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Abstract

The elicitation of a statistic, or property of a distribution, is the task of devising proper scoring rules,
equivalently proper losses, which incentivize an agent or algorithm to truthfully estimate the desired
property of the underlying probability distribution or data set. Leveraging connections between
elicitation and convex analysis, we address the vector-valued property case, which has received
little attention in the literature despite its applications to both machine learning and statistics.

We first provide a very general characterization of linear and ratio-of-linear properties, the first
of which resolves an open problem by unifying and strengthening several previous characterizations
in machine learning and statistics. We then ask which vectors of properties admit nonseparable
scores, which cannot be expressed as a sum of scores for each coordinate separately, a natural
desideratum for machine learning. We show that linear and ratio-of-linear do admit nonseparable
scores, and provide evidence for a conjecture that these are the only such properties (up to link
functions). Finally, we give a general method for producing identification functions and address an
open problem by showing that convex maximal level sets are insufficient for elicitability in general.
Keywords: Elicitation, property, proper loss, scoring rule, identification function, expectile.

1. Introduction

Scoring rules, equivalently proper losses, seek to elicit distributions from an agent or algorithm, and
are fundamental objects of study in machine learning, statistics, and economics. Recently, there
has been much work on a natural extention of scoring rules, to elicit statistics, or properties of
distributions rather than the entire distribution itself. As Steinwart et al. (2014) point out, these
more general scoring rules in a sense capture the power of empirical risk minimization algorithms.
Yet despite the fact that most machine learning applications, and many in statistics and economics,
are concerned with extracting multi-dimensional information from data, most work in the scoring
rules literature has focused on the real-valued property case. In this paper, we address this gap by
providing several new results and foundations for a more general study of property elicitation.

The study of properties in scoring rules can be traced to Savage, who considered the problem
of eliciting linear properties, which are simply the expected value of a random variable (Savage,
1971). Since then, this case has been studied in both the machine learning and scoring rules litera-
tures (Osband and Reichelstein, 1985; Saerens, 2000; Banerjee et al., 2005; Patton, 2011; Gneiting,
2011; Abernethy and Frongillo, 2012), where the conclusion has been that all linear properties
are elicitable, and the scores eliciting them can be characterized in terms of Bregman divergences.
In all cases, however, authors make various simplifying assumptions. Some authors, e.g. (Baner-
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jee et al., 2005; Gneiting, 2011), assume that the report space coincides with the set of possible
outcomes. Moreover, all previous results require some sort of differentiablity of the score; Gneit-
ing (2011) points this out, stating that “a challenging, nontrivial problem is to unify and strengthen
these results, both in univariate and multivariate settings.” In Section 3, we achieve this unification,
removing all differentiability assumptions.

Beyond linear properties, many authors have addressed other common statistics, such as quan-
tiles, ratios of expectations, and expectiles (Osband and Reichelstein, 1985; Gneiting and Raftery,
2007; Gneiting, 2011; Grant and Gneiting, 2013). It was perhaps Osband (1985) and Lambert, Pen-
nock, and Shoham (2008), however, who first considered the following general problem: given an
outcome space 2 and an arbitrary map I' : A(£2) — R, under what circumstances can we construct
a proper scoringrule S : R x @ — R forI', i.e. where I'(p) € argmax,.c E,~,[S(r,w)] for every
p € A(Q)? Moreover, what is the full classification of functions I' which can be elicited in this
way? Several authors have made significant contributions toward answering this general question
for the case R = R (Lambert et al., 2008; Lambert, 2011; Gneiting, 2011; Gneiting and Katzfuss,
2014; Steinwart et al., 2014), but much less has been done for R = RE.

The natural first step from general scalar properties to general vector-valued properties is to
consider properties I' : P — R composed entirely of elicitable scalar properties v; : P — R.
We dub this the vector of properties case. Here the question of elicitability is trivial: the score
which simply sums proper scores S; for each coordinate property ~; will elicit I'; we call such
scores separable. Hence it remains only to determine the full class of scores which elicit vectors of
properties. In particular, when can we devise a nonseparable score for a given I'?

The question of score separability is important in many machine learning applications. For
example, in regression problems it is common to use a notion of error called the Mahalanobis
distance, which corresponds to the geometry of the data, namely (x —y) " M (2 —y) for some matrix
M which is estimated as the inverse covariance of a sample (Mahalanobis, 1936; De Maesschalck
et al., 2000). When M is (highly) non-diagonal, practitioners would be highly dissatisfied with
separable losses, as they would suggest that, e.g., certain points are outliers when in fact they are
not, or vice versa (Rousseeuw and Leroy, 2005).

Surprisingly, Osband (1985) showed that there do not exist separable scores for pairs of quan-
tiles; see also (Fissler and Ziegel, 2015). Lambert et al. (2008) show that if a scoring rule for a vector
of properties is accuracy-rewarding, in the sense that making any coordinate-wise improvement of
the report yields a higher score, then the score must be separable; this aligns with our intuition
from above, and indeed we are precisely interested in cases where this notion of accuracy may not
apply. In Section 4, we show the first nonseparable scores for a vector of nonlinear properties, by
fully characterizing the scores for ratios of expectations with the same denominator, and provide
evidence for a conjecture that these are the only properties which admit nonseparable scores. We
then go on to extend Osband’s result to show that expectiles do not admit nonseparable scores.

Finally, we conclude by exploring the general case, and ask when a general vector-valued prop-
erty I' is elicitable. Building on the idea of identification, introduced by Osband (1985), we provide
a new construction of identifications functions (which intuitively are derivatives of proper scores)
using the derivative of I'. Prior techniques for constructing an identification function required either
manual analysis of the I' of interest or an existing scoring rule for I' to differentiate. As our con-
struction is purely mechanical, it provides a general way to construct scoring rules for properties
we do not already know how to elicit, as well as a technique to show that some properties are not
elicitable. We leverage this to give the first known example of a property with convex maximal level
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sets that is not elicitable (at least not by any twice differentiable score), thus showing that a natural
sufficient condition that Lambert et al. (2008) give for the scalar case does not generalize.

