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Abstract
In a basic economic system, each participant receives
a (financial) reward according to his own contribution
to the system. In this work, we study an alternative ap-
proach – Incentive Networks – in which a participant’s
reward depends not only on his own contribution; but
also in part on the contributions made by his social
contacts or friends. We show that the key parameter
effecting the efficiency of such an Incentive Network-
based economic system depends on the participant’s de-
gree of directed altruism. Directed altruism is the ex-
tent to which someone is willing to work if his work
results in a payment to his friend, rather than to him-
self. Specifically, we characterize the condition under
which an Incentive Network-based economy is more ef-
ficient than the basic ”pay-for-your-contribution” econ-
omy. We quantify by how much incentive networks can
reduce the total reward that needs to be paid to the
participants in order to achieve a certain overall con-
tribution. Finally, we study the impact of the network
topology and various exogenous parameters on the ef-
ficiency of incentive networks. Our results suggest that
in many practical settings, Incentive Network-based re-
ward systems or compensation structures could be more
efficient than the ubiquitous ’pay-for-your-contribution’
schemes.

1 Introduction
Consider the following basic economic system: There are n
participants each of which can make a contribution Ci to-
wards a global task; and is rewarded for doing so with some
reward payment Ri. Assuming that a participant’s reward
is linear in her contribution (examples are plentiful, includ-
ing hourly wages, club membership-rewards such as buy-
10-get-1-free, etc.), the resulting economic relation for every
participant i can be described as

Ri = αCi, Ci = g1(Ri).

Here, α is the “salary-factor”, which maps a certain amount
of contribution to a certain reward; and g1 is a function that
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expresses how much a participant is willing to contribute
given a certain reward (e.g., a participant i may be willing
to work for Ci = 6 hours for a reward of Ri = $100). The
function g1 depends on the task, the individual person, and
circumstances, but it is generally considered to be concave
given the law of diminishing returns. Using this system of
equations, we can in principle compute the total amount of
reward TR =

∑
iRi that needs to be paid to the participants

in order to achieve a total amount of contribution TC =∑
i Ci.
In this paper, we study a change to the above basic eco-

nomic system and investigate to what extent directed altru-
ism (Leider et al. 2009)—i.e., the motivational state whose
aim is to increase another person’s or friend’s welfare—can
be leveraged in order to increase the system’s efficiency.
Specifically, we consider Incentive Networks, a simple and
natural incentive mechanism in which a participant’s reward
not only depends on his own contribution (as in the basic
system above), but also in part on the contributions of his
social friends. To make this concrete, consider the following
examples of Incentive Network-based economic systems:
• Jobs with hourly wages–each worker is paid some money

for each hour of his own work, plus an additional amount
for each hour of his designated friends’ work.

• Membership rewards–a coffee shop offers loyalty mem-
bership rewards to a customer, whenever this customer
consumes a cup of coffee, as well as whenever one of his
designated friends consumes a cup of coffee.

In analogy to the basic economic system above, we can
model an Incentive Network-based economic system using
a system of equations. Assume each participant i has a set
of designated friends Ni:

Ri = α(Ci + µ
∑
j∈Ni

Cj),

Ci = g1(Rii) + g2(Rj1i, Rj2i, ..., Rjdi i
).

In this system, the pair (α, µ) describes the specific incen-
tive mechanism that can be chosen by the system designer.
Specifically, µ determines how much reward is paid for a
participant’s own contribution relative to the contributions
of his friends j ∈ Ni, and α is the “salary-factor”. The key
is the new function g2, which captures how directed altru-
ism impacts a participant’s motivation to contribute. In other



words, g2 captures the extent to which a participant i is will-
ing to contribute, if he knows that because of his contribu-
tionCi, his friend j ∈ Ni is going to be rewarded an amount
of Rji. Clearly, g2 depends on the task, the participant i, as
well as his relationship to his friend j ∈ Ni. In general, we
can assume that g2 is positive if either i and j ∈ Ni are gen-
uine friends or relatives, or there exists some relationship
of dependence between them (e.g, in a teacher-student or
manager-employee relationship). Also, reciprocal peer pres-
sure can increase g2 as well.1

The key question we study is: Under what conditions is
the economic system based on Incentive Networks more effi-
cient than the basic economic system based on self-reward?
In this paper, we precisely characterize this condition (Sec-
tion 3). As it turns out, the condition is robust to a wide
range of specific model assumptions, and only requires min-
imal assumptions regarding the functions g1 and g2. We also
show that for many natural tasks and directed altruism func-
tions g2, the condition is always satisfied. This suggests that
Incentive Networks could have significant practical applica-
tions in many scenarios.

