
George Varghese
With Collaborators at Berkeley, Cisco, MSR, Stanford

From Electronic Design Automation to NDA:

Treating Networks like Chips or Programs

Networks today

2

1001

P1

P2

10* P1
1* P2

,P2SQL

Drop SQL

Load balancing Access Control Lists (ACLs)

• Multiple Protocols: 6000 RFCs (MPLS, GRE . . .)

• Multiple Vendors: Broadcom, Arista, Cisco, . . .

• Manual Configurations: Additional arcane programs
kept working by “masters of complexity” (Shenker)

• Crude tools: SNMP, NetFlow, TraceRoute, . . .

Simple questions hard to answer today

o Which packets from A can reach B?

o Is Group X provably isolated from Group Y?

o Is the network causing poor performance or the server?

o Why is my backbone utilization poor?

o Is my load balancer distributing evenly?

o Where are there mysterious packet losses?

3

BOTTOM UP ANALYSIS OF EXISTING SYSTEMS

Motivation to do better

• Internal:
o Errors often caused by configuration changes

• External: (2012 NANOG Network Operator Survey):

o 35% > 25 tickets per month, > 1 hour to resolve

o Welsh: vast majority of Google “production failures” due to
“bugs in configuration settings”

As we migrate to services ($100B public cloud market),
network failure will be a debilitating cost.

4

Networks Tomorrow

• Online services latency, cost sensitive

• Merchant Silicon Build your own router

• Rise of Data centers Custom networks

• Software defined Networks (SDNs) custom design “routing
program”

• P4 (next generation SDN) redefine hardware forwarding at
runtime

5

TOP DOWN DESIGN OF FUTURE NETWORKS TO
OPTIMIZE GOAL

Specification

Functional
Description (RTL)

Testbench &
Vectors

Functional
Verification

Logical
Synthesis

Static Timing

Place & Route

Design Rule
Checking (DRC)

Layout vs
Schematic (LVS)

Parasitic
Extraction

Post Siilicon
validation

Specification

Policy Language,
Semantics

Test Packet
Generation

Verification
(Reachabilty)
Synthesis (e.g.,

Forwarding Rules)

Performance verification?

Network Topology
Design

Static checking (local
checks)

Wiring Checkers

Interference
estimation?

Dynamic checkers/
debuggers

Electronic Design Automation
(McKeown SIGCOMM 2012)

Network Design Automation
(NDA)?

Digital Hardware Design as Inspiration?

Outline

• Part 1: Tools for operators today

o Static Analysis, Test Packet Generation

o Analysis via Symbolic Execution

• Part 2: Tools, processes for designers &
operators tomorrow.

o Network Design Automation

o Synthesis via Optimization

7

Many forwarding flavors/ 1 essence

8

IP Router10010

ESSENTIAL INSIGHT FOR OPENFLOW. USE SAME INSIGHT
FOR UNDERSTANDING EXISTING PROTOCOLS

10* P1
1* P2

MAC Bridge01A1A2

01A1A2 P1
. . .

PREFIX MATCH

EXACT MATCH

MPLS Switch5, 6

5 P1,Pop 5
. . .

INDEXED LOOKUP

Idea: Treat Network as a Program

• Model header as point in high dimensional space and all

networking boxes as transformers of header space

9

Packet
Forwarding

1

2

3

0xx1..x1
Match

+
Send to port 3

Rewrite header

Action
+

NETWORK BOX ABSTRACTED AS SET OF GUARDED COMMANDS . .
NETWORK BECOMES A PROGRAM CAN USE PL METHODS

Header Space Framework

• Model all networking boxes as

transformers of header space

Transfer Function:

10

All Packets that A can use
to communicate with B All Packets that A can possibly

send to box 2 through box 1

All Packets that A
can possibly send

Computing Reachability (Kazemian et al, NSDI 12)

Box 1

Box 2

Box 3Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A)) U T3(T4(T1(X,A))

T-1
3

T-1
3

T-1
4

T-1
2T-1

1

T-1
1

11

All Packets that A can
possibly send to box 4

through box 1

Tool 3: Automatic Test Packet Generation
(Zheng et al CoNext 12:)

• As in hardware, automatically generate test packets to detect
faults

• Different optimization from hardware testing:
o Maximize link/queue coverage
o Performance (e.g., latency) not stuck-at faults
o Respect constraints on terminal ports