In summary, our contributions improve the understanding of several aspects of vector-valued
property elicitation. A number of our results are only part way towards a full understanding, but
even these allow us to demonstrate interesting new facts. Through the course of the paper we show:

A unified characterization of linear properties (Theorem 11);
The first nonlinear property with a nonseparable score (Theorem 13);

That expectiles have no nonseparable scores (Corollary 17);

S

That convex maximal level sets, a sufficient condition for elicitability in the scalar case, are
not sufficient in the vector case (Example 1).

We begin with notation and a literature review.

2. Background

2.1. Classical scoring rules

A classical scoring rule takes a reported distribution and an observed outcome and determines the
payoff to the agent, who is assumed to maximize his or her expected score.

Definition 1 Given outcome space 2 and convex' set of probability measures P C A(f2), a scoring
rule is a function S : P x Q — R such that S(p', -) is integrable with respect to each p € P.> We
write S(p', p) = Eup[S(p',w)]. We say S is proper if for all p,q € P,

S(q,p) < S(p,p). (1)

If the inequality in (1) is strict for all ¢ # p, then S is strictly proper.

Scoring rule characterizations make use of the concept of a subgradient from convex analysis.

Definition 2 Let T be a subset of a real vector space V. Given function G : T — R, a linear
function dGy : V — R is a subgradient to G at t if for all t' € T,?

G(t') = G(t) + dGy(t' —1). )

When T = P we will additionally require dG,y (p) = E,|f] for some P-integrable f : & — R. We
denote by Gy or OG(t) the set of subgradients to G at t, and 0G = UeT0G,.

While we focus on the scoring rules setting, many of our results hold for a more general elic-
itation setting due to Frongillo and Kash (2014), which builds on a large body of work on scoring
rules and mechanism design (a field of economics) for situations where the information is directly
revealed. Here the agent has a private type ¢t € 7, where 7 is a subset of a topological vector space,

1. Many results can be extended to the non-convex case, see (Frongillo and Kash, 2014).

2. To permit scoring rules such as the log score, it is common to relax the requirement that S(p,w) € R, and relax
integrability to quasi-integrability (Gneiting and Raftery, 2007). We ignore these concerns in this paper, but many of
our results can be adapted accordingly.

3. While subgradients are often required to be continuous, several of our results do not require this; cf. (Lonard, 2006).
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and one only requires that the score to the agent following a report r be affine in t. We make use of
this greater generality in the proof of Theorem 11, so we state such a more general theorem here.
The special case of this theorem applied to scoring rules with convex sets of probability measures
is the standard characterization due to Gneiting and Raftery (2007).

Theorem 3 ((Frongillo and Kash, 2014)) LerS : 7 x T — R be given suchthatS(t',-) : T — R
is affine for all t' € T. Then S is proper if and only if there exists some convex G : Conv(T) — R,
and some selection of subgradients {dG\}ic7 € OG, such that

S(t',t) = G(t') +dGy(t —t'). 3)

2.2. Extending to properties

We wish to generalize the notion of a scoring rule, from eliciting a full distribution from P to
accepting reports from a space R which is different from P. To even discuss what a proper scoring
rule is in this setting, we need a notion of a correct report r for a given distribution p. Building
on notation introduced by Lambert et al. (2008), and following (Frongillo and Kash, 2014), we
encapsulate this notion by a function* I which specifies the “true” r for a given p.

Definition 4 Let P C A(Q) be a convex set of distributions, and R C RF be some given set of
valid reports.® A property is a surjective function I' : P — R which associates a correct report
value to each distribution; in particular, R = I'(P). We letI', = {p € P|r = I'(p)} denote a
level set of T', the set of distributions p corresponding to report value r.

We extend the notion of a scoring rule to this setting, where the report space is ‘R instead of P
itself. The definition is straightforward: the correct report should maximize the expected score.

Definition 5 A scoring rule S : R x 0 — R elicits a property ' : P — R if forallp € P,

I'(p) = argsup S(r, p). 4)
reR
If we merely have I'(p) € argsup,.cr S(r, p), we say S weakly elicits I'. A property is elicitable if
some scoring rule elicits it.

Note that it is certainly possible to write down S such the argsup in (4) is not well defined. This
corresponds to some distributions having no optimal report, which we view as violating a minimal
requirement for a sensible scoring rule, and hence are not concerned with such cases.

Frongillo and Kash (2014) show how to generalize Theorem 3 to this setting. We state the
relevant special case here, which we use in the proof of Lemma 9.

Theorem 6 ((Frongillo and Kash, 2014)) Let property I' : P — R and scoring rule S be given.
Then S elicits T if and only if there exists some convex G : P — R, some D C 0G, and some
bijection ¢ : R — D withT'(p) = o~ Y(D N dG,), such that for allr € R and p € P,

S(Tv p) = G(pr) + (P(T)(p - pr)v (5

where {p, }rer C P satisfies v’ € T'(p,) for all 1.

4. Prior work has allowed I" to more generally be a multivalued map rather than a function, e.g. for quantiles.
5. Infinite-dimensional report spaces are also of interest, and we briefly discuss how some of our results extend in Sec. 3.
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2.3. Integral representations and identification

Savage (1971) observed that to obtain a truthful report 7 of an agent’s value for a commodity, one
can simply offer to sell one unit of the commodity at each of a sequence of prices, in even intervals
between 0 and the reported price 7. Savage notes that “one unit” could easily be replaced by “any
positive amount” and the elicitation would still be valid; making this continuous and selecting some
positive amount \(7) yields the representation,

/

S(w,7) = /O " M) (7 — a)da, ©)

since the agent gains value A(«) for each transaction but pays A(«)«

This integral representation of scoring rules has come up repeatedly in the literature; that of
Schervish (1989) is perhaps the most famous, but it also appears in Osband (1985; 1989), Lambert et
al. (2008; 2011), Gneiting (2011), and Steinwart et al. (2014). An equivalent formulation uses what
is called an identification function V (r,w), a notion introduced by Osband (1985). Identification
functions specify the level sets of I' by having zero expected value precisely when w is drawn from
some p € I',.. For example, one could define V («, m) = (7 — ) to recover eq. (6).