We then study the impact of various system parameters
on the performance of Incentive Networks and the optimal
Incentive Network mechanism. Specifically, we analyze the
impact of the social network topology (Section 4) and the
directed altruism function and model (Section 5). Doing so
reveals interesting insights. For example, we show that there
are cases in which by simply adding a new participant to
the system, the Incentive Network’s performance degrades
(even after choosing the optimal mechanism parameters for
the new network). On the other hand, we prove that in regu-
lar networks in which all participants have the same number
of friends, adding new participants always increases the In-
centive Networks’ efficiency. Finally, we briefly consider an
alternative Incentive Network mechanism that does not rely
on a simple linear contribution-to-reward relationship (Sec-
tion 6).

1.1 Related Work
Questions related to social impact and networked incentive
mechanisms have been studied in great detail in recent years
(e.g., (Kleinberg and Raghavan 2005)). More recently, the
famous DARPA Red Balloon challenge (Pickard et al. 2011)
has triggered much work on incentives for crowdsourcing,
and related systems such as multi-level marketing (Emek et
al. 2011) (Drucker and Fleischer 2012), task solving sys-
tems such as Mechanical Turk or Gigwalk, or financial sys-
tems such as BitCoin (Babaioff et al. 2012). Also related
is the work on Incentive Trees and Lottery Trees (Douceur
and Moscibroda 2007) (Lv and Moscibroda 2013). In this
line of work, as well as in (Emek et al. 2011) (Drucker
and Fleischer 2012), the authors seek to devise tree-based
incentive mechanisms that have desirable properties, such

1Notice that if i and j genuinely dislike each other or i’s re-
lationship to j is guided by jealousy, g2 could also be negative.
However, in practical applications of Incentive Networks, such sce-
narios are unlikely if we let each participant choose his own friends
in the network.

as robustness to multi-identity attacks or other strategic be-
haviors. Incentive mechanisms have also been studied in the
context of various computer networks, such as peer-to-peer
networks (Lai et al. 2003) (Feldman et al. 2004) (Sun and
Garcia-Molina 2004), wireless/sensor network (Yang et al.
2012) (Rai et al. 2012) (Wang et al. 2012) or data min-
ing (Domingos and Richardson 2001). Unlike these works,
we are not primarily concerned about devising a new incen-
tive mechanism in this paper. Indeed, the Incentive Network
mechanism studied in our work is exceedingly simple. In-
stead, we seek to understand the conditions under which
such Incentive Networks can yield a benefit relative to a
baseline system that does not rely on such incentives.

Understanding the impact of altruism is an important
topic in many research areas beyond computer science,
such as economics (Fehr and Fischbacher 2003) (Stevens
and Hauser 2004), psychology (Batson 2014) and biol-
ogy (Trivers 1971) (Axelrod and Hamilton 1981). With re-
gard to our work, the experiments designed by Leider et
al. (Leider et al. 2009) are important. They show that di-
rected altruism strongly impacts people’s behavior in an al-
location game. Such experiments serve as a foundation for
our work: They show that in many cases, the directed altru-
ism function g2 is positive and large. The contribution func-
tions of our Incentive Network model (Section 2) are derived
from the model given in (Povey 2014) by Povey. The author
gives a normative analysis of altruism based on the fact that
if people care about each other’s utility, each individual’s
utility depends on a weighted sum of their felicity and the
felicity of the others. For further background, related work
can be found in (Charness and Rabin 2002) by Charness and
Rabin.

