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ABSTRACT
Current storage offerings provide a small number of options in the
form of fixed prices with volume discounting. This leaves storage
operators to guess how much data customers will add over time. In-
stead, we propose that the operator elicits basic information about
future usage. Such information can be used to operate the system
more efficiently. In particular, we show how prices can be cal-
culated that encourage customers to accurately report the range of
their future usage while ensuring that the operator covers his costs.

1. INTRODUCTION
The current state of the art for pricing of cloud storage, both in

research and in products of all major providers like Amazon Web
Services and Microsoft Azure is that the storage operator offers
a fixed price per gigabyte (or in some cases for fixed amounts of
data), with prices per unit that decrease as customers buy more.
For example, Amazon S3 offers the following contract for its stan-
dard storage service: customers pay $0.03 per GB for the first
TB/month, $0.0295 per GB for the next 49 TB/month, $0.0290
per GB for the next 450TB/month, and so on. By offering this type
of contract, storage operators gain very limited information about
how their customers intend to use the storage and how many GB
they will use. Indeed, even if the price changes depending on the
usage, no information about future consumption are available and,
at the end of the month, a customer’s pricing tier is determined by
what she have actually used during the month. This lack of infor-
mation makes difficult for the storage operator to forecast how the
resources will be used and thus plan the storage activities. More-
over, since actual needs of customers are not taken into account,
the service offered to them cannot be personalized, in terms of,
e.g., type of storage provided and price per gigabyte.

Our thesis is that the status quo represents a missed opportunity
for providers to elicit more information from customers. There is
a wide variety of information that customers know that would help
the storage operator, but which there is currently no way to express.
Is there a product launch or change from development to release
coming? How often are you expecting to access yout data? Will
you business be affected by a delay in accessing your data? To
understand the impact that this information would have consider the
case of a new customer. She needs to be allocated to some physical
storage rack. One option is to allocate her to an existing rack, but if
usage grows beyond the capacity of the rack some customer’s data
needs to be either migrated or split across racks. Alternatively, she
can be allocated to a new rack, but this requires buying additional
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hardware while not using some of what the storage already has.
Any of these options is expensive for the storage if it is not the
best one given the specific customer’s requirements. Lacking any
information from the customer, the storage operator is reduced to
using crude statistical average and rules of thumbs to decide which
options to choose. This is just one of many examples where more
information could help. Others include understanding if there will
be enough storage bandwidth to meet customer demand and, if not,
who should be prioritized, as well as what data is hot or cold. Thus,
the more information about customer intentions is available, the
more efficiently storage resources can be organized, resulting in
lower operating costs, greater social welfare, and lower prices for
customers or increased revenue for the storage operator.

In this work, we take a first step toward the personalization of
storage payments. In particular, our aim is to learn the probabil-
ity distribution of future storage usage so that the storage operator
can manage resources accordingly. We could request full distribu-
tional information using techniques from scoring rules [5], but it
is unreasonable to assume that customers are able to communicate
such information. On the other hand, simple statistics of it like the
lower and the upper bounds of this distribution can be estimated
more easily by customers and, given these, the storage operator can
use internal models and historical data about customers behavior
to transform the bounds into a plausible distribution of future us-
age. This observation motivates us to ask each customer to report
a lower bound and an upper bound for the storage units she will
use, where a storage unit can be, e.g., a gigabyte. For the sake of
simplicity, in this paper we assume that customers have to specify
the exact number of gigabytes for the lower and the upper bound.
However, this assumption can be easily relaxed to coarse estimates
without meaningful loss of information for the storage operator, as
we discuss in Section 5.

To encourage customers to accurately provide the requested in-
formation, we should reward them such that more accurate infor-
mation leads to better prices. Other than directly affecting the pay-
ments, misreports have negative effects on the storage. Indeed, it
can be better to have no information at all rather than plan the stor-
age activities on the basis of inaccurate information. Consider the
example described before were a new customer needs to be allo-
cated to some physical storage rack. As discussed, the storage op-
erator faces several options and without information he has to use,
e.g., statistical averages to decide which one to choose. However,
inaccurate information can have even a worse effect on the storage
operators choice who can choose the worst option while believing
it is the best one.

