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ABSTRACT cessing techniques, there are no theoretical reasons why the 

In this paper, we investigate the interactions of front-end 
feature extraction and back-end classification techniques in 
HMM based speech recognizer. This work concentrates on 
finding the optimal linear transformation of Mel-warped 
short-time DFT information according to the ininiinuni 
classification ei-ror criterion. These transformations, along 
with the HMM parameters, are automatically trained us- 
ing the gradient descent method to minimize a measure 
of overall empirical error count. The discriminatively de- 
rived state-dependent transformations on the DFT data 
are then combined with their first time derivatives to pro- 
duce a basic feature set. Experimental results show that 
Mel-warped DFT features, subject to appropriate trans- 
formation in a state-dependent manner, are more effective 
than the Mel-frequency cepstral coefficients that have dom- 
inated current speech recognition technology. The best er- 
ror rate reduction of 9% is obtained using the new model, 
tested on a TIMIT phone classification task, relative to con- 
ventional HMM. 

1. INTRODUCTION 

The recent advent of discriminative feature extraction 
showed that improved recognition results can be obtained 
by using an integrated optimization of both the preprocess- 
ing and classification stages [4]. Various modeling tech- 
niques such as filter bank, lifter and generalized dynamic 
feature design have been proposed for combining the pre- 
processing stage with the classification stage [l, 4, 51. This 
problem is important because as the modeling technique is 
drastically improving over the recent past, further advances 
in speech recognition will likely to come from better feature 
extraction. In the conventional recognizer, features are ex- 
tracted and then the classifier performs a mapping from fea- 
ture space to discrimination space. The new integrated rec- 
ognizer maps from the original acoustic measurement space 
to the optimized feature space and then maps from the op- 
tiinized feature space to the discriminative space. 

Discrete cosine transform (DCT) is a linear operation 
that can be used for mapping Mel-warped Discrete Fourier 
Transform (DFT) (in the form of Me1 filter bank (MFB) log- 
cliannel energies) into a lower dimensional feature space, 
giving rise to Mel-frequency cepstral coefficients (MFCC) 
widely in use for speech recognition [2]. Despite the em- 
pirical superiority of MFCC over other types of signal pro- 

linear&"normation associated with DCT, which is fixed a- 
priori and independent of HMM states and of speech classes, 
on MFB log-channel energies is an optimal one as far as the 
speech recognition performance is concerned. This work 
concentrates on finding the optimal linear transformation of 
Mel-warped short-time DFT information according to the 
minimum classification error (MCE) criterion. These trans- 
formations, along with the HMM parameters, are automati- 
cally trained using the gradient descent method to minimize 
a measure of overall empirical error count. These discrim- 
inatively derived state-dependent transformations on the 
DFT data are then combined with their first time deriva- 
tives to produce a basic feature set. The new model, which 
we call optimum-Transformed HMM (THMM), uses only 
the MFB log-channel energies derived from Mel-warped 
short-time DFT as the raw data to the recognizer, both 
static and dynamic features are automatically constructed 
within the recognizer. 

2. CONSTRUCTION OF STATE-DEPENDENT 
LINEAR TRANSFORMS 

The THMM described in this paper integrates the input 
features into the modeling process using the transformation 
matrices as a set of trainable parameters of the model. Let 
3 = { 3 l ,  3', + , 3 L }  denote a set of L MFB log-channel 
energy vector sequences (vector is of n dimension and L is 
the totalnumberoftokens), andlet  3' = { 3 ~ , 3 ~ , * * * , 3 $ }  
denote the Z-th sequence having the length of T' frames. 
The static feature vector X: at time frame t of l-th token is 
defined as a linear combination of each row of transforma- 
tion matrix with each element of MFB log-channel energy 
vector at  time t ,  according to 

