motions of a set of biomechanical 
model-articulators,’ x, can be generated via a highly cou- 
pled nonlinear kinematic relationship: 

x -+ z : z(t)  = Z(x(t)). 

Combining Eqns.(l) and (2) leads to the following dynamic 
system for model-articulators: 

where J ( x )  is the Jacobian transformation matrix for 
Eqn.(2), and 9 is the matrix obtained by differentiating 
each element of J ( x )  with respect to time. 

Note that the mapping of Eqn.(2) is geometrical in 
nature: and it also reflects speaker and speaking-mode vari- 
abilities (including varying dialects, foreign accents, and 
speaking rates) in articulation for implementing a given 
“task” of vocal-tract constriction. For implementation fea- 
sibility, we use radial basis function (FU3F) neural nets as a 
device for data interpolation in multi-dimensional space to 

61n the recognizer implementation, such merge is accom- 
plished by a linear combination of the attractor random vari- 
ables. Thus the final resulting distribution becomes numerical 
convolution of the individual distributions associated with each 
of the overlapped features. 

gThe number of primitive distributions is on the order of one 
to three thousands in the recognizer described in 151, and on the 
order of millions in conventional HMM speech recognizer [lo]. 

‘In the latest version of the task-dynamic model [14], the 
model-articulators are expanded from the older version 1151 and 
have included: upper and lower lips, jaw, tongue body, tongue 
tip, velum, glottal width, total lung force, supralaryngeal vocal 
tract volume, and vocal fold tension. 

sTo be more precise, the elements in J ( x )  and 9, which 
are determined from Eqn.(2), characteriee the geometrical rela- 
tionships between motions of the model-articulators and of their 
corresponding tract variable. 

approximate the mapping in Eqn.(Z): 

i 

The parameters in the above RBF approximation are ini- 
tialized during training based on simulations of a geometric 
articulatory model with a standard vocal tract. The degree- 
of-freedom problem (one-to-many relation between z and X) 
can be addressed by incorporating constraints using tech- 
niques similar to “transformation gating” I151 during the 
RBF network learning phase. Nonsupervised training can 
be used for multiple sets of RBF parameters to cluster di- 
alect and foreign-accent variabiities. 

Given the time varying model-articulator motions pro- 
duced f“ Eqn.(3), the observable acoustic signal 0 is 
generated from a further nonlinear mapping: 

X-b U :  0 = O(X). (4) 

This lowest-level mapping is independent of linguistic, di- 
alectic, and speaking-mode factors and is only a function of 
details of the vocal-tract’s acoustic properties such as the 
total vocal-tract length, the pharyngeal height, the shape 
of nasal cavity, and the average loss in the vocal-tract’s wall 
vibration, etc.. We use another set of trainable RBFs to ap- 
proximate this articulator-to-acoustics mapping. The RBF 
parameters are initialized based on simulations of vocal- 
tract acoustics using the area functions derived again with 
a geometric articulatory model. 

5. TRAINING/DECODING ALGORITHMS 
With the interface between the phonological features and 
the tract variables, and using the feature blending rules 
together with the nonlinear one-to-many mapping Eqn.(2) 
that couples each tract variable to a number of model- 
articulators, Cartesian-product construction is no longer 
required in linking the features to acoustics. This has 
drastically reduced the overall size of the trainable recog- 
nizer parameters. The entire parameter set of our recog- 
nizer, potentially capable of language-independent, speaker- 
independent, speaking-style-independent, and unlimited- 
vocabulary speech recognition, is on the order of two thou- 
sands only (about three orders of magnitude lower than that 
required by the conventional HMM recognizers which do not 
exploit the internal structure of speech). The model pa- 
rameters of our recognizer include feature-dependent stiff- 
ness (K’s), feature-dependent attractor distribution pa- 
rameters (A’s, p’8,/3’s), feature blending weights, feature- 
independent (but dialect /accent-dependent) RBF weights, 
and, finally, feature-independent (but vocal-tract-size de- 
pendent) RBF weights. 