Given this, the fundamental problem is to provide customers
with the right incentives to accurately report their information. To
understand the technical challenge we solve, suppose a customer



reports that she will use between 5 and 15 GB, but knows she will
use between 10 and 20. We will never observe her using less than
10, so prices must be charged such that she does not benefit from
reporting 5 instead. We will observe her using more than 15 only
probabilistically. But, and this is the key issue, even when we do
observe this, we have no way of knowing whether her true upper
bound was 20 or 200. Thus, we need to find penalties that in ex-
pectation discourage this.

In this work we consider two types of contracts for personalized
payments: flexible and fixed. The flexible contract mirrors current
pricing schema where the customer pays at the end of the contract
for the actual storage consumption. However, different from cur-
rent practice, in our work, the price per storage unit is customized
based on the information the reported by the customer. Thus, when
the customer chooses the flexible contract, the storage operator im-
mediately computes the personalized price per storage unit and the
final price the customer pays at the end of the contract is equal to
this price per storage unit times the number of storage units she
actually uses. In doing so, we gain the benefit of additional infor-
mation with minimal disruption.

The fixed contract is an option not available in the current pric-
ing model, but very natural in the approach we envision. When a
customer chooses this contract, she pays in advance the total price
for the required service. Given that information about the actual
storage usage is not available at the beginning of the contract, in
computing the final payment, instead of the actual customer’s con-
sumption its estimation (done by the storage operator on the basis
of the reported information and, e.g., the customer’s history is used.
Thus, as before, the storage operator computes the personalized
price per storage unit, but the final payment is equal to this price
times the estimated amount of storage units the customer will use.
We remark that the introduction of fixed contracts bring advantages
especially because this contract can satisfy customer needs unful-
filled by existing pricing mechanisms. Suppose you (or a company
or government agency) had a research project that would generate
data for 2 years and then you need to retain it for 8 years, and want
to get that for a fixed up-front payment out of your current grants
(budget) that expires in 3 years. With current contract options, us-
ing cloud storage is not a feasible solution because you will have
no money to pay it after the third year and you will ended up by
choosing the more expense solution of buying your own hardware.
With the fixed contract type we propose, cloud storage becomes a
feasible and cheaper option.

In summary, our contributions are:

1. a model of how the storage operator can make use of addi-
tional information;

2. the design of personalized payments and penalties that incen-
tivize customers to reveal their information;

3. the introduction of a new type of contract, the fixed contract,
where the payment is done upfront.

2. THE MODEL
In this section we describe how the storage operator uses the in-

formation provided by the customer. We start by presenting a sim-
ple example that we use throughout the paper to show our results.
These are then generalized in Section 5.

Assume that time is divided into periods from 1 to T and that the
number of storage units used by the customer cannot decrease with
time, i.e. the storage units used at t are less than or equal to the ones
the customer uses at t + 1, for all t ∈ [1, T − 1]. We believe this
assumption is reasonable because, since we study problems related

to cloud storage (and not cloud computing), customers are more
likely to use the service for a long-term file storage and thus the
amount of data stored in such settings increases with time.

Let l denote the lower bound and u the upper bound of the amount
of storage units the customer uses. The minimum value that l can
have is lmin and the maximum value for u is umax. (l, u) is the
private information of the customer that we aim to elicit, i.e., we
aim to obtain l̂ = l and û = u, where l̂ and û are the reported
lower bound and upper bound, respectively. Given these reported
bounds, the storage operator can estimate the number of storage
units the customer will use at each time period t. Essentially, we
assume that the storage operator knows the probability distribution
of the random variableRt representing the increment in the number
of storage units with respect to the reported lower bound at time t.
Note that, as the goal is to incentivize truthful reporting, we assume
that Rt ∈ [0, u − l], ∀t ∈ [1, T ]. Thus, the storage operator can
estimate the number of storage units the customer will use at t and
we define the random variable representing this as St = l + Rt.
Let S =

∑
t∈{1...T} St

T
be the estimated average usage over the rel-

evant time window. We denote with rt the realization of Rt, with
st = l + rt the realization of St, and with s the realization of
S. (In general,we use capital letters for random variables and the
lower case version for the realization.)