Finally, research on network games (Galeotti et al. 2010)
and graphical games (Kearns, Littman, and Singh 2001) are
also related to our work. In some cases, the underlying mod-
els are similar. E.g., the public goods game in (Bramoullé
and Kranton 2007) introduces both altruism and network
structure. However, the problems studied are substantially
different. Public good games are used to investigate whether
humans indeed play dominant or equilibrium strategies, and
to investigate the effect of altruism on the utility functions.
In contrast, we focus on a given, natural mechanism and
show how the relation between human factors and topology
impacts the efficiency of this system.

2 Incentive Networks: Model & Notation
We discussed the key concepts of Incentive Networks in the
introduction. Here, we give formal definitions.

There are n participants in network G. For each partic-
ipant i, let Ni = {j1, j2, ..., jdi} be the set of i’s friends
(one-hop neighbors in the network), and di = |Ni| is the
number of i’s friends, i.e., its degree.Ci andRi denote a par-
ticipant i’s contribution and reward, respectively. For each
participant i, there is a reward function and a contribution
function.

Reward Function & Incentive Mechanism: The reward
function is the actual incentive mechanism chosen by the
system designer. A participant’s reward Ri consists of two
parts, Rii and

∑
j∈Ni

Rij , where Rij denotes i’s reward



coming from participant j’s contribution. We call Rii the
direct reward and

∑
j∈Ni

Rij the indirect reward. The most
natural incentive mechanism uses a linear relationship be-
tween contributions and reward: Rii = αCi and Rij =
αµCj . Here, α and µ are non-negative parameters that de-
fine the specific incentive mechanism. Thus,

Ri = Rii +
∑
j∈Ni

Rij = α(Ci + µ
∑
j∈Ni

Cj). (2.1)

Contribution Function & Directed Altruism: In an
economic system that is Incentive Network-based, a par-
ticipant i’s willingness to contribute (i.e., his motivation to
work) depends not only on his direct reward Rii, but also
on how much his work will contribute to the reward of his
friends, Rji, j ∈ Ni:

Ci = g1(Rii) + g2(Rj1i, Rj2i, ..., Rjdi i
). (2.2)

We call the function g1(Rii) the direct contribution function,
and g2(Rj1i, Rj2i, ..., Rjdi i

) the (directed) altruistic contri-
bution function. We assume both functions to be continuous
and differentiable.
g1(x) measures how much a participant is willing to con-

tribute due to the direct reward arising from his own con-
tribution. As the marginal incentive of any additional reward
decreases, we follow standard literature and assume g1(x) to
be positive and strictly concave. Formally, for any x ≥ 0, we
assume that i) g1(0) = 0, ii) g1(x) ≥ 0, iii) g′1(x) > 0, and
iv) g′′1 (x) < 0. All conditions are natural given the nature of
g1.
g2(·) measures a participant i’s contribution incentive due

to the indirect reward, i.e., his extra motivation to contribu-
tion given that his work will result in a reward for his friends.
Describing the exact shape of g2(·) is obviously difficult as it
encompasses the entire range of human emotions and inter-
actions. For simplicity, we assume in this paper that partici-
pants are homogenous, i.e., they have identical g2 functions.
Furthermore, we assume g2(·) to be symmetric and posi-
tive2, where for any non-negative x1, x2, ..., xn, any s, t ∈
{1, 2, ..., n}, it holds that g2(x1, ..., xn) = g2(y1, ..., yn)
where ys = xt, yt = xs and yi = xi for i 6∈ {s, t}.

We study two concrete forms of g2(·) differing in their ad-
ditivity. In the first form, we assume that rewards are added
within g2(·), i.e., for any non-negative x1, ..., xn, it holds
g2(x1, ..., xn) = g2(x1 + ... + xn). In the second form,
we assume that the contribution incentive from the reward
to different friends are additive, i.e., for any non-negative
x1, ..., xn, it holds g2(x1, ..., xn) = g2(x1) + ... + g2(xn).
That is, we study the two forms

Ci = g1(Rii) + g2(
∑
j∈Ni

Rji) (2.3)

Ci = g1(Rii) +
∑
j∈Ni

g2(Rji). (2.4)

2As mentioned, g2(·) can be negative in some scenarios due to
envy or jealousy. However, in the typical application scenarios we
envision for Incentive Networks, g2(·) should be positive.

