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ABSTRACT
We are interested in using context to improve speech
recognition and speech understanding. Knowing what the
user is attending to visually helps us predict their utterances
and thus makes speech recognition easier. Eye gaze is
one way to access this signal, but is often unavailable (or
expensive to gather) at longer distances. In this paper
we look at joint eye-gaze and facial-pose information while
users perform a speech reading task. We hypothesize, and
verify experimentally, that the eyes lead, and then the face
follows. Face pose might not be as fast, or as accurate
a signal of visual attention as eye gaze, but based on
experiments correlating eye gaze with speech recognition,
we conclude that face pose provides useful information to
bias a recognizer toward higher accuracy.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Speech recognition
and synthesis

General Terms
Evaluation
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1. MOTIVATION
Several research groups have demonstrated improved

speech recognition with access to a user’s eye-gaze
information [1, 6]. But eye-gaze information is difficult to
obtain at a distance. In this paper we wish to demonstrate
the utility of face-pose information as a proxy for eye-gaze
information.

Eye gaze information will always be the better source of
information. The fovea is highly specialized for gathering
information, and is the portion of the eye with the highest
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spatial resolution. It is certainly possible to glimpse
information from the corner of one’s eye, but that is
probably not how most people read information.

The system we envision combines a screen with speech
recognition. Explicit pointing will always be valuable, using
gestures, touch or a pointing device. This paper deals with
eye-gaze and face-pose information because one must look at
an object before you can point at it. This information makes
the recognizer’s job easier because intent and visual history
are both important contextual information for a recognizer.

Our hypothesis is that the orientation of the face, or its
pose, is a proxy or an approximation of eye gaze. While
one can certainly gaze in a wide range of directions without
moving one’s head, the natural action appears to be that
the eyes move first, and then the head follows. We wish
to characterize the temporal course of the head-pose signal,
and its accuracy. Both the eye-gaze and the face-pose signals
function as a spotlight, effectively selecting certain words on
the screen and potentially biasing the speech recognizer’s
language model (LM).

2. EXPERIMENTAL SETUP
We collected joint data using a Tobii REX for eye-gaze

data, and a Microsoft Kinect for face-pose data. Users were
asked to read text at random locations on a large screen,
thus insuring that the user was focused on the task at hand.

Our two sensors have conflicting requirements. The eye-
gaze hardware works best with close distances so it can
capture an image of the user’s eyes with high resolution,
while the face-pose software wants to see more of the body
so it can reliably detect the user and identify the face. We
wanted to collect simultaneous eye-gaze and face-pose data,
so we had a narrow range of user-to-screen distances so as
to satisfy the requirements of both devices.

Figure 1 depicts our overall experiment setup. A large
(132cm diagonal) display shows text to the user, who stands
at a distance of 74cm from a 40 dots per inch (dpi) screen.
A Kinect is mounted above the display and looks down
on the user, and a REX is mounted at the bottom of
the display and looks up at the user’s eyes. The user’s
speech utterances were collected with a headset-mounted
noise-cancelling microphone but are not analyzed in this
paper. Instead, we compare the relation between eye-gaze
and face pose in our data with data from a similar previous
experiment that examined the relationship between eye-gaze
and speech-recognition performance.



Figure 1: Our basic experimental setup. A user sees
a blank screen, and then seeks and reads text placed
at random on the screen.

2.1 Tobii REX Eye Tracker
The Tobii REX is an inexpensive eye-tracking sensor

that detects infrared glints using a small camera. The
specifications for the REX state that it is useful for screen-
to-eye distances between 40 and 90cm. In our setup, we got
position updates at about 30Hz in pixel coordinates. We
used the vendor-supplied software to calibrate the eye-gaze
calculations for each user. Our display was larger than their
specification allowed, and we were at the limit of their depth
range. Thus the calibration software often complained that
it was not able to get a good look at all of the points used for
calibration. But since we are mostly interested in temporal
information, as opposed to precise pixel locations, this was
judged to be sufficient for our purposes.

2.2 Microsoft Kinect
The Microsoft Kinect, on the other hand, is a general

device for collecting body skeleton information. The Face-
Tracking toolkit that is part of the Developer’s Toolkit
(version 1.8) uses depth and color image data to track one
or more faces. Kinect includes a full body tracker, and a
special mode in the Kinect for Windows device that only
needs the user’s upper body for tracking. In this near-range
mode the Kinect has a practical range from 80cm to 250cm.
The Kinect software returns the location of a face, in meters
relative to the camera location, and the 3-D pose of the face
as angles relative to the camera coordinate system. The
camera has a vertical field of view of 43◦ We also received
face-pose information at a rate of about 30Hz.