Definition 7 Let property T' : P — R be given, where R C R*. A function V : R x Q — RF is
an identification function for I, or identifies I', if for almost every r € R it holds thatp € T, <—
V(r,p) = 0 € R¥, where as with S(r, p) above we write V (r, p) = E,[V (r,w)].®

Lambert et al (2008) show that a scoring rule is proper for I' : P — R if and only if one
can write S(r,w) fo V(r',w)dr’, where X is a nonnegative function and V' is an identi-
fication function uniquely determmed by I'. This is a special case of an earlier result due to Os-
band (1985), which we restate below. Note that one direction of this result restricts to the relative
interior relint(R) because there is additional flexibility at other points. See further discussion and
an example in Section 3. We make extensive use of this theorem in Sections 4 and 5.

Theorem 8 (Osband (1985)) Let V be a differentiable identification function for I' : P — R
for R C R*. Then if S is a twice-differentiable’ strictly proper scoring rule eliciting T, for all v €
relint(R) we can write V,S(r,w) = (A(r)V(r,w))" for A : R — R¥*¥ such that A(r)V,.V (r,p)
is negative semi-definite for all p € T,.. Conversely, if N and V are as above and A(r)V,.V (r,p) is
negative definite for all p € 'y, S(r,w) fo (', w) T A(r")dr" elicits T.

3. Linear properties

This section focuses on the case that I' is a linear function, in the sense that for all « € R and all
p1,p2 € P we have I'(ap; + p2) = aF(pl) + F(pg) In particular we will consider I" to be the
mean of a random variable, I'(p) = fQ . As discussed in the introduction, this

6. We have made two relaxations relative to other definitions of identification functions in the literature: (1) V need only
identify I" almost everywhere, and (2) we do not require any order-preservation of V/, in part because it is unclear
how to define in higher dimensions; we suggest a definition in Sec. 5.

7. Here and throughout, whenever we discuss differentiable S or V, we require differentiation and expectations to
commute, i.e. V,V(r,p) = E,[V,V(r,w)]. As V is continuously differentiable and thus locally Lipschitz with
some constant L(r, w), it would suffice for example if L were P-integrable (which e.g. holds for ratio of expectations
with L = b), allowing the dominated convergence theorem to apply.
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case is well-studied in statistics and machine learning, yet previous characterizations make various
different assumptions and in particular all require some sort of differentiability. The goal of this
section is to unify these characterizations and remove the differentiability assumptions.

That every linear I is elicitable can be seen by taking the following score:

S(r,p) = G(r) +dG,(I'(p) — 1), )

where G : R — R is convex. To see why, consider # = I'(p) to be the type, and invoke Theorem 3.
By linearity of I, the resulting score is still affine in p, which suffices by the affine score framework
of (Frongillo and Kash, 2014). (One can also directly verify with one application of the subgradient
inequality.) But what forms of S other than (7) weakly elicit I'?

Note that (7) depends p only though I', which is why we can effectively replace P by R = I'(P).
We now state the crucial lemma of this section, which says that we can always “collapse” the type
space to R in this way, modulo a linear term which does not depend on r. The proof follows from
a careful but simple path integration argument.?

Lemma9 LetS: R x Q — R be given which weakly elicits a linear property I, where R and
P are convex. Then there exists P-integrable f : Q — R such that for all v’ € relint(R) and all
p1,p2 € P suchthat T'(p1) = T'(p2),

S(r',p1) = S(r",p2) = Ep, [f] — Ep, [f]. (8)

From Lemma 9, we now conclude that any scoring rule eliciting a linear property I' must be
well-behaved on the affine hull of T, for all » € relint(R).

Lemma 10 LetS : R xQ — R be given which weakly elicits a linear property T’ : P = R. Then S
weakly elicits T on expanded type space P = {ap+(1—a)p' : « € R, Ir € relint(R) p,p’ € T, }.

Proof Let p1,pe € Ty and p = p1 + a(p2 — p1) for @ € R. One easily verifies that with the f from
Lemma 9 we have S(r/, p) = S(1’/, p1) + (E,,[f] — Ep, [f]), for any 7’ € relint(R). As S weakly
elicits I' and the f term is independent of the report, the result now follows. |

The main result of this section now follows. Note that, as previous work has done (Lambert
et al., 2008), we must be careful to restrict to the relative interior of R (see Example 2 in Ap-
pendix A). To this end, we say that S weakly elicits I' on P’ if I'(p/) € argsup, S(r,p’) for all
p’ € P'. Similarly, we say S weakly elicits I on R if it weakly elicits I' on ' 1 (R/).

Theorem 11 Let T'(p) = E,p[¢(w)] where ¢ : Q@ — R and R = I'(P) C R*. Scoring rule
S: R x Q — R weakly elicits T" on relint(R) if and only if there exists some convex G : R — R
with subgradients {dG, },cr, and some P-integrable f : Q@ — R, such that for all r € relint(R)
andp € P,

S(r,w) = G(r) +dG,(¢p(w) —7) + f(w) + h(r,w) , )

where Vr’ € R,p' € PEy[h(r',w)] = 0.