The altruistic contribution in (2.3) is based on the total
amount of indirect reward. It assumes that participants con-
sider indirect rewards for different friends as a whole. On the
other hand, the altruistic contribution in (2.4) distinguishes
the indirect reward for different friends. The incentive de-
rived from rewarding different friends has the same impact
no matter how many friends the participant already has.

Finally, while we mostly assume g1(x) and g2(x) in their
general form throughout the paper, there are cases where we
calculate using specific functions. In these cases, we choose
simple polynomial functions g1(x) = ρxt and g2(x) =
ρλxt (λ, t ∈ (0, 1)). Here, ρ, λ and t are exogenous pa-
rameters that characterize the instance.

Incentive Networks: To evaluate the economic efficiency
of incentive networks, we fix the total contribution TC0 =∑

i Ci in the system, and seek to determine the total re-
ward TR =

∑
iRi that is necessary to achieve the total

contribution TC0. We define (2.1) together with (2.3) as a
reward additivity-incentive network (RA-IN) and (2.1) to-
gether with (2.4) as contribution additivity-incentive net-
work (CA-IN):

RA-IN: Ci = g1(αCi) + g2(
∑
j∈Ni

Rji),

Ri = α(Ci + µ
∑
j∈Ni

Cj),
∑
i∈G

Ci = TC0,

CA-IN: Ci = g1(αCi) +
∑
j∈Ni

g2(Rji),

Ri = α(Ci + µ
∑
j∈Ni

Cj),
∑
i∈G

Ci = TC0.

In both models, the total reward TR that is paid to the par-
ticipants can be expressed as

TR =
∑
i∈G

Ri =
∑
i∈G

α(Ci + µ
∑
j∈Ni

Cj)

= αTC0 + αµ
∑
i∈G

diCi.

Putting everything together, we can see: An incentive net-
work mechanism is defined through its parameters α and
µ, and its efficiency is reflected in the total reward TR =∑

iRi that needs to be paid in order to achieve TC0. We de-
fine α∗ and µ∗ as the optimal incentive network mechanism;
and TR∗ as the corresponding optimal total reward. Notice
that once the mechanism designer chooses µ, α is fully de-
termined by the constraint

∑
i Ci = TC0.

Basic Economic System: Notice that by setting µ = 0,
the incentive network system reduces to the baseline eco-
nomic system described in the introduction in which no in-
centive network is used and participants are rewarded purely
based on their own contribution. In this basic no-incentive
network system (N-IN), we denote α = α̃ as the suitable
parameter to achieve TC0. As every participant contributes
TC0

n in N-IN, R0 = α̃TC0

n and TR0 = α̃TC0 denote the
average and total reward, respectively. Using this notation,
the basic economic model is

N-IN: Ri = R0,
∑
i∈G

Ci = TC0, Ci = g1(R0) =
TC0

n
.



Incentive Network Saving Rate: For an incentive net-
work with mechanism parameter µ, we define β(µ) = 1 −
TR
TR0

as the saving rate for this mechanism. β(µ) measures
how much of the total reward can be saved by using an in-
centive network, compared to the basic economic system.
For the optimal mechanism µ∗, we call β∗ = 1 − TR∗

TR0
the

optimal saving rate. The higher β∗, the more beneficial it
is to use an incentive network. If β∗ = 0, then there is no
incentive network mechanism that can outperform the basic
economic system, i.e., the best solution is to give no rewards
to friend’s contributions.

3 When to Use Incentive Networks...?
In this section, we study the necessary and sufficient con-
ditions for Incentive Networks to be more efficient than the
basic economic system. The key result is that in both RA-IN
and CA-IN, the optimal saving rate is positive if the condi-
tion Φ : g′1(R0) < g′2(0) is satisfied.