The training of the recognizer is accomplished by 
gradient-descent-based numerical optimization techniques. 
Gradients of the objective function with respect to the rec- 
ognizer parameters are computed in an analytic form and 
are then used for optimization. Due to the relatively small 
size of the parameter set, this approach is feasible, although 
it is still very slow. Alternative techniques, such as genetic 
algorithms [12] or EM-based optimal filtering algorithms 
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[13k may prove more effective in the future despite their 
hig implementation complexity. 

The recognition algorithm is formulated as a straightfor- 
ward top-down search problem within the well established 
Bayesian framework consistent with the mainstream speech 
recognition approach. No bottom-up inversion from acous- 
tics to articulation (and further to tract variables, phonolog- 
ical features, and to word sequences) is required for recogni- 
tion. Such problematic inversion is avoided because the sta- 
tistical formulation of our detailed “forward” speech gener- 
ation model allows likelihood evaluation for the observable 
speech acoustics given an arbitrary word sequence. 

We should emphasize here that the crosslanguage porta- 
biity as a key trait of our recognizer originates from the 
structure of the recognizer, rather than from the more or 
less conventional training and recognition algorithms de- 
scribed here. As an example, once we trained the distribu- 
tion parameters of the tract variables associated with Lips- 
feature of /U/ and those with TongueDorsum-feature /i/ 
using English utterances only, these distributions will be 
gated, a t  the lower model-articulator and acoustic levels, 
via the nonlinear mappings (Eqns.(Z) and (4)) to automat- 
ically produce the appropriate distribution for Rench /y/ 
and Chinese /y/ without use of French or Chinese utter- 
ances. Hence, it is the carefully structured components of 
the recognizer which give the cross-language portabiity. 

6. SUMMARY AND DISCUSSIONS 
This paper has provided some accounts of a new speech rec- 
ognizer, currently under development, which aims at  inte- 
grated multilingualism enjoying cross-language portabiity. 
It will potentially overcome many serious limitations of the 
current, mainstream data-driven approach to speech recog- 
nition. One immediate limitation is the large efforts and 
resources required to perform data collection/labeling and 
system tuning when a recognizer is ported from one lan- 
guage to another (and from one recognition task to another 
even within the same language). The drawbacks of the 
conventional data-driven approach to multilingual speech 
recognition root in its (intentional but justifiable) igno- 
rance, in the recognizer design, of the internal phonological 
(symbolic) and phonetic (numeric and dynamic) structures 
underlying all members of human languages. 

The framework described in this paper is a significant ex- 
tension of that described in [SI, where the overlapping fea- 
tures designed originally for American English are modified, 
generalized, and only slightly expanded to cover a number 
of other languages. It is also a natural extension of the rec- 
ognizer described in [6], where the modeling component for 
the dynamic pattern in speech production is pushed from 
the surface acoustic domain inwardly to the internal, ab- 
stract “task” space spanning the coordinates of the tract 
variables. Conspicuously missing, however, in the current 
framework are direct modeling of dynamics on biomechanic 
articulators and the possibiity of using acoustic/perceptual 
criteria as direct feature correlates.’ In an attempt to work 
out a consistent recognition framework unifying potentially 
all languages, significant difficulties have been encountered 

’Both of these two aspects have been included in a separate 
speech production model described elsewhere [7, 13). 

with use of acoustic/perceptual criteria in defining “tasks“ 
of speech production for multiple languages. Use of vocal- 
tract constrictions in a stylized (and normalized) vocal tract 
to define such tasks, on the other hand, enables effective ex- 
ploitation of a rich source of speech knowledge across lan- 
guages (e.g. [3, 9, 111) and gives a head start in formulating 
the speech recognition framework. Armed with a powerful 
statistical formalism, we are codident that the recognizer 
described in this paper will compensate for any incomplete 
nature of such knowledge and make a workable system en- 
joying the desirable integrated-multilingualism. 
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