Xi , t  = ~ B p , , , , i , ~ ~ ~ 3 ~ , t  p =  1 , 2 , * * * , n  t =  1 , 2 , . * * , T '  
11 

q= 1 

x: = Bi,n13;  
In the matrix form, the above equation can be written as 

B l , l , i , m  B1,2,i ,m '.. Bl ,n , i ,m ( :j:, ) = ( B2,1,i,nz & , z . i , m  . . .  B>,n, i ,m ) ( ::: ) 
,c,, Bd,l,i,nr Bd.Z. i ,m " '  Bd,n,i ,m 3!%* 

where Bp,q,j , , , j  is the pq-th element of the transformation 
matrix B;,,,] associated with the m-th mixture residing in 
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Figure 1. A block diagram of the optimum-Transformed HMM. 

the Markov state i, n is the number of MFB log-channel 
energies for each frame and d is the number of static fea- 
ture elements used in the modeling process. The dynamic 
feature vectors a t  time t are constructed by taking the dif- 
ference between 2 frame forward and 2 frame backward of 
the static features according to 

This window length of 4Oms is found to be optimal in cap- 
turing the slope of the spectral envelope i.e. the transi- 
tional information [5]. The augmented static and dynamic 
features are provided as the data input for every frame of 
speech into the modeling stage as shown in Figure 1. A 
finite mixture Gaussian density associated with each state 
i (a total of N states) assumes the form 

m= 1 

where 0: is the augmented feature vector of the l-th token 
at  frame t ,  M is the number of mixture components, and 
c,,,,, is the mixture weight for the mth  mixture in state i. In 
the above equation, b;,,,> ( X t )  and b;,,,* (y t )  are d-dimensional 
the unimodal Gaussian densities, variables X and y indi- 
cate the static and the dynamic features. 

3. MCE CRITERION FOR TRAINING 

Discriminative training algorithm has been successfully 
used by several researchers in speech recognition tasks to 
improve the ML criterion [3]. In the supervised training 
mode, each training token (3' is known to belong to one 
of K classes {CJ},"=,. The recognizer is represented as a 
set of pa-ameters .P = {.P'}F==l, which includes the feature 
extraction parameters as well as the classification parame- 
ters. The goal is to reduce the nuniber of misclassifications 
occuring over this set through a minimization of the overall 

MODEL PARAMETERS 

loss function T((3', a), which is a reflection of the classifica- 
tion errors. In THMM, the classifier parameter set consists 
of all the state-dependent, mixture-dependent transforma- 
tion matrices B,,,,, together with the conventional HMM 
parameters (including mixture weights c , , , , ~ ,  mixture Gaus- 
sian mean vectors py ,,,,, and mixture Gaussian co- 
variance matrices (E,,,,,, for all the models each 
representing a distinctive class of the speech sounds to be 
classified. The overall loss function is constructed and min- 
imized through the following steps: 

1. Dzscrzminant functzon: The log-likelihood score of the 
input utterance (3' along the optimal state sequence 
0 = {&,& e ,  e,, } for the model associated with the 
Kth class 9, can be written as 

T' 

g,(O',+) = Clogb; , (O:)  
t = l  

where bgt (Of) is the probability of generating the fea- 
ture vector (3; at time t in state 6t by the model for 
6 th  class. The implied decision rule for classification is 
defined as 

2.  Misclassijication measure: Given a discriminant func- 
tion, the misclassification measure for an input training 
utterance 0' from class K becomes 

where CA is the most confusable class. &(U' ,  @) > 0 
implies misclassification and d K (  O r ,  9) 5 0 means cor- 
rect classification. 