The condition has important implications. First, observe
that g1(R0) and g2(0) are the direct and altruistic contribu-
tions in the case where an incentive network is used. There-
fore, g′1(R0) indicates the marginal increase of contribution
incentive for theR0+1st dollar of reward in a network with-
out incentive network, where R0 is the average income in
such a network. In the same way, the right hand of Φ, i.e.
g′2(0), indicates the marginal increase of contribution incen-
tive for the altruistic contribution at point 0. In other words,
g′2(0) is the marginal increase of motivation to work and
contribute due to the first dollar of reward received by a
friend because of one’s own work. If this condition holds,
there exists an incentive network mechanism µ that is more
efficient than the basic economic system without incentive
network. Specifically, this means that if this condition holds,
it is possible to achieve the same total contribution for less
total reward by using an appropriate incentive network. Intu-
itively speaking, the result implies that, if the first dollar that
my work contributes to one of my friends’ reward makes me
happier/more motivated than the R0th dollar that my work
contributes to my own reward, then Incentive Networks are
better than the basic economic system. Formally, we can
prove the following theorem.

Theorem 3.1 In both RA-IN and CA-IN, if g′1(R0) < g′2(0),
there exists a mechanism parameter µ, such that β(µ) > 0,
and thus β∗ > 0.

The above theorem implies a sufficient condition; we now
show that the condition is also necessary. However, we can
prove necessity only under the extra assumption that g2(x)
is concave. Specifically, the result implies that if Φ is not
satisfied, there is no incentive network that is more efficient
than the basic basic system, i.e., the optimal saving rate is 0.

Theorem 3.2 In both RA-IN and CA-IN, if g′1(R0) ≥ g′2(0)
and g2(x) is concave, then β∗ = 0.

Thus, combining the results, it follows.

Corollary 3.1 In both RA-IN and CA-IN, if g2(x) is con-
cave, it holds g′1(R0) < g′2(0)⇐⇒ β∗ > 0.

An interesting question is, how likely is condition Φ
satisfied in practical settings. We believe that it may in-
deed be satisfied in many cases. First, observe that for any
simple polynomial function as defined in the model sec-
tion, the condition Φ is always satisfied: In both polyno-
mial RA-IN and CA-IN, it holds g′1(R0) < g′2(0), for any
λ, t ∈ (0, 1). By setting g1(x) = ρxt and g2(x) = ρλxt,
it holds that g′1(R0) = ρt(R0)t−1 is finite and g′2(0) =
limx→0ρλtx

t−1 → +∞. This implies g′1(R0) < g′2(0).
Furthermore, also notice that as the total task size (the to-

tal contribution in the system) gets larger, the condition is
more likely to be satisfied. The reason is that since g′2(0) is
a constant, whether Φ can be satisfied depends on the left
hand term. We find that in two networks G and G+, with
corresponding parameters TC0, n, α̃ and TC+

0 , n+, α̃+,

if TC0

n <
TC+

0

n+ , it holds g′1(α̃′
TC+

0

n+ ) < g′1(α̃TC0

n ). Thus,
as the average contribution increases, g′1(α̃TC0

n ) decreases,
making Φ easier to be satisfied.

It is intriguing to contemplate the implications of all
this: First, there is reasonable hope that in many natural
cases, g′2(0) is sufficiently large to render incentive net-
works highly efficient. Moreover, even in a society in which
g′2(0) is small (i.e., people are selfish and do not care much
for their friends), applying an incentive network mechanism
could still yield benefits if either the task size is sufficiently
large or there are few participants.

4 Impact of Topology & Network Size
In this section, we study to what extent the underlying net-
work structure and the network size impact the efficiency of
incentive networks. We first show that the topology itself has
no impact apart from the degree distribution (Section 4.1).
We then study which degree distributions are particularly
beneficial for Incentive Networks (Section 4.2).

4.1 Impact of Degree Distribution
The following theorem shows that the total reward required
to achieve a certain total contribution depends only on the
degree distribution: In any two networks with the same de-
gree distribution, the optimal saving rates are the same. We
denote d̃ > 0 as the degree of a regular graph in which all
degrees are the same, and TR(d̃) as the total reward.

Theorem 4.1 (Topology Irrelevance) In RA-IN and CA-
IN, for every fixed (α, µ) and any two topologies G and G+

with the same degree distribution, TRG = TRG+ .