The Kinect provides head positions and angles, and does
not include any provision for calibration. We needed to
transform these positions and angles into screen coordinates.
The ultimate solution is a two-camera approach suggested
by Huang [3]. Instead, we implemented a simpler solution
by putting the camera on the same plane as the screen, thus
reducing parallax effects, and then using an affine transform
to perform the final mapping into screen coordinates. To
effect this transformation we asked the user to turn their
head towards 8 different points around the outskirts of the
display. We used the face-pose information provided by the
Kinect, and simple geometric transformations to transform
the raw Kinect data into the camera’s imaging plane (which
was slightly tilted with respect to the display.) We then
found an optimum affine transform that transformed the

points in the camera plane to pixels in the computer’s world.
Again, this transformation is not general, but was deemed
sufficiently accurate for this paper’s purposes.

2.3 Automatic Speech Recognition
We use a state-of-the-art large vocabulary speech

recognizer in our experiments [2, 6]. The acoustic models
incorporate the latest advances in context-dependent deep
neural networks (DNN) for estimating senone likelihoods.
The language model (LM) is a general-purpose backoff
4-gram model with a vocabulary of about 400K words.
This generic LM (GLM) was trained on a wide variety of
sources ranging from transcribed speech from deployed ASR
applications, such as voice search, to text from a diverse set
of web resources. The GLM was not tailored or adapted to
the tasks of our study.

To study the potential benefit of context information
for speech recognition we performed LM adaptation
experiments in an N-best rescoring framework [5]. We
generated lists of the 100 best hypotheses for each
utterances, using the GLM. The baseline word error rate was
43.8%. The best achievable (oracle) error rate, by rescoring
the 100 best hypothesis, was 22.5%.

Besides the generic LM, we also investigated a
second, stronger baseline system in which we derive an
utterance-specific bigram LM from the full-screen contents,
irrespective of eye-gaze information. This LM is restrictive
since there are roughly one thousand words on a single page.
The utterance-specific whole-page LM was combined with
the GLM via log-linear score combination at the utterance
level. This corresponds to a log-linear interpolation of
the two LMs [4], but without normalizing the combined
probability distribution. We estimated the linear weights for
GLM and utterance-specific LM log probabilities on one half
of the test speakers and applied to the other half, in a jack-
knifing experiment. The N-best hypotheses were rescored
with the combined LM and the new 1-best hypotheses
extracted.

Finally, we built context-dependent utterance-specific
LMs, based on the estimated location of the user’s attention
before and during the time of each utterance. To build the
context-conditioned LM, we collected words appearing on
the screen at the appropriate times and locations. We then
found bigrams by sorting the word locations into reading
order, and combining words into bigrams if they are on the
same line and adjacent to each other. From the bigrams
thus collected, another utterance-specific LM was estimated,
and combined with both baseline LMs (GLM and whole-
page LM) via log-linear score combination, again using jack-
knifing for weight estimation.

2.4 Display Experiment
Before collecting speech we asked 6 users to calibrate

themselves for both the eye gaze and face trackers. In
addition to helping us map angles to pixels on the
screen, this calibration procedure allowed us to get basic
information about the static performance of the system and
our users. Users were aware that we were tracking both their
head pose and eye gaze, but were not aware of our specific
hypothesis.

After calibration we asked each user to perform 20 to
30 speech-reading trials. Before each trial, users were told
to look at the center of the screen, where a circle was



fixed. Then after a few seconds a short text utterance (a
few words from a news headline) with a 6mm high font
was displayed somewhere at random on the screen. This
appeared suddenly so there was an orienting response by the
user. We also added a short 2cm arrow to the center circle
to indicate the direction of the text. We did not enforce a
specific gaze location at the start of an experiment. And
there was likely both head and eye movement as the user
prepared for each trial. The utterance starts some number
of seconds after the text appears, and we are interested in
the time till the eye gaze and face pose estimates are stable.

3. RESULTS
We would like to relate eye gaze and face pose to speech-

recognition performance. This is difficult for a number
of reasons, including task and cognitive issues, but also
due to simple physical effects. We assume a user absorbs
information from within a visual spotlight that moves over
time. In addition the sensors have their own physical
limitations, which we can model as (Gaussian) noise added
to each measurement. Finally, there is some function that
relates the probability of a user’s comfortable head positions
to their desired eye-pose direction. This probability
function is certainly related to physical considerations like
maintaining comfortable positions, while not shaking the
head too much, or too fast. We model the spotlight size
as a sum of independent factors: fovea size, eye-tracking
error, and if necessary comfortable head-eye orientations.

We compare eye-gaze and face-pose information in three
ways. Most simply, we look at the basic sensor error and can
quantify the “noise.” Secondarily, we look at the time delay
between eye gaze and face pose information. Finally, we
translate these numbers into a perplexity measure by which
we can characterize speech-recognition performance.

3.1 Noise
As part of our calibration procedure, we asked users to

stare at a moving dot on the screen. When the dot is not
moving, and the user’s head is still, we can use the eye-gaze
and face-pose information to estimate the inherent noise in
the sensor. For the eye gaze, at this screen size the variance
was 652 pixels. While for the face pose, again given the
geometry we used in this study, the variance of the sensor
noise was 582 pixels. These numbers are important as we
look at the optimum spotlight when adjusting the speech
recognizer’s language model.