8. Omitted proofs can be found in Appendix A.
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Theorem 11 generalizes (Abernethy and Frongillo, 2012) by removing the need for a differen-
tiability assumption, resolving the problem proposed by Gneiting (2011). Intuitively, Theorem 11
is using the fact from Theorem 6 that S(I'(p), p) has to be flat along the parallel level sets of T,
which imposes a very rigid structure on the subgradients at interior points. However, Example 2 in
Appendix A shows that all bets are off for boundary points. Finally, note that Theorem 11 applies to
some nonlinear properties as well: for any invertible ¢ : R' — R, replacing r by t(r) in the right-
hand side of eq. (9) gives a characterization of scores S : R’ x  — R eliciting I"(p) = ¥~ *(T'(p)).
Incorporating link functions in this way allows our results to capture, e.g., generalized linear models.

We conclude by noting several possible extensions. While we have assumed R C R¥ through-
out, many of the results in this section may apply if R is a subset of a more general topological
vector space. Such an extension would allow us to capture examples such as the identity property
(for distributions with infinite support), projections from a distribution over a multidimensional out-
come to the marginal distribution for a single dimension, and the (countably infinite) property that
consists of reporting all the moments of the distribution. A crucial place the finiteness of R is used
is in the very final step of the proof, where we need to pass from the S(r, p) we have constructed to
a S(r,w). This construction works more generally as long as for all linear functions d : R — R and
all distributions p € P, we have E,[d(¢)] = d(E,[¢]) = d(I'(p)), i.e., that Fubini’s theorem holds.
This also requires some care to ensure E,,[¢] is in fact well defined for more complicated choices of
R. Additionally, while we only considered real-valued scoring rules S : R x €2 — R, this can also
be relaxed to the extended reals via the same type of arguments and conditions as seen in (Gneiting
and Raftery, 2007; Frongillo and Kash, 2014).

4. Vectors of elicitable properties

Given some property I' : P — RF, we will say T is a vector of elicitable properties if one can
write I'(p) = [71(p), . .., Vk(p)] where each ~; : P — R is an elicitable scalar property. Clearly, I'
is elicitable, as from the elicitability of each ; we have scores S; eliciting 7;, and thus S(r,w) =
Zle S;(rs,w) elicits I'. It remains therefore to characterize the scores which elicit I". In particular,
it is natural to ask when there exist nonseparable scores, where no such summable separation across
coordinates of 7 exists.

In fact, we have already seen nonseparable scores for vectors of properties. Taking I' to be a
vector of linear properties and G(r) = ||7||> + (3=, r:)?, Theorem 11 gives a totally nonseparable
score. As we saw in Section 3, the linear case is essentially as flexible as the classical scoring rule
setting, in which any strictly convex function generates a scoring rule. Thus we may ask, do all
vectors of properties admit nonseparable scores? Surprisingly, the answer is no: Osband (1985)
shows that any vector of properties containing an c-quantile must be at least partially separable; see
also Fissler and Ziegel (2015). We now formalize these notions of separability.

Definition 12 A scoring rule S for T is partially separable if one can write S(r,w) = S1({r; : i €
Ti}yw) 4+ Sa({ri : i € I}, w) for some partition Ty, T of [k]. Likewise, S is totally separable if
S(r,w) = Zle Si(ri,w). We say that S is nonseparable if it is not partially separable, and totally
nonseparable if for all open sets R C R = I'(P), S|r is a nonseparable strictly proper scoring rule
for Tlp-1(g).

A vector with a quantile and two linear properties admits a partially separable score, where
the linear part is nonseparable, but not a nonseparable score. We introduce fotally nonseparable
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scores because it is possible to construct scores which are “separable” for all but one part of R (see
Example 3 in the appendix).

As linear scores can be nonseparable, but quantile scores must be separated, the question then
becomes, for which vectors of properties do nonseparable scores exist? In particular, are there
any nonlinear properties which admit nonseparable scores? We find our candidate in the ratio
of expectations, I'(p) = Ep[a]/E,[b]; as we show, taking a vector of such ratios with the same
denominator has as much flexibility as in the linear case. Let I'(p) = E,[¢]/E,[b] for ¢ : Q — R¥
and b : @ — R with E,[b] > 0 for all p € P. Appealing to Theorem 8, we use the identification
function V (r,w) = ¢(w) — r b(w). Now choosing strictly convex G : R¥ — R and letting

S(r,w) = G(r)bw) + V,.G - (¢p(w) — rb(w)), (10)

we compute V,.S(r, p) = V2G (E,[¢] —r E,[b]). This is proper from Theorem 8 with A(r) = V2G,
as V2S(r,p) = —E,[b] V2G(r) is negative definite for all p € T',. Moreover, if we choose G as
above for the linear case, S is again totally nonseparable.

The form (10) is very similar to eq. (22) of Gneiting (2011), which characterizes the scoring
rules for a real-valued ratio of expectations, which restated in our notation is S(r, w) = ¢'(r)(a(w)—
rb(w)) — b(w)(g(w) — g(r)) — ¢’ (w)(a(w) — wb(w)) for some convex function g. Ignoring expres-
sions which depend solely on the outcome, and hence do not affect the elicitation, gives S(r,w) =
g(r)b(w) + ¢'(r)(a(w) — rb(w)); our expression is therefore the natural generalization to higher
dimensions. This suggests that perhaps (10) is a characterization here as well. We indeed show this
to be the case, and by leveraging results from Section 3, we can also generalize our result to allow
nondifferentiable scores.

Theorem 13 Let ¢ : Q@ — R and b : QQ — R. Then scoring rule S : R x Q — R weakly elicits
the ratio of expectations I'(p) = E,[¢]/Ep[b] on relint(R) if and only if there exists some convex
G : R — R with subgradients {dG,},cr, and some P-integrable f : Q — R, such that for all
r € relint(R) and w,

S(r,w) = G(r)blw) + dG(d(w) — rb(w)) + f(w) + h(r,w) , (11
where Vr' € R,p' € P Ey[h(r',w)] = 0.