3. Loss function: The loss function is defined as a sigmoid, 
non-decreasing function of d,: 

whidi approximates the classification error count. 
4. Overall loss function: The overall loss function for the 

entire classifier is defined for each class as 
IC 

Tp', +) = T,(O',+)6[O' E C"] 
,= 1 

where S [ t ]  is the Kronecker indicator function of a logic 
expression [ that gives value 1 if the value of ( is true 

The loss function T(O',9) is mini- 
mized, each time a training token (3' is presented, by 
adaptively adjusting the parameter set 9 according to 

and value 0 otherwise. 
5 .  Minimization: 

where 4.1 is the parameter set at the Ith iteration, 
VT(O', + I )  is the gradient of the loss function for train- 
ing sample 0' and e is a small positive leaming con- 
stant. 
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4. GRADIENT CALCULATION 
The THMM parameters are adaptively adjusted to reduce 
the overall loss function along a gradient descent direction. 
The gradient equations are obtained by coniputing the par- 
tial derivatives of "(a',@) with respect to each THMM 
parameter for a given training token U' belonging to class 
l i .  For the sake of keeping the discussion simple, we present 
the gradient derivations for the newly introduced feature 
parameters. Let ai,,,, denote a feature extraction parameter 
associated with model j ,  then in the case of token-by-token 
training, we can write the gradient as 

(1) - dT,(O', a) 8dK((3 ' ,  a) agj(a', G) 
8&(0', 'p) &l,(O', +) aai,,,, 

- 

The first two factors in the right-hand-side of eqn. (1) can 
be simplified to 

(2) 
TS(0',  @)[TK(O' ,  *) - 13 if j = K 

3j = { T ~ ( U ' , @ ) [ I  - T*(o',@)] if j = x 
The third factor of the right-hand-side of eqn. (1) can be 
modified to 

(3) 

([Xt - CLI,i,,lIT'.C~,;:,nr(j)[Xt - PI,i,,,J 

+v: - pjy,i,m~ Xy,i,m(j)[Y: - ~ l j y , i , m l )  
T r  -1 

where the set Ti' includes all the time indices such that the 
state index of the state sequence at  time t belongs to state 
it11 in the Markov chain, i.e. 

T,! = { t l e t  =i}, 15 i 5 N ,  1 5  t 5 T' 

the a posteriori probabilities are defined as: 

In the remaining of this section, class index j will be omitted 
for clarity ofpresentation. Using eqns. (2), (3) and applying 
the chain rule results in eqn. (1) the gradient calculation 
becomes: 

To reduce the computational complexity as well as the 
model complexity, we tied all the mixtures for feature trans- 
formation matrices Bi,,n to a single state parameter Bi. For 
this special case, the gradient can be given by: 

t q !  m=l 

[-T'I*~ + C,:,m[Y; - ~ y , i , m I [ ~ i : + z  - ~ t ' - z I ~ ' )  (4) 

The gradient formulae for the remaining parameters are 
similar to those for the conventional HMM. 

5. EXPERIMENTAL EVALUATION 

The THMM described above is evaluated on a standard 
TIMIT speaker independent database, aiming at  classify- 
ing 61 quasi-phonemic TIMIT labels folded into 39 classes. 
Classification is performed, instead of recognition, to focus 
on the front-end processing and aimed at  observing the ac- 
curacy of THMM on the speech representation and speech 
modeling. The training-set consists of 3536 sentences from 
442 speakers and the test-set consists of 160 sentences from 
20 speakers. MFB log-channel energies, are computed by 
simulating 21 triangular filters spacing linearly, from 0 to 
500Hz, and exponentially, from 500Hz to 8500Hz, and over- 
lapped by 50% for every 1Oms of speech. Each phone is 
represented by a simple left-to-light, %state HMM with 
mixture Gaussian state observation densities. We perform 
a total of 5 epochs of training and only the best-incorrect- 
class is used in the niisclassification measure. For context- 
independent (CI) model, a total of 39 models (39 x 3 = 
117 states) were constructed, one for each of the 39 classes 
intended for the classification task. The procedure outlined 
in paper [5] has been adopted to create context-dependent 
(CD) models, which results in a total of 1209 HMM states. 
The ML trained benchmark HMM with state-dependent 
DCT matrices is provided as the initial model for MCE 
training of THMM. 

