

Millimeter-wave for 5G: Unifying Communication and Sensing

Xinyu Zhang

Faculty Summit 2015

Millimeter-wave for 5G: Unifying Communication and Sensing

Xinyu Zhang

http://xyzhang.ece.wisc.edu

Assistant Professor

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Salient Features of Millimeter-wave Networks

Features

- Abundant spectrum, e.g.,
 - * 57 GHz to 64 GHz unlicensed: 7 GHz in total
 - * 28 GHz/38 GHz licensed but underutilized: 3.4 GHz in total
 - * 71 GHz/81 GHz/92GHz Light-licensed band: 12.9 GHz in total
- High rate (multi-Gbps) at short range
 - * e.g., 7 Gbps in IEEE 802.11ad standard for 60 GHz networking

Millimeter-wave for 5G: Use Cases

Short-range Applications with high-rate (Gbps) traffic

In-home/store/flight media distribution and miracast

Virtual reality

Kiosk to mobile file sync

Millimeter-wave for 5G: Use Cases

Short-range Applications with high-rate (Gbps) traffic

Small/pico cells in dense areas

Millimeter-wave for 5G: Use Cases

- Mobile sensing applications
 - Google Project Soli

• mTrack: tracking passive objects at mm precision "mTrack: High Precision Passive Tracking Using Millimeter-wave Radios", Teng Wei, Xinyu Zhang, ACM MobiCom'15

Unifying Millimeter-wave Communication and Sensing

- Millimeter-wave mobile sensing applications can piggyback on communication interfaces
- Sensing functions can enable robust and efficient millimeterwave networking
 - More details to follow

Millimeter-wave Networking Via Flexible Beams

- Use highly directional antennas to overcome propagation loss
 - Improves range, but sacrifices coverage
 - Introduces new challenges: blockage, mobility
- Use electronically steerable antennas to overcome the challenges
 - Small form-factor
 - Real-time beam switching
- Still hard to guarantee continuous connectivity
 - Strongly dependent on context

The Need for Millimeter-wave Sensing

Effectiveness of beam adaptation depends on context

"60 GHz Indoor Networking through Flexible Beams: A Link-Level Profiling", Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, Parameswaran Ramanathan, ACM SIGMETRICS'15

- If radios can sense the context, the sensing results can facilitate network management and protocol adaptation
 - Millimeter-wave radios are born to be a good sensor

Examples of Facilitating 60 GHz Networking via Sensing

- Environment "sounding" to facilitate node deployment
 - Sense reflector position/orientation and density of human activities
 - Use such prior information to determine where to place access points

Examples of Facilitating 60 GHz Networking via Sensing

- Sensing spatial correlation for fast beam adaptation
 - Link quality of different beam directions are correlated
 - If we can predict the quality of other beams by looking at one of them,
 then we can avoid the huge probing overhead

- Existing experimental facilities
 - Communication: simulation and analytical/empirical model
 - Networking: transport/application layer measurement using COTS 60 GHz devices
- Need for a flexible testbed
 - Environmental effects are non-stationary, hard to be reproduced using simulation/analysis

- WiMi (Wisconsin Millimeter-wave software radio)
 - Reconfigurable 60 GHz transmitter/receiver
 - Programmable sensing/imaging radar

- WiMi (Wisconsin Millimeter-wave software radio)
 - Antennas with different beam patterns and steerable motion control system

Baseband: Vertex-6 FPGA plus high-speed
 AD/DA, 245.76Msps sampling rate;
 programmable waveform generator/processor

RF front-end: Vubiq V60WDG03, 57-64GHz frequency upconverter/downconverter with ~2GHz analog bandwidth; adjustable output power (up to 10 dBm)

- WiMi
 - Open-source hardware and software, supported by the NSF CRI program
 - http://xyzhang.ece.wisc.edu/wimi
- WiMi 2.0
 - Ultra wideband (>1 GHz), millimeter-wave MIMO, programmable phased-array antenna

Summary

- Millimeter-wave communication holds great potential
 - Suitable as part of 5G, for short-range high-rate applications
- Unifying millimeter-wave communication and sensing
 - Standalone mobile sensing applications using millimeter-wave communication interface
 - Enabling robust and efficient millimeter-wave networking via millimeter-wave sensing
 - Need strong experimental verification before deployment