We have now seen that linear properties and ratios of expectations (with the same denominator)
allow totally nonseparable scores. In fact, we conjecture that these are the only such cases; all scores
for other vectors of properties must be separable. This would mean that all such scores satisfy a very
restrictive condition known as accuracy rewarding (see Theorem 5 of (Lambert et al., 2008)).

Conjecture 14 Ler T'(p) = [71(p), ..., Vk(p)] where each ~; : P — R is elicitable. There exist
totally nonseparable differentable scores eliciting T if and only if each ~; is a link of a ratio of
expectations with the same denominator; that is, there exists b : 0 — R such that for each i there
exist ¢; - Q — R and invertible ¥; : R — R such that v;(p) = ¥; * (Ey[¢i] /Ep[b]).

In the remainder of this section we provide some partial results toward this conjecture that help
motivate it. We begin by showing that, if S is totally nonseparable, the A from Theorem 8 has
considerable structure.



VECTOR-VALUED PROPERTY ELICITATION

Proposition 15 Let V(r,w) = [vi(ri,w),...,vk(rg,w)] be a continuously differentiable iden-
tification function for T', where each v; identifies each ;. If S is a twice differentiable totally
nonseparable score with V,.S(r,w) = A(r)V (r,w) for some A, then there does not exist an open
path-connected R C R such that A(r) is reducible for almost every r € R.°

Building on this result, we further show that whenever A(r) is irreducible, V.V (r, p) is a scalar
multiple of the same diagonal matrix for all p € T',.

Lemma 16 Let V = [v1,...,v;| and T as in Proposition 15. If S a twice differentiable score,
then there exist functions B;(r) such that B;(r)vi(ri,p) = B;j(r)vi(r;,p) for all r where A(r) is
irreducible and all p € T, where v}(-,p) = 0/0y,v;i(-, p).

For intuition for the conjecture, suppose that the constraints from Lemma 16 held for all p,
rather than just p € I',.. Then that would imply that v} (r;, w) = g;(r;)b(w) for some b : Q@ — R and
some functions g;. Integrating, we have v;(r;,w) = b(w) fi(r;) — ¢i(w) for some function ¢; and
where f; is an antiderivative of g;. But by definition of v; we have v;(p) = r; <= v;(ri,p) =0,
giving v;(p) = f; *(Ep[¢] /Ep[b]), which would prove the conjecture.

While these partial results are insufficient to prove the conjecture, they suffice to show that
some natural properties have no (twice differentiable'”) totally nonseparable score. In particular, we
describe how to recover Osband’s result that this holds for a-quantiles, and give a new result that
it holds for T-expectiles. For a-quantiles, taking P to be distributions on the reals with continuous
densities with full support, we take v;(r;, w) = a; — 1,,>,,. Evaluating at p € I, and differentiating
gives v} (r;,p) = —p(r;). As these can vary essentially arbitrarily for p € T',, the conditions of
Lemma 16 will not be satisfied for any fixed choice of the 3;(r).

Finally, consider the 7-expectile, which is a type of generalized quantile introduced by Newey
and Powell (1987). The 7-expectile is defined by the solution x = p, to the equation

Ep H]lacZw _T‘(x —W)] =0.

One can check that v;(r;,w) = |7, — L,_|(w — r) identifies the 7;-expectile, and as the derivative
again contains a p(r;) term, we have the following.

Corollary 17 Expectiles have no twice differentiable totally nonseparable score.

5. General vector-valued properties
5.1. Generating identification functions

In this subsection, we provide a natural way of generating identification functions without first
having a proper score to differentiate. We restrict to the case of finite 2, with n = Q2| and R C R*.
In addition, we assume that I' satisfies the following condition, which generalizes a condition that
is sufficient for elicitability in the scalar case (Lambert et al., 2008).

T" is twice differentiable and has convex maximal level sets

Condition: of dimension dim(P) — dim(R) =n — k — 1

12)

9. A matrix A is irreducible if the directed graph with edges for nonzero entries of A is strongly connected.
10. This result can likely be extended to the non-twice-differentiable case, due to Alexandrov’s theorem that convex
functions are twice differentiable almost everywhere (Rockafellar, 1997).
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We say a set S is convex maximal (in P) if S is the intersection of an affine subspace and P.
Equivalently, S contains all points in its affine extension which lie in P.

Proposition 18 Let I' : P — R satisfy condition (12), and let p : R — P be any continuously
differentiable function such that I' o p = idg and rank(V,\I') = n — k for almost every r. Then
the function

V(r,w) = (Vi T) (6w — p(r)) (13)

identifies I, where 4, is the point distribution on w.

This proposition benefits from our weakening of the definition of identification to only require
it to hold almost everywhere. In particular, if I' has inflection points V,,I" would be 0 at such points.
Thus, this weakening allows our results to hold for examples such as I'(p) = p3.

We illustrate the power of Proposition 18 below, by showing that identifications of standard
properties can be recovered. Note that such a differentiable right inverse p of I' may fail to exist.
In practice, however, the particular choice of p is often irrelevant, as in most cases below, and
even when the domain of I' is infinite-dimensional, such as for the quantile, this process often
still produces a valid identification function. For these reasons we view this result as a theoretical
justification for a construction of identification functions which is quite useful in practice.

Linear and Ratio of expectations. For I'(p) = Ap/b-p, A € RF¥*" we obtain V,I' = (b -
p)2((b-p)A—Apb") = (b-p) (A —T(p)b"). Noting that V,I'p = I'(p) — I'(p) = 0, this gives
V(r)p=Vym»Ip=(b-p(r) "(Ap— rb"). Scaling by b - p(r) # 0, which does not change the
identification property, gives the usual V' from Theorem 13, as well as the linear case when b = 1.