Intuitively, it may not be in the best interest of the storage oper-
ator to allocate at each time period t exactly the number of storage
units the customer is expected to use, i.e., E[St]. Indeed, to be flex-
ible enough to face variation of the predicted behavior of the cus-
tomer, at t the storage operator should allocate more storage units
than E[St]. For example, by allocating more space, the storage
operator can allow the customer’s usage to grow over future time
periods without needing to split up or move the customer’s data. Of
course, keeping storage in reserve is not free, so the storage opera-
tor should be judicious in the additional amount he allocates. This
is why we do not consider the dummy model where all the stor-
age space requested by a customer is allocated at time t1. Denote
with qt(l̂, û) the function that, given the reported bounds, defines
how many storage units to allocate at t for a given customer, and

let q(l̂, û) =
∑

t∈{1...T} qt(l̂,û)

T
. In this paper, we model the stor-

age space reserved for a customer at time period t as the reported
lower bound plus the estimated number of storage units she will
use at t+ 1. Formally, qt(l̂, û) = l̂ + E[Rt+1]. Of course, at time
t, the customer may well end up using more or less storage than
qt(l̂, û). However, if a number of customers are sharing the same
storage and their usage is independent, this will tend to average
out. Thus, allocating for each customer her expected storage units
is reasonable as a simple model, and of course additional storage
could be reserved without significantly affecting our analysis. To
illustrate this idea, we consider a specific example where T = 2.
In the next sections we analyze this example, and later discuss how
it generalizes.

EXAMPLE 1. We consider time divided into two periods: t1
and t2 and we assume that qt(l̂, û) is computed as bescribed above.
Thus, qt1(l̂, û) = l̂ + E[R] and qt2(l̂, û) = l + r because t2 = T
and at the last time period the storage operator needs to allocate
only the storage units the customer uses. For the sake of simplicity
we use R = RT and r = rT .

We assume that the model the storage operator uses is that ex-
actly l units are used at t1. The storage increment from t1 to t2
is assumed to be drawn uniformly at random (R ∼ U(0, u − l)).
Thus E[R] = û−l̂

2
, E[S] = 1

2
(l̂+ l̂+E[R]) = 3l̂+û

4
, and q(l̂, û) =

1
2
(l̂ + E[R] + l̂ + E[R]) = l̂+û

2
.



st E[St] qt(l̂, û)

t1 l l̂ l̂ + E[R]
t2 l + r l̂ + E[R] l + r

Table 1: Used, predicted, and allocated storage units.

Note that our running example is somewhat degenerate, in that
there is actually no uncertainty over l. Moreover, we assume that
the intervals are drawn from a uniform distribution. These assump-
tions allow our initial analysis to expose the main intuition for our
results without added complexity. In Section 5, we relax these as-
sumptions.

3. FLEXIBLE CONTRACT
When the customer chooses a flexible contract, at the moment

of stipulating it she has to specify the lower bound l̂ and the up-
per bound û on the storage units she will use until the end of the
contract. Given this information, the storage operator estimates the
price per storage unit p(l̂, û) the customer has to pay if she does
not violate any of the reported bounds. This price is part of the
contract. The actual payment is due when the contract expires, i.e.,
at the end of time T , because it depends on the actual storage units
the customer uses. Indeed, the payment Pflex(l̂, û) of a customer
is equal to the price per storage unit times the storage units she uses.

As explained in the previous section, for each time period t the
storage operator may decide to allocate more storage units than the
ones he predicts the customer will use. While the allocated extra
storage units guarantee a more efficient service to the customer,
the storage provider does not want to make a loss by using this
allocation model. Thus, the customer should also cover the cost of
the extra allocated storage units. This implicitly suggests to set the
price per storage unit p(l̂, û) such that it compensates for the cost
of the overall allocated storage units. Note that charging customers
for extra storage is a common practice. However, differently from
what we propose, typically this is done by rules of thumbs and
baked into the prices charged.