3.2 Temporal Characteristics
The temporal patterns of eye gaze and face pose are

certainly different. We hypothesize that eyes are faster to
orient and then the face catches up. Here we only investigate
the delay between eye-gaze and face-pose orientation; the
full spectral–temporal relationship between these two signals
is beyond the scope of this paper.

We asked subjects to read aloud text phrases we put at
random locations onto an otherwise blank screen. Users were
told that they could look at the center of the screen for an
indication of where the string had appeared, but most users
were actively scanning during the experiment.

Since the text was relatively small given the distance (0.5◦

visual height), users need to orient their eyes onto the text to
perform the task. We also observed that users turned their
heads toward the text. Thus we characterized the user’s

Figure 2: Normalized distance to the text for eye-
gaze and face-pose signals during one trial.

eye and facial orientation in terms of their average location
when reading the text, and measured the distance to this
average location over time. Before the spoken utterance,
the distance should be much larger than it is during the
utterance. Figure 2 shows an example of this behavior,
quantified by the normalized distances from the final average
fixation point. We can look for the time of orientation by
correlation of the sensor signal with a unit step that goes
from +1 to -1 at a variable point in time. With this simple
correlation we could estimate the orientation time.1

Because of the random nature of the task, and the user’s
eye-gaze and head orientation, we found 20 trials where we
got a clear signal from both sensors. A histogram of the
difference in orientation time between the two sensors is
shown in Figure 3. In most cases, the head trailed the eyes
by 0.3 seconds. But there were still cases where the head
was pointed in the right location before the text appeared,
and then eyes had to move to catch up to the head pose.

3.3 Perplexity
In a previous study [6] we used a desktop display

to measure the effect of eye gaze on speech-recognition
performance and LM perplexity during a speech-reading
task. The display had a diagonal of 24”, 77 dpi, 17 pixels
per line of text, eye-tracking noise with variance 9.62 pixels,
and the user sat 30” from the screen. Figure 4 shows speech
recognition difficulty for this reading task when using eye-
gaze information to adjust the recognizer’s language model.
Difficulty is expressed in terms of perplexity, which is a
measure of how good the language model is at predicting
the next word, given the words it has already seen. Lower
perplexity means the language model thinks fewer words
are possible, thus reducing the complexity of the speech
recognizer’s task, and increasing performance. But too
small a spotlight removes needed information. Thus the
optimum spotlight size was 200 pixels, and reduced the
speech-recognition error by about 20%. We would like to

1We also looked at using logistic regression to model the
data, but found that noise in the data made it hard to
precisely estimate the transition time.



Figure 3: Distribution of the time delay between the
eye-gaze fixation on the text and the eventual face
orientation to the neutral position.

know how face-pose information might translate into this
domain.

To make the speech-recognizer’s job easier, our spotlight
should be as small as possible, including all necessary words
on the screen, in spite of any sensor errors. In the eye-
tracking case there are two components to the spotlight: a
cognitive/reading effect and the sensor noise. The same idea
holds for face-pose data, but there is also a component that
corresponds to the short-term discrepancy between face pose
and eye-gaze as the eyes and head adjust to a new task. We
do not have an estimate of this variable, except as shown in
Section 3.2 that there is a 0.3 second delay.

We use the eye-tracking ASR experiment to guage the
impact of using face pose to bias a recognizer. The noise
due to the face sensor is higher, but overall has a small
effect on the overall perplexity. The spotlight in the desktop
display has a radius of 200 pixels, or approximately 5◦ of
arc. The face-sensor noise was 582 pixels on a larger display,
suggesting a noise of approximately 3◦ degrees. Overall,
this represents less than a factor of two increase in potential
spotlight size. This certainly affects perplexity, but as can
be seen in Figure 4 the modified perplexity is higher, but still
an improvement over the whole-screen perplexity. Thus face
pose adds information to the speech recognizer, and, based
on the prior study, has the potential to improve recognition

Figure 4: LM perplexity as a function of spotlight
radius for the desktop screen, independent of
modality.

accuracy. We hope to verify this in a future experiment
that uses the face-pose signal directly for biasing the speech
recognizer.

4. CONCLUSIONS
We demonstrated the viability of face-pose information

as a proxy for eye-gaze information. Eye-gaze information
reduces the difficulty of the recognition task by a factor of
two, in terms of language model perplexity. While eye gaze
usually preceeds face orientation and current face sensors
are not as accurate as eye trackers, face-pose information
has the potential to also significantly reduce LM perplexity.

We have quantified eye-gaze and face-pose information in
a joint experiment, where we jointly measure both signals
from a single user. While face pose can not tell the whole
story, it has similar errors, and a slight delay from the eye-
gaze signal. This resulting perplexity reduction is important
because it directly impacts speech-recognition performance.
Speech recognition will be challenging in the large-display
scenarios we envision because of multiple users, reverberent
environments, and large microphone-to-user distances.

We need to perform further studies to quantify the effect
that face pose information has on the visual spotlight needed
for language modeling. This study shows that the errors are
manageable, and suggest that there is a significant reduction
in perplexity when using face-pose information. By this
study we demonstrated the value of these new more ASR
experiments using face-pose information.
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