Quantiles. While we have not shown Proposition 18 for the infinite outcome setting, we can
nonetheless motivate the traditional a-quantile identification function V(r,w) = a — 1,>,. In
particular, V,I' = a — Ip(p)>,. This gives V(r,w) = (a — Ipgpe)sw)(w — B(r) = (a —
15.) — (@ - a).

Finally, we conjecture that this derivation provides a simple test for elicitability. For intuition,
suppose that I is elicitable and V,.V (r, p) is symmetric for p € T',. Then we have V2S(r,p) =
(A(r)(V,V(r,p)))T, where all 3 matrices are symmetric, V2S(r, p) is negative semidefinite, and
A(r) is positive semidefinite. If both were definite, we could conclude that V,.V (r, p) was nega-
tive definite. This intuition, while insufficient for the conjecture, does provide a natural candidate
scoring rule for cases where V,.V (r, p) is symmetric.

Conjecture 19 Let T satisfy condition (12). Then T is elicitable iff it is elicited by S(r',w) =
Jo V(r,w)"dr, where V is given by (13).

5.2. Ordered identification and convexity

Several authors have defined identification functions for real-valued properties to have an additional
order-sensitive quality, requiring v(r,p) > 0 <= r > I'(p) (Lambert et al., 2008; Lambert, 2011;
Steinwart et al., 2014). Notably, the corresponding characterizations then force the weights A(r) to
be nonnegative. At first glance, there does not appear to be a natural notion of order-sensitivity for
vector-valued properties. Here we propose such a notion, using I' to determine the order. The key
idea follows from Proposition 18.

10
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Corollary 20 LetI" : P — R satisfy condition (12). Then for V and p as in Proposition 18, any
twice differentiable scoring rule S : R x 0 — R eliciting T satisfies V,S(r,w) = (A(r)V (r,w))T,
for A(r) € R¥*¥ positive semi-definite such that

AW ((V2)T) (0= 50) © Vep) = 1) (14)
is negative semi-definite for all p € T';.

Just as A > 0 in the scalar case, we now have a class of identification functions which force
A > 0 (positive semi-definite). Hence, we may define a I'-order-preserving identification function
as one for which any score eliciting T' with V. S(r,w) = (A(r)V(r,w))" has A(r) > 0 almost
everywhere.

This notion of identification has strong ties to convexity. Many explicit characterizations of scor-
ing rules for scalar properties have forms that resemble Bregman divergences; see e.g. (Gneiting,
2011, eqgs. 18, 22, 28). Using the fact that the Hessian of a convex function is positive semi-definite,
we can provide some intuition for this. Suppose S is as above with A(r) = V2G(r) for some convex
function G. Then integrating by parts gives

S(r,p) = V:GV(r,p) = VoGV (0,p) — [y VGV V (1, p)dr’
= VGV (0 = () = £p = J3 VG (V2,0 T) (0 = 50") © Vo) — T) dr’
= G(r) + VGV T(p— B(r) — £p— [I VG (v2 ) ((p— B(r")) ® V) dr.

We now see that the first two terms resemble a nonlinearly transformed linear approximation of G
as in the linear case, e.g. eq. (9). The third term is irrelevant, and the final term may provide clues
as to which properties I" are elicitable; see Section 5.3.

5.3. Toward a general characterization

Thus far, we have not seen examples of elicitable properties which are not simply vectors of elic-
itable properties. This leaves the question, are there elicitable properties which cannot be decom-
posed coordinate-wise? One simple way to generate such properties is with a link function, an
invertible map ¢ : R — R. Given some property I' : P — R, clearly S elicits I' if and only
if S(r,w) = S(¥~(r),w) elicits I' = 1 o I'. Thus, while the variance is not elicitable (Os-
band, 1985; Lambert et al., 2008), the vector-valued property (mean, variance) is via the link
¥ {x,y} — {z,y — 2%} from the first and second moment.

While link functions are important in machine learning, and affect the optimization properties
of the score or loss, they are merely relabeling the report values, leaving the underlying structure
of T" the same. In particular, the level set structure L(I') = {I', : » € R} remains fixed under a
link operation. It is therefore natural to ask, which level set structures L are elicitable, in the sense
that there is some elicitable property I" such that L = L(T"). So far, we have only seen elicitable
L corresponding to vector-valued properties which are composed of elicitable scalar properties,
leaving the following question open.

Question 1 For what partitions L of P does L = L(T') for some elicitable T'? !

11. Given Theorem 6, this is essentially a question about subgradient maps obtainable from convex functions.

11
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Lambert et al. (2008) ask whether having each element of L be convex maximal is sufficient in
general. Surprisingly, the following example shows that this is not the case, even when one further
requires all level sets to be flats of dimension n — k& — 1. In fact, from our above discussion of level
set structures, Example 1 says that no property with level sets L(I") = {{[a — f(b)c,¢,b] : c € R} :
(a,b) € R?} is elicitable.'?

Example 1 Let T = R3, R = R?, and define T'(t) = [t1 + f(t3)t2, t3] for some differentiable f.
One easily checks that V (r,t) = [t1+ f(r2)ta —r1, t3 — 2] identifies I, and thus by Theorem 8, any
score S eliciting T must have V2S(r,t) = A(r)V,V (r,t) for all t € T, for some A : R? — R?*2,

We easily calculate
-1 taf(re)
V,.V(-,t)= [ 0 1 .

If f'(ro) = O forall ro then T is a linear property and hence elicitable by Theorem 11. If f'(r3) # 0,
then N,V (- ,t) depends on to, and one can check that ts is not fixed within a level set I',. Hence,
regardless of A, the product A(r)V,V (r,t) will fail to be symmetric for some t € T, and we
conclude that I is not elicitable (at least not by a twice differentiable score). Note that we can easily
apply this reasoning to show that e.g. the property I'(p) = [E,[p1] + f(Ep[os])Ep(p2], Ep[és]] is
not elicitable, for some P-integrable ¢ : Q — R3.