Formally, the random variable representing the payment of a cus-
tomer is

Pflex(l̂, û) =
∑
t∈T

st · p(l̂, û) = T · s · p(l̂, û)

where p(l̂, û) is the function that given the reported bounds com-
putes the payment per storage unit the customer will pay. The ex-
pected payment of a customer computed when she signs the con-
tract is

E[Pflex(l̂, û)] =
∑
t∈T

E[St] · p(l̂, û) = T · E[S] · p(l̂, û)

We now formally describe how the price per storage unit for a
given customer is computed. To guarantee that the payment of the
customer covers also the cost of the extra allocated storage units, in
computing p(l̂, û) the cost c of a single storage unit, e.g., the cost or
a storage rack divided by its number of storage units, is increased
of a factor ρ(l̂, û). Note that c is independent of the customer’s
reported information and that it is constant because economies of
scale are already priced in1. Formally, p(l̂, û) = ρ(l̂, û) · c where

1That is, we assume the operator buys so much storage that its
price per unit is constant. Alternatively, this can be viewed as an
assumption that customers are small enough that the marginal cost
of serving anyone is a constant per unit.

ρ(l̂, û) satisfies ρ(l̂, û) ·c ·E[S] ·T = c ·q(l̂, û) ·T . Thus, ρ(l̂, û) =
q(l̂,û)
E[S]

. For Example 1, ρ(l̂, û) = 2l̂+2û

3l̂+û
, and Pflex(l̂, û) = T · S ·

2l̂+2û

3l̂+û
· c.

3.1 Incentives
In this section, we examine when the customer has no incentive

to report bounds that differ from the actual ones. In computing
the payment the only parameter that is affected by the customer’s
information, and thus can be manipulated, is p(l̂, û). Thus, when
we want to investigate if and how a customer is incentivized to
report bounds l̂ and û different from l and u, we need to focus only
on p(l̂, û).

A customer has no incentive to misreport the bounds if her pay-
ment is minimized when l̂ = l and û = u. Thus, she has no
incentive to misreport (l̂, û) if ρ(l, u) ≤ ρ(l̂, û). As we observe in
the following theorem, this condition is satisfied when l̂ < l and
û > u. Proofs of all theorems are reported in the full version of the
paper.

THEOREM 1. In the scenario described in Example 1, customers
have no incentives to report l̂ < l or û > u.

However, customers may still be motivated to report l̂ > l or û <
u. To overcome this, the storage operator can charge customers a
penalty every time a violation of one of the bounds is observed, as
discussed in the next section.

3.2 Penalties
In this section, we describe how penalties charged to customers

who report û < u can be computed. In order to guarantee a truth-
ful report from the customer, it would be enough to charge her an
infinite penalties every time she violates the contract. However, we
aim to compute a tighter penalty and prove that it is possible to de-
fine a reasonable upper bound to the penalty independent from the
specific instance of the problem. This is important because no real
customer would accept a contract with an infinite penalty.

We omit discussion of how to compute penalties for l̂ > l be-
cause in our example there is no uncertainty about l̂ so penalizing
misreports is trivial. Note that this restriction is due to the example
considered and not to the model presented. In Section 5, we argue
that a symmetric approach to the one here proposed can be used
where there is uncertainty over l̂.

THEOREM 2. In the scenario described in Example 1, to guar-
antee that a customer who reports û < u is charged an expected
payment higher than the one she would get by reporting u, the stor-
age operator can set her total payment equal to

ρmax · c ·
∑
t∈[T ]

st + 2 ·Nflex · (sT − û)

where Nflex is an upper bound of the gain the customer has by
misreporting and ρmax is the highest possible ρ.