Hence, the degree distribution is the key factor influenc-
ing the network’s efficiency. The next two theorems show an
important difference between the RA-IN and CA-IN mod-
els. Assume that g2(x) is concave. For any RA-IN network,
if we multiply each node’s degree by a factor k, the optimal
total reward remains unchanged if we also adjust the optimal
mechanism parameter µ∗ to 1

kµ
∗. That is, the RA-IN model

is scale-free.

Theorem 4.2 (RA-IN scale-free) In RA-IN, suppose
d1, d2, ...dn and d+1 , d

+
2 , ..., d

+
n are the degrees of nodes in

ascending order in networks G and G+ both with n nodes.



If there exists a real k such that for any i ∈ {1, 2, ..., n},
d+i = kdi, then TR∗G = TR∗G+ .

From Theorems 4.1 and 4.2, we get that in the RA-IN
model, the optimal total reward depends on the normalized
degree distribution. Interestingly, the situation is different in
the CA-IN model. Intuitively, in CA-IN, since d̃ is not in
g2(x), the mechanism does not directly scaled as in RA-
IN. For any regular network in CA-IN, if we multiply each
node’s degree by k, the optimal total reward decreases; that
is, larger networks are more efficient than smaller networks.

Theorem 4.3 (CA-IN not-scale-free) Suppose g2(x) is
strictly concave. In CA-IN, for any two regular graphs
G and G+ both with n nodes, if d̃G < d̃G+ , then
TR∗G > TR∗G+ .

4.2 Is Egalitarianism Good...?
One interesting question is whether it is better if every par-
ticipant has the same or a similar number of friends, or
whether a certain degree of “friend disparity” is beneficial.
Considering this question, we make several observations.
We begin by studying the impact of network size and degree
distribution; and then return to the above question.

Impact of the Network Size and Degree: Intuitively,
one might expect that adding new participants to a network
should always increase the network’s efficiency, i.e., reduce
the total reward. In particular, this is to be expected because
adding a new participant does not decrease anyone’s degree,
while some degree’s may be increased. Interestingly, this
intuition is wrong. One of the explanations we find is that
variance in the degree is bad because the utility functions
are convex, i.e., unevenly distributing payments is bad. We
give two examples showing that adding nodes to a network
or increasing degrees (=adding new friendship relations) is
not always beneficial, i.e., does not always decrease the total
reward. Consider the two networks in Figure 1.

Figure 1: Adding additional nodes can be worse.

G is a cycle with n = 8 nodes, each node having degree
2. G+ is a wheel with 9 nodes. If we take λ = t = 0.9 and
TC0 = ρ = 1, and do the calculation, we find that in poly-
nomial RA-IN, the total optimal reward and optimal mecha-
nism parameter of G are TR∗G = 0.7678 and µ∗G = 0.1743.
On the other hand, the total optimal reward and optimal
mechanism parameter of G+ are TR∗G+ = 0.7728 and
µ∗G+ = 0.0171. The same holds for polynomial CA-IN.
From these calculations, it follows that in these two graphs:

• The addition of a new node to G increases the optimal to-
tal reward and makes the incentive network less efficient.

• The optimal incentive network mechanisms forG andG+

are substantially different (µ∗G = 0.0171 versus µ∗G+ =
0.1743), i.e., the addition of the new node dramatically
changes the structure of the optimal incentive mechanism.
Interestingly, the same counter-intuitive phenomenon can

arise even if the network size remains constant. In the fol-
lowing example (Figure 2), the network size is fixed. If we
increase the degrees, the incentive network becomes less ef-
ficient.

Figure 2: Higher degree can be worse.

In both graphs, n = 9, but G+ has higher degrees. If
we take λ = t = 0.9 and TC0 = ρ = 1, it holds that in
polynomial RA-IN (and similarly in CA-IN), the total op-
timal reward of G is TR∗G = 0.7578. On the other hand,
the total optimal reward of G+ is TR∗G+ = 0.7766. Thus,
TR∗G < TR∗G+ .