As with Lemma 16 for the vector of properties case, this example shows how our understanding
of the structure of elicitable properties can be used to rule out the elicitability of properties that lack
the required structure. Extending our techniques to deepen this understanding seems a promising
approach to attack Question 1.
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Appendix A. Omitted material
Proof of Lemma 9

Proof By Theorem 6, we have some ¢ : R — D such that dG, = ¢(I'(p)) is a selection of
subgradients of convex function G(p) = S(I'(p), p), and moreover that

S(r’,p1) = S(r',p2) = (') (p1 — p2) - (15)

Note that as P is convex and R = I'(P), we have relint(R) = I'(relint(P)) (cf. (Rockafellar and
Wets, 2011, Prop. 2.44)); hence as 7’ € relint(R), we have some p’ € T',» Nrelint(P). Now by
definition of relint (see (Zlinescu, 2002, pp. 2-3)) we have some o > 0 and v = a(p; — p2) such
that p’ + v € P.

Let L, , denote the line integral of the vector field {dG,},cp between points z,y € P:

1
Lz,y = /0 dG:r:+/\(y—x) (y — x)d)\ . (16)

As {dGp}pep is a selection of subgradients, it satisfies two conditions which we will need: (i)
weak monotonicity, which asserts that dG,(p' — p) < dG, (p' — p) for all p,p’ € P; (ii) path
independence, which says that the value of a path integral depends only on the endpoints of the
path, and in our notation implies L, , + L, . = L, . for all x,y,z € P. Weak monotonicity is
sufficient for the integrand in eq. (16) to be monotone in A and thus Reimann integrable; cf. (Archer
and Kleinberg, 2008, Thm 3.1). Furthermore, path independence ensures that

Lp17p1+v + Lp1+v7p’+v = L’php’ + Lp’,p’—&-v . (17)

Using linearity of I', note that I'(v) = «(I'(p1) — I'(p2)) = 0, and hence I'(p + v) = I'(p) for all
p € P. Applying this fact and dG = ¢ o I" to eq. (17), we now have

1
Ly o, 40 = /0 (D1 + v+ AW =) ) (0 = pr)dr
1
2/0 @(F(pl+A(p’—p1))>(p’—p1)dA=Lp1,pu

whence we conclude Ly, | p, 4o = Ly, /4. Using similar reasoning, we have Ly, p, 4o = fol o(r)(v)d\ =
¢(r)(v), and likewise L,y 1+, = (r’)(v). Thus, dividing both of these terms by a > 0, we obtain
o(r")(p1 — p2) = ©(r)(p1 — p2). Now fix any ¢ € relint(R), and recall from Definition 2 that as
©(rg) € 0G we have some P-integrable f : 2 — R such that p(rg)(p) = E,[f] forall p € P.
Applying the above with r( in place of ' now gives us E, [f] — E,,[f] = ¢(r0)(p1 — p2) =
@(r)(p1 — p2) = (') (p1 — p2). =

Example 2

Example 2 Let T = {(t1,t2) € [0,1]2 : to < ta}, and T'(t) = t1. Then the following affine score
elicits I

A()(¢) = (18)

2ty — 12 ifr>0
—t9 ifr=0

15



FRONGILLO KASH

To see this, note that A(0)(t) < O for all t, so when t; > 0 reporting r = t1 is optimal. For
t1 = 0, the only type in T also has to = 0, and hence r = 0 strictly dominates. Thus, we have strict
elicitation. But A cannot be written in the form (9) as A depends on ty in a way that is not constant
inr.

Proof of Theorem 11

Proof It is trivial that the given form is proper: f plays no part in the elicitation, and as discussed
after eq. (7), the remainder is proper by Theorem 3. For the converse, let S weakly eliciting I" on
relint(R) be given, at let f be the functional from Lemma 9. Now let p : R — V be a linear right
inverse of I, satisfying I o p = idg, and define S™(r',r) = S(+',p(r)) — Ep([f], which can be
done by Lemma 10. Then for p € T',.,

S(r',p) = Eplf] = S®(',T(p)) = S(r",p) = S(r',5(r)) + Epr) [f] — Ep[f] =0, (19)

where the last equality uses Lemma 9. By linearity of p, S satisfies the conditions of Theorem 3
for type space relint(R), so that S* (', T'\(p)) = G(r') + dG,.(T'(p)) — dG,(r"). Now by the fact
that R C R¥, we can write dG,(T'(p)) = E,[dG,(¢)]. Letting Z(P) = {h: Q@ — R : E,[h] =
0 Vp € P}, we have shown S(r,p) — E,[f] — G(r) — dG, - (E,[¢] — r) = 0, which implies

vr € relint(R), (h(r,"):w S(r,w) — f(w) — G(r) — dG, - (¢(w) — 1)) € Z(P) ,

from which the form (9) follows. |

Example 3 Let~y : P — R be an arbitrary elicitable property, and fix some ©. By characterizations
for the scalar case (Lambert, 2011; Steinwart et al., 2014), we can describe the level set for t as
a hyperplane; specifically, we can write v = {p € P : p-x = c} where x is orthogonal to the
simplex and c € R. We can simply “slice” v and insert a linear property in the gap; define v by

7(p) prr<c
Yp)=q7+(p-r—c) c<p-x<cte (20
Yp—ex)+e p-xz>c,

as long as ~y can be extended to P U {p —ex : p € P,p-x > c}. This 4 is still elicitable by the
same characterizations (all level sets are still convex maximal). Now given any vector of properties
' = [y1,...,7%), we can simply perform this operation on each ~y;, and in principle we can then
devise scores which are nonseparable in the region [F'1,71 + €] X -+ X [P, T + €.