4. FIXED CONTRACT
In the previous section, we examined a form of contract similar

to current contracts in that customers are quoted a price per unit of
storage they use. In this section, we explore an alternative, where
customers can be quoted a fixed price up front regardless of their
actual usage (as long as it is within their reported bounds). As pre-
viously discussed, in our running example there is only uncertainty
about the upper bound û. Thus, on the basis of l (which the storage



operator can easily verify) and û, the storage operator estimates the
price per storage units the customer has to pay, i.e., p(l, û), and the
amount of storage units she will use, i.e., E[S]. Their product is
the price that the customer has to pay when she signs the contract.
Formally:

Pfix(l, û) = T · E[S] · p(l, û)

As before, since more storage units are allocated than are actually
used, the price p(l, û) is computed such that the customer’s pay-
ment covers this extra cost. Thus, p(l, û) and ρ(l, û) are computed
exactly as in the flexible contract case. Given this, we can write the
payment as

Pfix(l, û) = T · E[S] · q(l, û)
E[S]

· c = T · q(l, û) · c

Note that, Pfix(l, û) does not depends on the realizations and is not
in expectation because at the moment of signing the contract the
exact payment that the customer makes is known. For Example 1,
Pfix(l, û) = (l + û) · c.

Indeed, the main difference between the flexible contract and the
fixed contract is that the payment of the latter is in fact fixed as long
as the customer does not violate the requirements. In contrast, for
the flexible contract case, at the beginning of time t1, only the cost
of the storage unit is fixed while the total payment of the customer)
even if she does not violate the contract) is known only at the end
of time T .

4.1 Incentives
In this section, we study when customers have an incentive to re-

port an upper bound different from the actual one. It is easy to ob-
serve that the payment of our example increases when û increases.
Thus, the customer has no incentives to report û > u. This proves
the following theorem.

THEOREM 3. In the scenario described in Example 1, customers
have no incentive to report û > u.

While we have the same incentives for reporting regarding û that
we had in the flexible case, the incentives regarding l̂ (if it needed
to be reported) are different. Indeed, from the fixed payment of
Example 1, we deduce that the payment increases when l̂ increases.
Thus, the customer has no incentives to report l̂ > l.

4.2 Penalties
Given the discussion in the previous section, our only remaining

concern is preventing customers from reporting û < u. Here, we
show how to penalize a customer if the storage operator observes
her misreport. Note that, as for the flexible contract, an infinite
penalty would guarantee a truthful elicitation. However, we aim to
provide a reasonable upper bound to the penalty that allows it to be
finite (which seems essential in any practical proposal).

THEOREM 4. In the scenario described in Example 1, to guar-
antee that a customer who reports û < u is charged a payment
higher than the one she would get by reporting u, the storage op-
erator can set her total payment equal to

ρmax · c ·
∑
t∈[T ]

st + 2 ·Nfix · (sT − û)

where Nfix is an upper bound of the gain the customer has by
misreporting and ρmax is the highest possible ρ.

5. GENERALIZATION
All the resulted presented in the paper can be generalized to (i)

the case where there is uncertainty over the minimum amount of
storage used by the customer, i.e., when E[St1 ] = l̂ + E[R1], (ii)
the case with more than two time periods, (iii) the case in which
lower and upper bounds are specified is a coarse way, and (iv) the
case where the increments in storage units is not drawn from the
uniform distribution. For a detailed discussion see the full version
of the paper.

6. RELATED WORK
While, to our knowledge, no one has studied cloud pricing as

we propose, a variety of related questions have been studied. The
closest is by Xu and Li [9], who studied techniques such as throt-
tling and performance guarantees to maximize revenue given a pay-
ment scheme that charges a fixed price per storage unit. Abhishek,
Kash, and Key [1] and Borgs, Chayes, Doroudi, Harchol-Balter,
and Xu [2] studied the design of auctions for spots in a queue, with
an application to spot markets for compute resources where cus-
tomers can bid the amount they are willing to pay. Jain, Menache,
Naor, and Yaniv [7] studied mechanism design for scheduling tasks
in a cloud system.

Our techniques rely on detecting certain types of misreports and
then punishing agents who have done so, which makes them a case
of mechanism design with partial verification, which has been stud-
ied in a variety of contexts [6, 8, 4].We can only catch these reports
probabilistically, a version studied by Caragiannis, Elkind, Szeged,
and Yu [3]. An alternative approach would be to charge users a
fixed amount per storage unit and then incentivize accurate report-
ing using a scoring rule [5]. However, this has the downside that
the score payment is more difficult to explain up front.
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