First, preliminary experiments are conducted using a sub- 
set of training-set, which consists of 320 sentences from each 
of 40 speakers, and test-set with single mixture CI phone 
models. The results are plotted in Figure 2 showing clas- 
sification rate as a function of the number of rows in the 
feature transformation matrix, with ML trained HMM as 
dash-dash line, MCE trained HMM as dash-dot line and 
MCE trained THMM as dot-dot line. From these results, 
we conclude that the performance remains fairly constant 
after 12 dimensions. As one might expect, increasing the 
number of diniensions does help, but only upto a point (per- 
formance starts degrading after 18 dimension). In our fol- 
lowing experimental evaluation we choose the dimension of 
the linear transformation matrix to be 12 x 21 as optimal. 

Given the 12 dimensions determined from above, then 
a series of comparative experiments are carried out us- 
ing full sets of training and test data in TIMIT, to ex- 
amine the effectiveness of MCE training on the proposed 
THMM. The classification rates for various experhental  
conditions are summarized in Figure 3. For performance 
comparison, a conventional HMM was first implemented. 
The conventional ML-HMM is trained using 5-iterations of 
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Figure 2. Dimensionality selection for the feature transforma- 
tion matrix. 

Baum-Welch re-estimation and MCE-HMM is obtained by 
discriminative training. As can be seen from Figure 3, the 
performance is significantly improved by the MCE train- 
ing method. For the THMM, the initial state-dependent 
DCT matrices are discriminatively trained according to eqn. 
(4). The results corresponding to 5-mixtures CD niodel 
(82.19%) indicate a significant reduction in error rate (9%) 
compared to the MCE-HMM result. From the results shown 
in Figure 3, the THMM outperforms the MCE trained 
HMM by about 7% in error rate on average for all cases. 
It is interesting to observe that, the single mixture THMM 
performs better than the 5-mixtures MCE-based HMM in 
case of both CI and CD models, indicating a clear supeiior- 
ity of THMM with the comparable number of state param- 
eters. (Number of state parameters for 1-mixture THMM is 
2 1  x 1 2  + 26 + 26 = 304 and similarly for 5-mixtures HMM it 
is 5 x (26+26+1) = 265). The results clearly demonstrated 
the effectiveness of new approach. 

- 

- 

- 

- 

- 

- 

- 

6. CONCLUSIONS 

We have proposed an integrated technique, based on dis- 
criminative feature extraction for feature reduction of the 
MFB log-channel energy space. The entire HMM recog- 
nizer, consisting part of the preprocessing as well as the 
classifier, was trained with the MCE training algorithm. 
We presented experimental results for the optimally design- 
ing generalized feature (cepstrum) representation for phone 
classification. The best classification rate (an error rate re- 
duction of 9%) of 82.19% was obtained using 5-mixtures 
context-dependent THMM, tested on a TIMIT phone clas- 
sification task, compared to 80.52% with the conventional 
MCE trained HMM. Conipared across all three classifiers, 
THMM produced the lowest error rate and is the new effi- 
cient way of utilizing the input data. We first showed that 
Mel-warped DFT features, subject to appropriate trans- 
formation in a state-dependent manner, are more effective 
than the MFCCs that have dorniiisted current speech recog- 
nition technology. Further improvement of the performance 
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Figure 3. TIMIT 39-phone context independent (the six rep- 
resentations on the left) and context dependent (the six rep- 
resentations on the right) classification rate as a function of 
the model type (all using MCE training except the ML trained 
initial HMM) of the number of Gaussian mixtures in the HMM 
state. 

can be expected by incorporating both the state-dependent 
generalized dynamic feature parameters [5] and the state- 
dependent linear transforms to obtain the combined advan- 
tages of individual parameters. The proposed integrated 
technique for feature design, based on discriminative fea- 
ture reduction, is sufficiently general and can be applied to 
all types of pattern classifiers. 
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