As a concrete instance of this, consider v(p) = qo(p) to be the a-quantile of p. Then we have
x = lycy and ¢ = 1 — o, since qo(p) = 7 exactly when x - p = Ep[z] = 1 — . Writing
p(r,00) = Ep[l,«,], this gives us

a(p) p(f,00) <1—a
F(p) =7 +p(f,00)+a—1 1—a<p(f,oo)<l—a+e 21
Ga—e(p) + € p(f,00) >1—a+e,
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which is well-defined for all p € 'P. The identification function in this case is then

L<w—a r<rt
O(r,w) =< Licy —(a+r—7) P<r<r+e (22)
Lr<wte — (@ +¢€) r>~f+e.

Note how r is outside the indicator function in the interval [F,7 + €|, giving us a clear linear
relationship.

Proof of Theorem 13

Proof We first must establish that the set dom(G) = {E,[¢]/E,[b] : p € P} is convex. Consider
p,p € P,px = Ap+ (1 —A)p and f(N\) = E,, [¢]/E,, [b]. Then by linearity of expectation we
may write f(A\) = (Av+ (1 — A)v')/(Az + (1 — X)a’), where v = E,[¢], v' = Ey[¢], z = E,[b],
z’ = E, [b]. Now we have

(v =)@+ ANz —2")) — (x —2) (V' + AN(v =) v’ —v'x

d
ﬁf(k) = (@ + XNz — a'))? T (@ A@—a))?

which shows that f(\) parametrizes a line segment between v/z and v'/a’.

dom(G) must contain this entire line segment, and hence is convex.

To show the form (11) elicits I', we first assume without loss of generality that f = h = 0, as
they play no role in the optimization. Now simply factor out the b term and apply the subgradient
inequality:

As P is convex,

o — Eld]
gy = 60+ (25—
= Glr) + dG, () = 1) < GT() = g5ST ). 0)

For the converse, let S be given and define ¢ : p — E,[b] "!p and P! = )(P), where P is the
domain of I'. Then for all p € P! we have I'(p) = E,[¢]. Furthermore, as S(r, ap) = aS(r, p) is
well-defined by linearity for all constants a € R, it must be the case that S elicits I' on P!. Applying
Theorem 11, we have

S(r,¢(p)) = G(r) + dGy (Eyp) (0] — 1) + By [f]-

Now applying S(7,p) = E,[b]S(r, Ep[b]~'p) = Ep[b]S(r,4(p)) and Ep[b] By [f] = Ep[f], the
form (11) follows. n

For simplicity the following example is stated for affine scores; the proof of Proposition 18
easily extends to the affine score case with e.g. V/(r, 1) = V;, I'(t — t(r)).

Proof of Proposition 15

Proof Let r be a report value at which A(r) is reducible. As V,.V (r,w) is diagonal, by Theorem 8,
A(r) must be symmetric. Hence, there exists a partition Z1,Z, of the indices such that \;;(r) =
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Aji(r) = 0 forall i € 7y, j € Zy; without loss of generality, we can write A(r) = [Alo(r) AQO(T) }

Furthermore, A;(r) must be a function solely of r; for j € Z;: if not, then without loss of generality
we have i1, j1 € Z; and jo € Ty such that \;, j, () depends on r;,. This implies for all p € T',. that
(V2S(r,p))iy.i = (A(r)V,.V(r,p))iy 4, depends on 75, as (V,V(r,p))i; = vi(r;) depends only
on 7; for all 4 so the dependence on 7, cannot be canceled. As A(r)V,.V(r)p is a Hessian, this
means that its (i1, j2) entry must be nonzero, and as VV is diagonal we must have \;, j,(r) # 0,
which is a contradiction.

Now suppose for a contradiction that we have an open region R C R such that A(r) is re-
ducible for all » € R. Fixing r, € R, for all r € R we can write S(r,w) = S(r*,w) +
LAV w)Tdr = S(r*,w) + f%l]] AWV (', w)Tdr' + f:[*;] AV (', w) Tdr' =
S1(ry)sp) + S2(rg), p), where r* = rf‘l] @ r[*Q] and r = 713 @ rpg). Hence, S cannot be totally
nonseparable. u

Proof of Lemma 16

Proof By Theorem 8, we have some A such that (V,.S)T = A(r)V (r) and for all r, A(r)V,.V (r, p)
is (symmetric and) negative definite for all p € I',. By the form of V, we have V,V(r,p) is a
diagonal matrix with diagonal [v] (r1,p), ..., v}, (7%, p)].

Assume that A(r) is irreducible. Let i, j such that A\;;(r) # 0; symmetry of A(r)V,V(r,p)
gives us A\ (r)v;(rj,p) = Aji(r)vi(ri, p), which implies that for all p € T,

vi(ri, p)/V5(rj, p) = Xij(r) / Nji(r), 23)
By irreducibility of A(r), we have a path of such nonzero entries between any 7 and j, and multi-
plying the corresponding ratios gives eq. (23) for all 7, j. |

Proof of Proposition 18

Proof By convex maximality of I, and definition of p, we must have V5,4 I'(¢ — p(r)) = 0 for all
p € I';. By linearity then, we must have span({p — p(r) : p € I'}) C ker V5, I". As V' is of
rank n — k almost everywhere, we must have span({p — p(r) : p € '+ }) = ker V5,) I for almost
every r. We conclude that for almost every r, V(r,p) =0 <= p € T. |

Proof of Corollary 20
Proof Apply Theorem 8 with V', which identifies I" by Proposition 18. Fixing p € I',., we have

VoV () = (V30) ((p = () @ V,5) = VT Vi
- (Vfa(r)F) ((p—p(r) ®V,p) — I,

as I' o p = idg. The form (14) follows. Taking p = p(r) forces A(r) to be positive semi-definite. l
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