Regular Graphs: Although in general graphs adding
more nodes or having higher degree is not always better, the
situation is different in regular graphs. In regular graphs of
both RA-IN and CA-IN, the total reward is decreasing with
network size n under the condition that g2(x) is concave.
The above comparisons between general graphs and regular
graphs indicate that there is a disadvantage of having a net-
work with relatively uneven degrees. With this in mind, we
now return to the original question regarding egalitarianism.

Optimality of Regular Graphs In this section, we show
the optimality of regular graphs. In the following lemma, we
show a process in which gradually moving degrees from the
highest degree node to the node with lowest degree reduces
the optimal total reward.
Lemma 4.1 In RA-IN and CA-IN, suppose g2(x) is strictly
concave and increasing with x. Suppose d1 < d2 < ... < dn
and d+1 ≤ d+2 ≤ ... ≤ d+n are the degrees in G and G+.
It holds that d+1 = d1 + 1, d+n = dn − 1 and d+i = di
(i = 2, .., n− 1). Then TR∗G+ < TR∗G.

The lemma technically requires that there is only one
highest-degree node and one lowest-degree node. If there are
multiple highest nodes or lowest nodes, it does not apply and
we therefore cannot just repeatedly apply the lemma. How-
ever, in the next theorem, we use a different proof technique
to show that in both the RA-IN and CA-IN model, if the to-
tal number of all participants’ friends is fixed (i.e., the sum
of all degrees is constant), the total reward is less in regular
graph than in any other topology.
Theorem 4.4 In both RA-IN and CA-IN, suppose G is a reg-
ular graph and G+ is a non-regular graph, both with n

nodes. d̃ is the degree of i ∈ G and d+j is the degree of

j ∈ G+. If
∑

j∈G+ d
+
j = nd̃, then TR∗G < TR∗G+ .



5 Impact of Altruistic Function
The fundamental reason why incentive networks can be
more efficient than the basic economic system is the fact
we have positive directed altruism. The function g2(·) thus
plays a key role in the understanding of incentive networks.
In this section, we study the impact of this function on the
efficiency of incentive networks.

To eliminate the influence of the topology, we focus in this
section on regular graphs with degree d̃ > 0 in which g2(x)
is strictly concave and g′2(x) > 0. We denote the RA-IN
(CA-IN) model in this setting as the simple RA-IN (CA-IN)
model.

The next theorem shows that in both simple RA-IN and
CA-IN, if either the direct or the altruistic function becomes
larger, the optimal total reward decreases, i.e., the incentive
network becomes more efficient.
Theorem 5.1 In simple RA-IN and CA-IN, suppose
g1(x), g2(x) and g1(x), g2(x) are the direct and altruistic
contribution functions in G and G, both with degree d̃.

a) If g1(x) = γg1(x) (γ > 1) and g2(x) = g2(x), then
TR∗G ≥ TR∗G.

b) If g1(x) = g1(x) and g2(x) = γg2(x) (γ > 1), then
TR∗G ≥ TR∗G.

The following theorem characterizes the equilibrium
point of the optimal incentive mechanism for regular graphs.
Specifically, it describes the relation of the marginal incen-
tives between the direct and altruistic functions.
Theorem 5.2 a) In the simple RA-IN model, suppose G is
a regular graph with d̃. If α∗ > 0 and µ∗ > 0, then
g′1(α∗C0) = g′2(α∗µ∗d̃C0).

b) In the simple CA-IN model, suppose G is a regular
graph with d̃. If α∗ > 0 and µ∗ > 0, then g′1(α∗C0) =
g′2(α∗µ∗C0).

Comparing parts a) and b) of Theorem 5.2, we observe an
important difference of the marginal incentive between the
simple RA-IN and CA-IN models at the optimal equilibrium
point: In the simple RA-IN model, for any i ∈ G, the ex-
tra incentive provided by one extra dollar on a participant’s
direct reward is equal to that of the sum of indirect rewards.
But in the simple CA-IN model, the effect of one extra dollar
on a participant’s direct reward is equal to that of any of his
indirect rewards.