• Up to160X reduction over all-pairs - aspects in Microsoft
Autopilot

• Bounded network graph allows simple set cover compared to
program testing (KLEE)

12

Semantics (Plotkin et al)

New semantics that has:
• Symmetry Theorem: Can reduce fat tree to “thin

tree” using a “simulation” and verify reachability
cheaply in latter

• Modularity Theorem: reuse of parts of switching
network 13

Modularity

Symmetry

Tool 4: Batfish (Fogel et al, NSDI ‘05)

• So far all tools are for network data plane

• Need control plane tools for proactive analysis

• Check configuration sanity before applying to the network

• Check safety in the presence of certain routing changes

• Check back-ups are properly implemented

14

Config files Control
plane logic

Data plane
state

Parser
Logic
solver

Query

Query
solver

Provenance

Environment

Other Work

• Geometric Packet Classification. (SIGCOMM 1998)

• Static Reachability of IP Networks (INFOCOM 2005)

• Anteater. (SIGCOMM 2011)

• Veriflow. (HotSDN 2012)

• SAT Based Data Plane Verification (HotSDN 2012)

• Flowlog (HotSDN 2012)

• NetKat/Netcore

15

PART 2: NETWORK SYNTHESIS VIA
OPTIMIZATION

16

17

Specification

Policy Language,
Semantics

Test Packet
Generation

Verification

Synthesis (e.g.,
Forwarding Rules)

Performance verification?

Network Design

Static checking (Local)

Wiring Checkers

Network Design Automation?

Early work

HOW MIGHT WE GO BEYOND EARLY WORK? WHAT NEW AREAS CAN WE TOUCH?

Dynamic checkers/
debuggers

Static Checkers: Booleans Quantities

• Given end-to-end flow rates, calculate link loads in
face of failures (Juniwal et al, in progress)

• Given flow rate histograms, pack as many flows as
possible & keep overflow probability within threshold

18

A
B

C
D

21 Flow Bandwidth

1.0

0.9Probability

3 G

Probabilistic Knapsack – (w. Bjorner, Gopalan,
Karp, Kannan) Packing distributions

• Correctness: Failure probability < T, e.g., T = 0.05

• Performance: Find subset that minimizes expected
waste

19

Item A

21

1.0

0.9Probability

Knapsack of size 3
Which items?

Likely hard: even checking if one subset fails is exponential

21

0.5

21

0.9

1.0 1.0

Item B Item C

Other Synthesis Problems

• Synthesizing Rules: Synthesize ACLs based on policy (Kang
et al, Princeton)

• Synthesizing Virtual Networks: Rao et al (Purdue) & Xie at
al (Princeton)

• Synthesizing Tables within a router: Table Synthesis P4
Routers (Jose et al, Stanford)

• Synthesizing Transports: Deadline driven alternatives to
TCP (MSR Cambridge)

20

Interactive Debugging (AEV 15)

• Existing network debuggers (MSR Sherlock, Stanford
NDB, Berkeley Xtrace are Batch Debuggers

• What might equivalent be of setting a Watch point
and then “stepping into” network?

• Example: Stepping Into by New Trace route message.
Old TraceRoute not real-time. New hardware

21

Timestamp, Router queue information collected later

A C

New Trace Bit
+ ID in data packets

Old Traceroute

Exploiting Domain Structure

22

Technique Structure exploited

Header Space Analysis
(Symbolic Execution)

Limited negation, no loops,
small equivalence classes

Net Plumber (Incremental
Verification)

Network Graph, rule
dependencies structure

ATPG (Test Generation) Network graph limits size of
state space compared to KLEE

Exploiting Symmetry Known symmetries because of
design (vs on logical structures)

Conclusion

• Inflection Point: Rise of services, data centers,
Software Defined Networks

• Ideas: Symbolic execution (analysis) &
optimization (synthesis)

• Intellectual Opportunity: Rethink existing
techniques exploiting domain structure

• Systems Opportunity Working chips with billions
of gates Why not large operational networks next?

23

Collaborators

MSR: Nikolaj Bjorner, Patrice Godefroid,

Karthick Jayaram Nuno Lopes, Ratul

Mahajan. Ming Zhang

Stanford: Peyman Kazemian, Nick

McKeown,

James Zheng

Berkeley: Garvit Juniwal, Sanjit Seshia

Cisco: Mohammed Alizadeh, Tom Edsall