Above, we have studied how the shape of the function
g2(·) impacts the efficiency of incentive networks. In addi-
tion, there remains to study the distinction between the way
we define the function’s additivity, i.e., between the RA-IN
and CA-IN models. The key findings for regular graphs are
as follows:
• In the polynomial RA-IN model, the optimal saving rate

is independent of the degree, but the optimal mechanism
depends on the degree.

• In the polynomial CA-IN model, the optimal saving rate
depends on the degree, but the optimal mechanism is in-
dependent of the degree.
Thus intriguingly, the two models behave exactly in-

versely to each other.

6 Regularized Incentive Network Mechanism
In the previous sections, we focused on incentive networks
in which contributions are mapped to rewards in a purely
additive way. Different incentive network mechanisms are
possible. In this section, we present a family of linear incen-
tive mechanisms, in which we scale a participant’s indirect
reward by the number of his friends. We show that in the
RA-IN model with polynomial g1 and g2, the optimal total
reward using this new incentive mechanism is the same as
TR∗(d̃) when using the previous mechanism. The motiva-
tion for the new mechanism is that we do not have an explicit
solution for the optimal total reward in non-regular graphs.
Furthermore, by Theorem 4.4, regular graphs are the opti-
mal topology in the sense that they require the least reward
to achieve the desired total contribution. Therefore, our idea
is to use the mechanism to “regularize” the network topol-
ogy – to reward every participant as if it had the same num-
ber of friends. The family of mechanisms, called χ-regular
mechanisms attempt to make any network topology “act” as
if it was a regular graph.

For any mechanism with parameters (α, µ), we define the
direct reward Rii and indirect reward Rij as

Rii = αCi, Rij =
1

dj
αµχCj .

By replacing Rii and Rij in the contribution and reward
function, we obtain

Ri = Rii +
∑
j∈Ni

Rij = α(Ci + µχ
∑
j∈Ni

Cj

dj
)

Ci = g1(Rii) + g2(
∑
j∈Ni

Rji) = ραtCt
i (1 + λ(χµ)t)

=⇒ Ci = ρ
1

1−tα
t

1−t (1 + λ(χµ)t)
1

1−t .

In the polynomial χ-RA-IN model, we can give an ex-
plicit form of the optimal total reward. By symmetry, we
can infer Ci = TC0

n . So it holds that

TC0

n
= ρ

1
1−tα

t
1−t (1 + λ(χµ)t)

1
1−t

=⇒ α =
TC

1−t
t

0

n
1−t
t ρ

1
t (1 + λ(χµ)t)

1
t

.

As α is determined by µ, we can further derive the total re-
ward as

TR =
∑
i∈G

Ri =
∑
i∈G

α(Ci + µχ
∑
j∈Ni

Cj

dj
)

= αTC0 + αµχ
∑
i∈G

∑
j∈Ni

Cj

dj

= n(
TC0

nρ
)

1
t

(1 + µχ)

(1 + λ(χµ)t)
1
t

. (6.1)

Replacing χ by d̃, the total reward in (6.1) is the same as
that in a regular graph with degree χ. This suggests that the
polynomial χ-RA-IN mechanism has the same performance
as a corresponding regular graph with degree χ.



Theorem 6.1 For any topology and mechanism (α, µ), the
savings rate in the polynomial χ-RA-IN model is the same
as that in a regular graph with degree χ in the polynomial
RA-IN model, i.e.,

β∗ = 1− 1

(1 + λ
1

1−t )
1−t
t

, µ∗ =
1

χ
λ

1
1−t .

The theorem has to be taken with a grain of salt, because
we do not know how the change of the incentive mecha-
nism impacts the directed altruism function g2(·). For the
above theorem, we assumed that it remains the same, which
is however uncertain.

7 Conclusion
In this work, we have studied an Incentive Network-based
economic system. The key result is a condition that spec-
ifies in which cases an incentive network can be more ef-
ficient than the regular “reward-for-your-own-contribution”
system. Given the simplicity of their use and deployment,
we expect that Incentive Networks will become more fre-
quently used in many practical scenarios. In terms of future
research, it will be interesting to study further properties of
Incentive Networks.
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